
15-513 Programming Homework 0 Page 1 of 8

15-513: Introduction to Computer Systems, Summer 2022
Programming Homework 0: Cord Lab

Due: Monday 23rd May, 2022 by 11:59pm ET
Last handin: Monday 23rd May, 2022 by 11:59pm ET

1 Overview
For the 0th lab of 15-513, you will implement the data structure of cords, which provide constant-
time string concatenation. This lab will give you practice in the style of programming you will need
to be able to do proficiently, especially for the later assignments in the class The material covered
should all be review for you. Some of the skills tested are:

• Explicit memory management, as required in C.

• Creating and manipulating pointer-based data structures.

• Working with strings.

• Enhancing the performance of key operations by storing redundant information in data
structures.

• Implementing robust code that operates correctly with invalid arguments, including NULL
pointers.

If you have questions regarding the assignment, for the fastest response, please use Piazza. Your
posts should be private by default. Before asking a question, though, please read this handout in its
entirety, and also look at the FAQ page.

This is an individual project. You are not allowed to search online for, ask for support from,
or re-use code from previous iterations of 15-213/15-513 or any other course. Before you begin,
please take the time to review the course policy on academic integrity
at http://www.cs.cmu.edu/~213/academicintegrity.html.

2 Logistics
• All handins are electronic using the Autolab service.

• You should do all of your work in an Andrew directory, using a Shark machine.

2.1 Logging in to Autolab
All 213/513 labs are being offered this term through a Web service developed by CMU students and
faculty called Autolab. Before you can download your lab materials, you will need to activate your
Autolab account. Point your browser at the Autolab front page, https://autolab.andrew.cmu.edu.
You will be asked to authenticate via Shibboleth.

1 c© Carnegie Mellon University 2022

http://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/academicintegrity.html
https://autolab.andrew.cmu.edu

15-513 Programming Homework 0 Page 2 of 8

After you authenticate the first time, Autolab will prompt you to update your account information
with a nickname. Your nickname is the external name that identifies you on the public scoreboards
that Autolab maintains for each assignment, so pick something interesting! You can change your
nickname as often as you like. Once you have updated your account information, click on the “Save
Changes” button, and then select the “Home” link to proceed to the main Autolab page.

You must be enrolled to receive an Autolab account. If you added the class late, you might not
be included in Autolab’s list of valid students. In this case, you won’t see 15-513 listed on your
Autolab home page. If this happens, contact the staff and ask for an account. We update Autolab’s
list of students once every 24 hours, so please be patient.

2.2 Downloading the assignment
For all assignments in this class, you should do all your programming and testing using one of
the Shark machines, which you can access via an SSH connection. The starter code and testing
scripts that we give you are not guaranteed to work anywhere but the Shark machines. You can find
a list of all the Shark machines at http://www.cs.cmu.edu/~213/labmachines.html. The Linux
Bootcamp will cover using SSH and related topics in greater detail.

To begin working on this assignment, start by creating a directory for this course in a subdirectory
of your AFS home directory that is accessible only by you. New Andrew accounts start out with
a subdirectory with appropriate access control settings called ~/private, so if you have that
directory, these commands are sufficient:

shark$ mkdir ~/private/15513
shark$ cd ~/private/15513

If you don’t have the ~/private directory and don’t know how to create a subdirectory that is
accessible only by you, contact the Andrew helpdesk for instructions.

Once you are inside the 15513 directory, use the autolab command to download the starter
code:

shark$ autolab download 15513-m22:cordlab

You may be prompted to authenticate; follow the instructions. This will create a deeper subdirectory
named cordlab containing two files:

shark$ cd cordlab
shark$ ls
cordlab-handout.tar cordlab.pdf

cordlab.pdf is another copy of this writeup; cordlab-handout.tar contains the files you need.
Extract them with these commands:

shark$ tar --strip=1 -xf cordlab-handout.tar
shark$ rm cordlab-handout.tar
shark$ ls
check-format cordlab.pdf grade-iscord.o helper.mk README
cord.c grade-basic.o grade-rec.o Makefile test-cord.c
cord-interface.h grade-cordlab grade-sub.o makesomecords.o xalloc.h

2 c© Carnegie Mellon University 2022

http://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/labmachines.html

15-513 Programming Homework 0 Page 3 of 8

For this lab, you will only need to modify cord.c. You may find it useful to write tests
for the API you are implementing; put these in test-cord.c. If you like, you may modify
.clang-format so that “make format” applies your preferred style. Don’t modify any other
files! If you do, the autograder will ignore those modifications and your code probably won’t
compile.

3 Introduction to Cords
The most obvious implementation of a string is as an array of characters. However, this representa-
tion of strings is particularly inefficient at handling string concatenation. Running strcat in C on
two strings of size n and m takes time in O(n + m).

