
Lecture 9: Machine Programming: Advanced aka Security 15-213/15-513/14-513
Fall 2022

1 Getting Started

Let’s look back at the example in Lecture 1:

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

Problem 1. Where is the struct allocated in the system?

The struct is allocated on the stack, as a local variable.

Problem 2. What critical value is pushed onto the stack for every function call?

Each call instruction pushes the (correct) return address onto the stack.

Problem 3. The s.a[i] line is writing to memory. In lecture 1, fun(6) crashed the
program. Why did writing to this location cause the process to crash?

Writing to s.a[6] overwrote the return address for fun with a nonsense value,
causing the ret instruction to transfer control to a memory location that was either
unmapped, non-executable, or contained invalid machine instructions.
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2 Gets

There are many routines in C that take in user input. We will briefly explore one of the
simplest, gets(), and how this routine has security vulnerabilities.

char *gets(char *dest)
{

int c = getchar();
char *p = dest;
// EOF indicates there is no further input.
while (c != EOF && c != ’\n’) {

*p++ = c;
c = getchar();

}
*p = ’\0’;
return dest;

}

Problem 4. In C, do we know how much space has been allocated to *dest?

We don’t!
Problem 5. Given that getchar() reads one character from stdin, when does gets()
stop reading in input?

When it encounters a newline or the end of the user input stream.

Problem 6. Do the terminating conditions for gets() have any relation to the input
buffer?

No, they purely depend on how many characters the user inputs.

3 Overwriting Stack

In the following section, we will be investigating how the following routine, intended
for echoing user input back to the screen (using puts to print the string), may exhibit
unintended behavior.

00000000004006cf <echo>:
4006cf: 48 83 ec 18 sub $0x18,%rsp
4006d3: 48 89 e7 mov %rsp,%rdi
4006d6: e8 a5 ff ff ff call 400680 <gets>
4006db: 48 89 e7 mov %rsp,%rdi
4006de: e8 3d fe ff ff call 400520 <puts>
4006e3: 48 83 c4 18 add $0x18,%rsp
4006e7: c3 ret
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Problem 7. How much space is allocated on the stack in echo()?

0x18 = 24 bytes are allocated.

Problem 8. Assume echo() allocates a char buffer on the stack. What is the largest
that this buffer could have been, in the C source code?

The buffer was, at most, 24 bytes long. It could have been smaller, because the
compiler is obliged to keep the stack pointer aligned and this involves rounding up
the amount of space requested. The user may or may not enter a string that is shorter
than 24 bytes.

Problem 9. In the following stack diagram, label the type of each region of memory or
leave it blank if it is unknown. Before the call to gets(), %rsp has the value 0x414140.

+0x28 ??

+0x20 ??

+0x18 return address

+0x10 user string

+0x08 user string

+0x00 user string ← $rsp = 0x414140

. . .
Problem 10. While the echo() function is running, you type in the following string:

123456781234567812345678@AA

Fill in the following stack diagram with the new values. (Use the characters from the
string, except use _ to indicate a byte that is unchanged and 0 to indicate a byte with
numeric value zero.)

+0x28 ??

+0x20 ??

+0x18 @AA0____

+0x10 12345678

+0x08 12345678

+0x00 12345678 ← $rsp = 0x414140

. . .
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4 Exploit

Note, while the compiled code must follow the Linux x64 ABI, that is not a requirement
of the system and exploits can ignore these conventions to achieve the desired behavior.
We will see how the simple stack overwrite from the previous section can do more
than just crash the program.

Problem 11. Based on the previous stack diagram and input, and assuming that any
bytes of the return address that were not overwritten by gets were zero to begin with,
write down the flow of execution starting with the return from gets in echo. Note:
ASCII encodes @ as 0x40 and A as 0x41. Watch out for endianness!

Starting from echo()’s call to gets(), at 0x4006d6:

0x4006d6 -> 0x4006db (mov) -> 0x4006de (puts) -> 0x4006e3 (add) ->
0x4006e7 (ret) -> [USER INPUT] 0x414140 (???)

Problem 12. When does this flow differ from the original execution path?

When control was going to be returned to echo()’s caller, control was instead
transferred to user input on the stack.

The exploit string “returned” execution to the stack. Currently, execution would
attempt to use the ASCII string as instructions.

