
15213 Lecture 19: Processes and Exceptions

Learning Objectives
• Recognize the difference between aborts and function failures.
• Identify program actions that can cause a synchronous exception.
• Describe what can happen during a trap, both immediately and ultimately.
• Explain how an application invokes helper functions in the kernel.
• Compare and contrast the OS’s two tools for running multiple processes.

Getting Started
The directions for today’s activity are on this sheet, but refer to accompanying programs that you’ll
need to download. To get set up, run these commands on a shark machine:

1. $ wget http://www.cs.cmu.edu/~213/activities/ecf-process.tar

2. $ tar xf ecf-process.tar

3. $ cd ecf-process

1 Processes Scheduling
Now let’s peek beneath the process abstraction and see how the operating system provides each
process with its own notion of control flow.

1.1 Multicore
Take a look at cores.c, a program that spawns a user-specified number of child processes, each of
which prints which CPU core1 it’s running on. The function call fork() is responsible for spawning
a new child process while wait() makes the parent process wait until all its child processes finish
running. When you’re ready, build ($ make cores) and run ($ ./cores) it.

1. Try asking for 2 child processes. Do you notice anything about which CPUs the OS assigns
them?

2. Notice that the program shows the number of schedulable cores. Now try requesting a number
of children equal to one more than this number. What happens?

1In the case of superscalar SMT (simultaneous multithreading) processors such as modern x86 CPUs, each physical
core actually appears as two or more logical cores.

http://www.cs.cmu.edu/~213/activities/ecf-process.tar


3. Looking at the output, do you see indication of whether the children were run sequentially
(one after the other) or concurrently (overlapping in time)? (Note that the output is
nondeterministic2, so if the result doesn’t match your hypothesis, try running the program
once or twice more.)

1.2 Context Switching
Finally, glance over timing.c. This program prompts to ask whether it should spawn a single child
process running a tight loop on the same core. Then, the parent constantly measures the amount of
wall-clock time that has elapsed and reports the minimum such time that has disappeared (above
a certain detection threshold). Build ($ make timing) and run ($ ./timing) it.

4. Enter n when asked whether to spawn a child process and notice whether the program expe-
riences any lost time. Why do you think this did (or didn’t) happen?

5. Run it again, this time entering y. What happens, and why?

2 Exceptions
In this section, we’ll be using an interactive calculator application as an example. Examine the
calc.c file using your editor of choice or the cat command. Once you’re comfortable with it, try
building ($ make calc), running ($ ./calc), and using (e.g., > 1+2) it.
Programs appear to exhibit uninterrupted control flow through their local instruction stream.

In reality, however, the hardware often interrupts them in response to special events and transfers
control to the operating system; this is known as an exception. The kernel may respond by (even-
tually) transferring control back to the application3, or it may decide to terminate the application,
which is known as an abort. Since this case is easier to observe, let’s look at some examples.

2.1 Asychronous Exceptions
Some exceptions arise due to an event that occurs while the program is executing and cause the
program to be paused at an arbitrary point in its execution while the kernel handles the event.

6. From within the calc application, try typing a word (e.g., quit). What does the program
do after you hit enter? Did your input cause an abort?

2The program uses a sched_yield() call to increase the chance of enlightening output: this library function causes
a trap, during which the OS is allowed to give the core to a different process.

3Although it isn’t always obvious that this has happened, we’ll see later in the activity that an observant application
can infer when it might have.

2



7. This time, try pressing Ctrl-D to prematurely close the standard input stream. How does
calc respond? Did your input cause an abort? How can you tell?

8. Now try pressing Ctrl-C. How does calc respond? Did your input cause an abort? How can
you tell?

2.2 Synchronous Exceptions
Other exceptions arise occur in response to an action the program itself performs and cause the OS
to handle the event immediately at that particular point in the program. You’ve certainly already
encountered the dreaded segmentation fault, but now we’ll see another synchronous exception that
reslts in a program abort.

9. This calculator accepts as valid input some math expressions that have an undefined mathe-
matical result. Give one example and state what happens when you enter it.

10. The C standard permits implementations to abort when signed integer arithmetic wraps.
Try testing addition and subtraction to see whether the shark machines abort in such a
case. What do you find? (Hint: Recall that 32-bit TMax is 2, 147, 483, 647 and TMin is
−2, 147, 483, 648.)

11. (advanced) Now test multiplication and division. What do you find?

As you’ve discovered, x86-64 does not generate exceptions in the same integer arithmetic cases
as some other architectures. In the cases where it does, it may surprise you to see an integer
calculator printing Floating point exception. This is for historical reasons: Bell Labs initially
developed Unix for the PDP-11, a computer that didn’t even generate exceptions for undefined
integer arithmetic results. As Unix was standardized across other platforms, the new abort was
folded under an existing signal identifier4.

4Similarly, the Segmentation fault message you know and love is left over from a time before paging, when virtual
memory was managed using a scheme known as memory segmentation.

3



3 Special Exceptions: Traps
Not all exceptions represent error conditions. In fact, certain instructions trap, or deliberately
cause a transfer of control to the operating system kernel. Traps are somewhat analogous to the
function calls initiated by the call instruction; both often "return" to the following instruction
once they finish. Alternatively, like a function, a system call might choose to prematurely exit the
program rather than returning.

3.1 Breakpoints
In earlier activities, we saw examples of programs that manually caused the debugger to stop as
if a breakpoint had been hit. Read trap.s, a short assembly program that triggers a breakpoint.
Then try building ($ make trap) and running ($ ./trap) it.

12. Does this behavior look familiar? Besides as a trap, how would you classify this exception?
(Hint: Try to come up with both of the relevant categories of exception.)

13. What happens when you run the program in the debugger ($ gdb trap)? Assuming the user
continues, would you still classify the exception in the same way?

14. (advanced) If you needed to implement an interactive debugger like GDB, what might you do
to the program being debugged when the user asked you to create a breakpoint at a particular
address?

3.2 System Calls
Another reason an application might trap is if it needs the operating system’s help to perform some
task. Many of the C library’s functions are actually just thin wrappers around such system calls.
This is especially true of those related to memory and I/O.
We can ask GDB to intercept system calls by creating a catchpoint. From within the same GDB

session as before, try this now ((gdb) catch syscall) and rerun the program ((gdb) r).

15. Disassembling and continuing a couple of times, can you tell which instruction is trapping?

16. The runtime does some work before calling the main() function. The first system call it
executes look familiar; what is it doing?

17. (advanced) Looking at the filenames passed to functions performing the open system call,
why are these files being opened? (Hint: Try obtaining a backtrace and looking at arguments
passed to the invoking functions.)

4


	Processes Scheduling
	Multicore
	Context Switching

	Exceptions
	Asychronous Exceptions
	Synchronous Exceptions

	Special Exceptions: Traps
	Breakpoints
	System Calls