A cord is a tree-like data structure that provides a more efficient way of concatenating strings. A
cord is a pointer to a cord data structure defined in C as follows:

typedef struct cord_node cord_t;
struct cord_node {
size_t len;
const cord_t *left;
const cord_t *right;
const char *data;

};

A valid cord must be either NULL, a leaf, or a non-leaf. More specifically:

• NULL is a valid cord. It represents the empty string.

• A cord is a leaf if it is non-NULL, has a non-empty string data field, has left and right
fields that are both NULL, and has a strictly positive len equal to the length of the string in the
data field (according to the C string library function strlen).

• A cord is a non-leaf if it has non-NULL left and right fields, both of which are valid cords,
and if it has a len field equal to the sum of the len fields of its children. The data field of a
non-leaf is unspecified. We’ll call these non-leaves concatenation nodes.

This is one of many cords that represents the 15-character string "happy birthday!":

3 c© Carnegie Mellon University 2022

15-513 Programming Homework 0 Page 4 of 8

Note that where we indicate Xes in the data field, any contents would be allowed and we would
still have a valid cord. We can also represent the same structure using a short-hand notation that
illustrates the two different types of nodes, leaf nodes and concatenation nodes:

Task 1 (4 points)
In the file cord.c, write a data structure invariant bool is_cord(const cord_t *c). For

full credit, you should ensure that your data structure invariant terminates on all inputs. HINT: If
your circularity check requires more than 2-6 extra lines, you’re doing it wrong.

4 Implementing Cords
A full interface for cords would presumably need to mimic the C string library. In this section, we’ll
just be implementing a limited subset of this library.

size_t cord_length(const cord_t *R);
const cord_t *cord_join(const cord_t *R, const cord_t *S);
char cord_charat(const cord_t *R, size_t i);
const cord_t *cord_sub(const cord_t *R, size_t lo, size_t hi);

Functionally, these four functions should do the same thing as the similarly-named function in the C
string library, strlen, strcat, character at, and substring. We’ll also implement two functions
for converting between C strings and our data type of cords.

const cord_t *cord_new(const char *s);
char *cord_tostring(const cord_t *R);

When we talk about the big-O behavior of cord operations, we assume for simplicity the cord’s
leaves contain strings that are smaller than some small constant, which means that all operations on
C strings can be treated as constant-time operations.

Task 2 (5 points) Constant time operations.
In the file cord.c, implement the O(1) functions cord_new, cord_length, and cord_join.

The cord_new function takes any string and returns a cord without any concatenation nodes.
The cord_join function is able to work in constant time because, at most, it has to allocate a single
concatenation node:

4 c© Carnegie Mellon University 2022

15-513 Programming Homework 0 Page 5 of 8

In the example above, the client of the cord library can continue using the cord representing
"totally" even though the allocated memory for that cord is a part of the cord representing
"totallyefficient". This structure sharing between different cords means that, while cords are
a data structure that we can treat like a tree, the memory representation may not actually be a tree.
Here’s another example: if R1 is cord for "totally" above and R2 is the cord for "efficient"
above, then executing the expression

cord_join(cord_join(R1, R2), cord_join(cord_new(", "), R1))

will produce the following structure in memory:

Structure sharing for cords only works because none of the cord interface functions allow us to
modify cords after they have been created. By sharing structure, we can make very very big strings
without allocating much memory, and this is one reason it was necessary to add the precondition
checking for overflow to cord_join.

Task 3 (4 points) Simple recursive operations.
In the file cord.c, implement the recursive functions cord_charat and cord_tostring.

Your implementation of cord_charat should take, in the worst case, time proportional to the
height of the cord. If we kept cords balanced, this would mean that cord_charat would take time
in O(log n), where n is the length of the cord as reported by cord_length. We will not, however,
implement balancing in this assignment, and none of the code you write in this section should
modify the structure of existing cords in any way.

The cord_tostring function returns the string that a cord represents. There’s a way to
implement this function so that its running time is in O(n), but this would be overkill. Just
implement the most natural recursive solution possible, which uses strcat. Your implementation
of cord_tostring should always return a pointer to an allocated string: think about what should
happen if it receives NULL as an argument, for example.

Sharing between cords gets more interesting once we start considering the cord_sub function. You
are recommended to implement a function string_sub(s,lo,hi) which returns the segment of
the string s from index lo (inclusive) to index hi (exclusive). The function cord_sub must do the
same thing, without changing the structure of the original cord in any way, while also maximizing
sharing between the old cord and the new cord and only allocating a new node when it is impossible
to use the entire string represented by an existing cord.

5 c© Carnegie Mellon University 2022

15-513 Programming Homework 0 Page 6 of 8

Here are some examples, where we have R as the cord representing "totallyefficient"
from the previous page.

