
Lecture 21: System-Level I/O 15-213/15-513 Summer 2022

Learning Objectives

• Describe the use of Unix I/O library functions.

• Understand when short reads and writes happen and how to handle them.

• Recognize the implementation differences and resulting performance differences
between Unix I/O and Standard I/O.

• Predict the behavior of multi-process programs when file descriptors are opened
and copied (with dup and dup2).

• Describe how shell I/O redirection is implemented in terms of Unix I/O operations.

Getting Started

The directions for today’s activity are on this sheet, but they refer to programs that
you’ll need to download. To get set up, run these commands on a shark machine:

$ wget http://www.cs.cmu.edu/~213/activities/system-io.tar
$ tar xf system-io.tar
$ cd system-io
$ make

1 Unix I/O

The Unix I/O API consists of low-level functions for opening, closing, reading from,
and writing to files. Open files are represented in this API by file descriptors, which are
non-negative integers.

The file descriptors 0, 1, and 2 are already open when a program starts up. They
correspond to the Standard I/O streams standard input (stdin), standard output
(stdout), and standard error (stderr) respectively.

Examine the program unixcat.c, which opens a file, reads its contents, and writes
its contents to stdout.

Problem 1. When you’re ready, try using this program to print its own source:

$./unixcat unixcat.c

Solutions 1/7

System I/O

What went wrong? Edit unixcat.c to fix the problem (hint: it’s on the line after the
FIXME comment); run make again to recompile, then try using it again. What did you
have to do to make it work correctly?

The unixcat command does not print the complete file due to a short count; bytes
were read from the file, but fewer than BUFFER_SIZE. Changing the condition of the
while loop to > 0makes the program work correctly.

2 Standard I/O

The C standard does not specify the Unix I/O functions. It does specify the standard
I/O functions, which operate on files at a higher level. (These are implemented using
the Unix I/O functions on Unix systems.) Some of the standard I/O functions are very
similar to Unix I/O functions, such as fread and read. Others, such as printf, provide
facilities for complex “formatted” I/O. All of the standard I/O functions represent open
files with FILE objects, which are structs containing file descriptors but also various
other data.

One of the most important reasons to use standard I/O is buffering: data can be
temporarily stored inside each FILE (in a char array) to reduce the number of calls
to read and write that are necessary. To see how buffering affects a program’s
output, look at the program three.c. It prints three three-word phrases using different
combinations of printf and write. When you’re ready, run the program with ./three.

Problem 2. Which of the three phrases were printed in the same order as they appear
in the source code? Why did this occur? What is different about the way the three
phrases were printed that caused this?

In this program, stdout is configured to buffer data until a complete line can be
printed. The first phrase is printed out of order because the first call to printf does
not print a complete line, so the word “believe” is held in the buffer. write bypasses
the buffer and prints “in”. The second call to printf completes the line, and “believe
yourself!” is printed all at once, after “in”.

The second phrase is printed in order because each string passed to printf is a
complete line (ending with a ’\n’ character) so there is nothing held in stdout’s buffer
between calls.

The third phrase is printed in order even though its first call to printf does not
supply a complete line, because fflush(stdout) causes the contents of the buffer to
be printed immediately.

Problem 3. You can use the strace program to examine the system calls made by
three. Run it like this:

$ strace -e trace=write ./three > /dev/null

Solutions 2/7

System I/O

What do you notice about the calls to write? Does this agree with what you observed?

Each call to write is visible. Each call to printf corresponds to an additional call to
write, except for the first phrase, where the write for “in” happens before the buffered
write for “believe yourself”. This is consistent with what we observed earlier.

Note: In this problem, strace was directed to report only calls to write, and I/O
redirection was used to suppress the output directly from three. You might be curious
to see what happens if you simply run

$ strace ./three

(This will produce a lot of output—be prepared to scroll back.)

