
Lecture 3 Activity Solution

Model 0: Review of Addition / Positive

1. 10110

2. 5 bits are required.

3. The number of bits in the result is one more than the number of bits of the operands.

4. You could truncate overflow bits, resulting in 0110.

Model 0: Review of Negative Integers

1. The leftmost bit in a non-negative number in two’s complement is 0.

2.

Bits Most Positive Most Negative
1 0 -1
2 1 -2
3 3 -4
4 7 -8

3. 2N−1 − 1

4. −(2N−1)

5. 10011111. If the two numbers are unsigned, the result is correct (11110002 = 12010, 01001112 =
3910, 100111112 = 15910), but the result is not correct for signed numbers (11110002 = −810, 01001112 =
3910, 100111112 = −9710).

6. No, but the difference in expected results for signed integers comes from improper handling of
overflow or sign extension.

Model 1: Bit-Level Operations

1. • 0x3501

• 0xC3C3

• 0xFFFF

2.

OP0 OP1 AND OR XOR
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 1 0

3.

Dec Bin X & 0x1
-2 1110 0000
-1 1111 0001
0 0000 0000
1 0001 0001
2 0010 0000

4. The decimal numbers -1 and 1, which both are odd and therefore have a 1 in the rightmost
(least-significant) bit.

1



5. for each bit in X:

if that bit is set in FLAG but not set in X:

return false

return true

6. The OR (|) operation is setting the relevant bits in the file access mode to create a flag with the
bits set for all of O WRONLY, O CREAT, and O TRUNC.

7.

x y ∼(x & y) (∼x) | (∼y) equal?
0xF 0x1 1110 1110 Y
0x5 0x7 1010 1010 Y
0x3 0xC 1111 1111 Y

Model 2: Logical Operations

1. 1 value is false and 15 values are true.

2. 0x3 && 0xC = 0001, 0x3 & 0xC = 0000, so 0x3 && 0xC == 0x3 & 0xC is false.

3.

X !X !!X !!X == X
-1 0 1 0
0 1 0 1
1 0 1 1
2 0 1 0

4. Yes, the results differ—every ∼∼X = X. Note that ∼∼X is a no-op (gives X back for all X)
while !!X is not.

Model 2: Multiplication and Division

1.

Value << Result
0x30 1 0x60
0x5A 4 0x5A0
0x11D 31 0x80000000

2. X = 610 = 01102

3. Two acceptable answers: x << 2 + x << 1, or (x + x + x) << 1.

4. The largest 3-bit unsigned integer is 1112 = 710, its value squared is 49, which requires 6 bits.

5. 0012 = 110, if truncating excess bits.

6.

Value >> Result
0x30 1 0x18
0x5A 4 0x5
0x11 3 0x2

7.

Value >> Result
48 1 24
90 4 5
17 3 2

A single right shift is equivalent to dividing by 2, so right shifting by N is equivalent to di-
viding by 2N .

8. 0xA >> 1 = 0x5

9. We expect that -2 >> 1 = -1.

2



10. −210 = 11102 in two’s complement. After right shifting by 1, we get 01112 = 710.

11. We could replicate the most significant (leftmost) bit so all bits shifted “in” would be copies of
the leftmost bit instead of zeroes.

12. while (x != 0)

{

saveNextBit(x & 0x1);

x = x >> 1;

}

3


