Lecture 3 Activity Solution

Model 0: Review of Addition / Positive

- $1.\ 10110$
- 2. 5 bits are required.
- 3. The number of bits in the result is one more than the number of bits of the operands.
- 4. You could truncate overflow bits, resulting in 0110.

Model 0: Review of Negative Integers

1. The leftmost bit in a non-negative number in two's complement is 0.

	Bits	Most Positive	Most Negative
	1	0	-1
2.	2	1	-2
	3	3	-4
	4	7	-8
3.	2^{N-1} -	- 1	

4. $-(2^{N-1})$

- 5. 10011111. If the two numbers are unsigned, the result is correct $(1111000_2 = 120_{10}, 0100111_2 = 39_{10}, 1001111_2 = 159_{10})$, but the result is not correct for signed numbers $(1111000_2 = -8_{10}, 0100111_2 = 39_{10}, 1001111_2 = -97_{10})$.
- 6. No, but the difference in expected results for signed integers comes from improper handling of overflow or sign extension.

Model 1: Bit-Level Operations

1.	٠	0x3501

• 0xC3C3

	• 0:	xFFFF			
	OP0	OP1	AND	OR	XOR
	0	0	0	0	0
2.	1	0	0	1	1
	0	1	0	1	1
	1	1	1	1	0
	Dec	Bin	X & 0x	:1	
	-2	1110	0000		
2	-1	1111	0001		
J.	0	0000	0000		
	1	0001	0001		
	2	0010	0000		

4. The decimal numbers -1 and 1, which both are odd and therefore have a 1 in the rightmost (least-significant) bit.

- 5. for each bit in X: if that bit is set in FLAG but not set in X: return false return true
- 6. The OR (|) operation is setting the relevant bits in the file access mode to create a flag with the bits set for all of O_WRONLY, O_CREAT, and O_TRUNC.

	х	У	\sim (x & y)	$(\sim x) \mid (\sim y)$	equal?
7	$0 \mathrm{xF}$	0x1	1110	1110	Υ
1.	0x5	0x7	1010	1010	Υ
	0x3	$0 \mathrm{xC}$	1111	1111	Υ

Model 2: Logical Operations

- 1. 1 value is false and 15 values are true.
- 2. 0x3 && 0xC = 0001, 0x3 & 0xC = 0000, so 0x3 && 0xC = 0x3 & 0xC is false.

	Χ	!X	!!X	!!X == X
	-1	0	1	0
3.	0	1	0	1
	1	0	1	1
	2	0	1	0

4. Yes, the results differ—every $\sim \sim X = X$. Note that $\sim \sim X$ is a no-op (gives X back for all X) while !!X is not.

Model 2: Multiplication and Division

	Value	<<	Result
1	0x30	1	0x60
1.	0x5A	4	0x5A0
	0x11D	31	0x80000000

- 2. $X = 6_{10} = 0110_2$
- 3. Two acceptable answers: $x \ll 2 + x \ll 1$, or $(x + x + x) \ll 1$.
- 4. The largest 3-bit unsigned integer is $111_2 = 7_{10}$, its value squared is 49, which requires 6 bits.
- 5. $001_2 = 1_{10}$, if truncating excess bits.

	Value	>>	Result
6	0x30	1	0x18
0.	0x5A	4	0x5
	0x11	3	0x2
	Value	>>	Result
7	Value 48	>> 1	Result 24
7.	Value 48 90	>> 1 4	Result 24 5
7.	Value 48 90 17	>> 1 4 3	Result 24 5 2

A single right shift is equivalent to dividing by 2, so right shifting by N is equivalent to dividing by 2^N .

- 8. 0xA >> 1 = 0x5
- 9. We expect that -2 >> 1 = -1.

- 10. $-2_{10} = 1110_2$ in two's complement. After right shifting by 1, we get $0111_2 = 7_{10}$.
- 11. We could replicate the most significant (leftmost) bit so all bits shifted "in" would be copies of the leftmost bit instead of zeroes.

```
12. while (x != 0)
{
    saveNextBit(x & 0x1);
    x = x >> 1;
}
```