2.1 Buffering and Performance

Buffered I/O aims to increase efficiency by reducing the number of calls to read and
write, which have a lot of overhead (tens of thousands of clock cycles). Examine the
program timing.c, which measures the time it takes to write data to /dev/null one
byte at a time, using both Unix I/O (write) and Standard I/O (fputc). (/dev/null is a
special file called the “null device,” or, colloquially, the “bit bucket,” which discards
anything written to it. We’ve already used it once in this activity.)

Problem 4. The program timing takes one command-line argument, the number of
bytes to write. When you are done looking over its code, try having it write just one
byte each way:

$./timing 1

Which way is faster, write or fputc? Is that what you expected? You may need to run
it several times to see a pattern.

If we are only writing a single byte, it is faster to use write. This is because of the
overhead of setting up the FILE and copying data into the buffer before calling write.
(Notice that we are measuring the cost of opening and closing the file using each API,
not just the writes.)

Problem 5. Try increasing the number of bytes written, in steps. How many bytes do
you need to write before buffering is faster? If you make the number of bytes larger
and larger, what do you think the asymptotic performance curves look like?

Buffering starts to be worth the setup overhead at something like 100 bytes written.
Asymptotically, both are linear in the number of bytes written, but the slope of the line
is much steeper for write.

Solutions 3/7

System I/O

Problem 6. Based on what you have just observed, when do you think you should
use Unix I/O functions, and when do you think it will be better to use Standard I/O?

The lower-level Unix functions are normally chosen when it is necessary to have
precise control over what system calls happen when, or when Standard I/O is unsafe
(e.g. in a signal handler). They can also be a good choice for reading or writing large
blocks of data all at once. Standard I/O works better when you are doing many small
reads and writes (e.g. to process a file character by character or line by line).

Problem 7. (advanced) Edit timing.c. On the line that reads

setvbuf(stream, NULL, _IOFBF, 0); // Buffer in large chunks.

change _IOFBF to _IOLBF. Recompile (make). Run timing again, with a large argument
(say, 100000). What changed? Why might that have happened?

Changing _IOFBF to _IOLBF tells the Standard I/O functions to buffer only one line
of output instead of large chunks of data. The value of the variable c is ’\n’, so every
call to fputc completes a line of output. Effectively, the Standard I/O functions are no
longer doing any buffering and are now slower than write.

3 File Descriptors, Fork, and Dup2

Each time the open function is called, a new open file table entry is created and the
file descriptor corresponding to that entry is returned. However, the dup and dup2
functions can be used to duplicate a file descriptor. Duplicated file descriptors point
to the same open file table entry. dup takes the old file descriptor as an argument and
returns the duplicate. dup2 takes both the old and new descriptors as arguments, and
makes the new descriptor be a duplicate of the old. If the new descriptor was open
already, it is closed first (atomically).

Examine the program doublecat.c, paying particular attention to the print2
function, which takes in two file descriptors and prints each file, one character at a
time.

Problem 8. The file abcde.txt contains the characters abcde, followed by a newline
character. If you were to run $./doublecat abcde.txt what would be printed in
each case?

Case 1: abcde. Case 2: aabbccddee. Case 3: abcde.

Problem 9. Run the program as suggested ($./doublecat abcde.txt). Were your
predictions correct? Did the output differ in the three cases? Why do you get the
output you do?

Solutions 4/7

System I/O

In cases 1 and 3, there is only one open file table entry and therefore only one file
position, so the characters printed are a b c d e \n, and they alternate between fd1
and fd2. In case 2 there are two independent open file table entries so each character
is read twice, once from each file descriptor.

To further complicate matters, child processes share the open file descriptors of their
parents. (It is as if fork calls dup for each descriptor—but the new descriptors go into
the child’s file descriptor table and have the same numbers that they did in the parent.)

Examine the program childcat.c, which forks two child processes, each of which
print two letters from a shared file descriptor, while the parent prints one letter from
that file.

Problem 10. If you run childcat on abcde.txt, what could be printed? Take a
moment and write your guess below. Then, run $./childcat abcde.txt. Did the
output match what you expected?

The output is very likely to be abcde. However, due to scheduling nondeterminism,
it’s possible for these letters to appear in a different order.