After running const cord_t *R3 = cord_sub(R, 1, 16);

After running const cord_t *R3 = cord_sub(R, 1, 11);

After running const cord_t *R3 = cord_sub(R, 2, 11);

Running cord_sub(R,0,1) and cord_sub(R,7,16) should not cause any new memory to
be allocated, because these substrings are captured by subtrees of the original cord. Running
cord_sub(R,2,3) must return a newly-allocated leaf node containing the string "t".

Task 4 (7 points) In the file cord.c, implement the recursive function cord_sub. Without
changing the structure of the original cord in any way, this function should minimize memory
allocation by sharing as much of the original cord as possible.

HINT: in your recursive function, try to first identify all the cases where it is possible to return
immediately without any new allocation. What cases are left?

6 c© Carnegie Mellon University 2022

15-513 Programming Homework 0 Page 7 of 8

5 Memory allocation

5.1 Checking for errors
It is possible for the malloc and calloc functions to return NULL if they are unable to allocate
memory, because the system has run out of memory. However, if this is not explicitly checked for,
this can result in a null pointer dereference (which generally causes a segmentation fault in C).

A simple way to avoid this without cluttering your code is to use wrapper functions that exit the
program whenever malloc or calloc fail. The corresponding xmalloc and xcalloc functions,
provided in the xalloc.h file, do exactly this.

Proper error-checking is not required for this lab, but it will be graded in future labs as part of
style grading, so you should keep it in mind. You should also keep in mind that exiting the program
when malloc fails may not necessarily be the right thing to do in all circumstances.

5.2 Uninitialized memory
One important difference between malloc and calloc to keep in mind is that the former function
does not initialize memory, which means that the contents of the memory it returns could be
anything. As such, when you allocate a struct with malloc, you should always initialize all fields
of the struct before using it.

In contrast, the calloc function will always zero-initialize memory, which you may find to be
useful in certain situations. For more information about these functions, refer to the man pages by
typing man malloc into the command line.

5.3 Freeing your data structure
Since we have allocated memory for our cord data structure, we should free any memory we
allocated after we are done with the program. For this lab, though, you are not required to
implement this feature.

5.4 Valgrind
Valgrind is a tool that can detect various issues with the use of memory, such as:

1. Leaked memory (such as missing a call to free)

2. Out-of-bounds memory accesses (such as indexing past the end of an array)

3. Uninitialized memory usage (such as forgetting to initialize a local variable)

4. Incorrect calls to malloc or free (such as calling free twice)

Even though we won’t be able to free memory, Valgrind can still be very useful for detecting
other types of errors. You can run Valgrind on your test-cord program using the following
command:

shark$ valgrind --leak-check=no ./test-cord

7 c© Carnegie Mellon University 2022

15-513 Programming Homework 0 Page 8 of 8

Note that we are passing the --leak-check=no flag for this lab only in order to suppress warnings
about leaked memory.

6 Evaluation

6.1 Testing
To compile and test your code locally, run these commands:

shark$ make
shark$./grade-cordlab

The program ‘grade-cordlab’ runs your tests (from test-cord.c) and also runs the same
set of tests that the autograder will. Note that you have not been provided the source code for these
additional tests! If a test fails, you will see an error message like this:

Test ’./grade-sub edge’... FAIL: killed by SIGSEGV
*** Hint: cord_sub edge cases

The hint tells you something about what might be wrong, and you can use gdb on the command
shown (“./grade-sub edge” in this case) to investigate, but you will have to work out what the
bug is for yourself.

6.2 Style
This lab will not be style graded. The score you receive on Autolab will be your final score.
However, your code for all labs must be formatted correctly to receive points on Autolab. We
require you to use the clang-format tool to format your code. To do this, run this command:

shark$ make format

You can modify the .clang-format file to reflect your preferred code style. More information
is available in the style guideline at http://www.cs.cmu.edu/~213/codeStyle.html.

7 Handin
To submit your code to Autolab, run these commands:

shark$ make format
shark$ make submit

You must submit your code to Autolab to receive credit for this assignment! Passing the tests
locally is not enough.

After running “make submit”, always check the Autolab website (https://autolab.andrew.
cmu.edu/) to make sure you have received the grade you expect. In future labs, the autograder may
do additional or more stringent tests than what you can run locally.

You may upload your work as often as you like until the due date. The most recent upload is the
one that will be graded!

8 c© Carnegie Mellon University 2022

http://www.cs.cmu.edu/afs/cs/academic/class/15213-m22/www/codeStyle.html
https://autolab.andrew.cmu.edu/
https://autolab.andrew.cmu.edu/

	Overview
	Logistics
	Logging in to Autolab
	Downloading the assignment

	Introduction to Cords
	Implementing Cords
	Memory allocation
	Checking for errors
	Uninitialized memory
	Freeing your data structure
	Valgrind

	Evaluation
	Testing
	Style

	Handin