Problem 13. Suppose you wanted to make 0xdecafbad the return value. Write the
assembly to do so.

mov $decafbad, %eax

Problem 14. The bytes for the instruction(s) you need are: 0xb8 0xad 0xfb 0xca 0xde.
Where would those bytes be placed in our input string to execute them?

They should replace the first five characters of the input string.

Processes include a copy of the C standard library, which contains the functionality
to open a shell and thereby run arbitrary code. Most exploits, then, aim to invoke the
appropriate function. In our example, we took the first step in running arbitrary code.
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5 Defense

System designers have come up with many countermeasures to reduce program
vulnerabilities. We will review several of these approaches here.

Problem 15. fgets() has the following type signature; why is it safer than gets()?

char *fgets(char *s, int size, FILE *stream);

The size parameter limits the number of bytes that are read from the given stream.
As long as the buffer pointed to by the s parameter is at least size bytes large, fgets
will not overwrite any other data.

Problem 16. Previously, the last characters of the exploit string were carefully chosen.
What would happen if the stack were somewhere else in memory?

Execution would jump to an unknown section of memory, almost certainly causing
a crash as in problem 3.

Problem 17. The OS decides where to place the stack in memory. How could we
minimize the chance that the exploit guessed the right address?

Choose the starting address of the stack at random when each new program is
started.

So far, the program has trusted that its stack is uncorrupted. The compiler can put a
“canary” value on the stack to detect if the stack is modified. The following assembly
includes the canary instructions, denoted by *.

The register fs is special. It always holds a pointer, and it is accessed differently than
other registers. The assembly operand %fs:0x28means the same thing as 0x28(%fs)
would if fswere a normal register (but it isn’t, and you can’t write it that way).

The function __stack_chk_fail terminates the program.

40072f: sub $0x18,%rsp
* 400733: mov %fs:0x28,%rax
* 40073c: mov %rax,0x8(%rsp)
* 400741: xor %eax,%eax
400743: mov %rsp,%rdi
400746: call 4006e0 <gets>
40074b: mov %rsp,%rdi
40074e: call 400570 <puts@plt>

* 400753: mov 0x8(%rsp),%rax
* 400758: xor %fs:0x28,%rax
* 400761: jz 400768 <echo+0x39>
* 400763: call 400580 <__stack_chk_fail>
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400768: add $0x18,%rsp
40076c: ret

Problem 18. Write pseudo-code for the canary instructions.

// ... echo starts up...
rax = *(fs + 0x28);
*(rsp + 8) = rax;
rax = 0;
// ...echo’s code...
rax = *(rsp + 8)
if (rax != *(fs + 0x28)

__stack_chk_fail(); // does not return
// ... echo returns ...

Problem 19. What would happen if we used our earlier exploit string with this revised
assembly?

We would overwrite *(rsp + 8), causing __stack_chk_fail to be called, and the
program would terminate before it could jump to our exploit.

Problem 20. (Optional) What costs (memory, time, instructions, etc.) are associated
with this revised assembly?

Each function that uses a “canary” is larger (in the example, echo grew by 37 bytes)
and slightly slower. The compiler has extra work to do, to decide which functions
need “canaries” and emit the extra instructions for them.

6 ROP

64-bit x86 adds a no-execute bit that is commonly applied to the stack. However, the
stack is still writable by user input, and the process must still allow the C standard
library to be executable.

The new restrictions have led to the increased prevalence of return-oriented pro-
gramming (ROP) attacks, in which the attacker searches the executable for preexisting
“gadgets” with parts of the desired assembly sequence.

Problem 21. How did we initially transfer control to our code in the exploit before?

We overwrote the return address for echo’s caller before executing ret.

Problem 22. In the following assembly, the middle section shows the machine code
for the assembly sequence to its right.
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<setval>:
4004d0: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
4004d6: c3 ret

What byte value corresponds to a return instruction?

0xC3

Problem 23. mov %rax, %rdi is encoded as 48 89 c7. At what address does that
byte sequence exist in the following assembly?

Address 0x4004d3 (inside a different instruction).

Problem 24. If the value on the top of the stack was the address in the previous
question, and a return instruction was executed, describe the steps of the subsequent
execution.

mov %rax, %rdi
ret
; ...instructions starting at the second next stack address
; prior to running this code block...

Problem 25. Why is it important that each gadget ends with a ret instruction?

If there is no return instruction at the end of the gadget, execution will never jump
to the next gadget in the chain.
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