Problem 11. Run $./childcat abcde.txt several more times. Does it always print
the same thing? Look at the code carefully. Is it guaranteed to print the same thing
always? If it isn’t, are there any constraints on what it can and cannot print?

You might see it always printing the same thing, but it isn’t guaranteed to. The child
and the grandchild each read (and then print) two characters from the file. Those pairs
of characters will appear in the same order that they appeared in the file, but there
might be other characters in between them, and neither the child nor the grandchild is
guaranteed to go first. The character read and printed by the parent can appear at any
point in the output. The newline printed by the parent will always be the last thing
childcat prints. These are the only constraints.

4 Shell I/O Redirection

Shell I/O redirection is a tool for defining the input and output of shell commands in a
high-level, uniform manner.

Problem 12. Try running the command

$ /bin/echo 15213 rocks > phrase.txt

This writes the string “15213 rocks” to the file phrase.txt, creating it if it does not
exist. What Unix I/O and process control functions do you expect the shell will use to
run this command?

Solutions 5/7

System I/O

The shell will call fork to create a child process. The child process will then call open
on phrase.txt, for writing (not appending), followed by dup2 to assign the newly
opened file as standard output, and finally execve to run the program /bin/echo. In
the meantime, the parent shell process calls waitpid to reap the child process once it
completes.

Problem 13. We can use strace to observe how the shell runs this command. Run it
like this:

$ strace -f -e trace=process,open,dup2,write \
/bin/sh -c ’/bin/echo 15213 rocks > phrase.txt’

Does the series of operations you observe, match what you expect?

Yes, for the most part. There are some small differences, such as clone instead of
fork and wait4 instead of waitpid. This is normal—strace sees details that the C
library normally hides. (If you looked at the code for /bin/sh you would probably
see a call to fork.) Note the way open is called, with flags that open the file for writing
only (O_WRONLY), creating it if it does not exist (O_CREAT), and erasing its contents if it
does (O_TRUNC). (Run the command man 2 open for more information.)

Problem 14. Examine the phrase.txt file. Did the traced invocation change its
contents? Now try the following command (untraced):

$ /bin/echo 15213 rocks >> phrase.txt

What did that do to the file? What do you think the shell did differently because you
used >>?

The traced invocation overwrote the existing file with the same contents, so it didn’t
appear to change. This new invocation appends to the file, instead of overwriting it.
The shell achieves this by passing different flags to open: O_APPEND instead of O_TRUNC.

In addition to redirecting standard input and output to/from files, the shell has the
ability to pipe the output of one program to the input of another. You request this with
the | operator.

Problem 15. An example of a command that uses pipes is

$ ps aux | grep $USER

This runs ps aux, which prints out a report on all the running processes on the current
machine, and sends the output to the input of grep $USER, which searches for lines
containing your username and prints only those lines. The output of grep goes to your
terminal. ($USER is a shell variable. The shell will replace it with your actual username
when it runs the grep program.)

Solutions 6/7

System I/O

To run this “pipeline”, what Unix I/O and process control functions will the shell
call, and in what order? How does this differ from the calls done for simple redirection
to file? (One of the functions that’s needed, we haven’t mentioned at all yet. man 2
pipe.)

The shell will need to fork two processes, one for ps and one for grep, and it will
need to set up communication between the two processes so that write operations
done by psmake data available for grep to read. “Pipe” is not just the name of this
shell feature, it’s the name of the communication channel that is used, and the name of
the system call that creates it. Before forking, the shell will call pipe once, which will
open two file descriptors, one for reading and one for writing. It will dup2 the write fd
to ps’s standard output and the read fd to grep’s standard input. Then it will close all
unnecessary fds in each child and execve the appropriate program in each. Only after
all of the child processes have been created will it call waitpid for any of them. (Why
do you suppose it has to do it that way?)

Solutions 7/7

	Unix I/O
	Standard I/O
	Buffering and Performance

	File Descriptors, Fork, and Dup2
	Shell I/O Redirection

