Lecture 7: Procedures 15-213/15-513/14-513 Fall 2022

Getting Started

To obtain a copy of today’s activity, log into a shark machine and do the following;:

$ wget http://www.cs.cmu.edu/~213/activities/machine-procedures.tar
$ tar xf machine-procedures.tar
$ cd machine-procedures

Record your answers to the discussion questions below. You may wish to refer
back to the activity from September 8 (https://www.cs.cmu.edu/~213/activities/
gdb-and-assembly.pdf) which contains a list of relevant GDB commands.

1 Activity 1: Calls

In the machine-procedures directory that you created, run the calls binary from
within GDB, like this:

$ gdb --args ./calls
(gdb) r

The program will instruct you as you progress through the activity. These questions
accompany the program; when it prompts you to answer a problem, discuss with your
partner and write your answer here.

Problem 1. Fill in the contents of the stack:

0x 15213 «— $rsp = Ox 7££ff£££db30
0x 00000040117a

Note: You might not get exactly the same values for $rsp and the return address.
Problem 2. What was the meaning of the second number on the stack?

The second number on the stack is the function’s return address.

Problem 3. What does the ret instruction do?

ret pops from the top of the stack to %rip (incrementing %rsp by 8 bytes).

Solutions 1/4

http://www.cs.cmu.edu/~213/activities/machine-procedures.tar
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf

Procedures

Problem 4. Given your answer to Problem 3, what must it be that call does?

call pushes the value of %rip to the stack (decrementing %rsp by 8 bytes), then
unconditionally branches (jumps) to the call address described by its operand.

Problem 5. What special optimization of calls has been applied to returnOneOpt?
Why does this optimization work for returnOneOpt? Can it be used for any call?

In returnOneOpt, the compiler saw thatcall abs would be followed immediately by
ret, soitreplaced both instructions with jmp abs. This is called “tail call” optimization.
It works because the ret in the called function (abs) will have exactly the same effect
that the ret removed from returnOneOpt would have had—restoring the stack to
what it was before returnOneOpt was called and returning to returnOneOpt’s caller.
This optimization cannot be used on every call—it only works when a call is followed
immediately by a return. (Sometimes there can be a couple of stack adjustment
instructions in between.) That’s why it’s called tail call optimization.

2 Activity 2: Arguments and Local Variables

In the machine-procedures directory that you created, run the locals binary from
within GDB, like this:

$ gdb --args ./locals
(gdb) r

The program will instruct you as you progress through the activity. These questions
accompany the program; when it prompts you to answer a problem, discuss with your
partner and write your answer here.

Problem 6. What is the type of the data seeArgs passes as the first argument to print £?
(You should be able to answer this question based solely on what you already know
about printf.) Given this, and what you saw when you followed the instructions up
to this point, what does the GDB command x/s do?

The first argument of printf should always be a format string, which has type
const char *. x/s prints out the C string found at the specified location in memory.

Problem 7. When seeMoreArgs calls printf, where did the compiler place arguments
7 and 8? Why do you think this happened?

Arguments 7 and 8 were pushed onto the stack in reverse order. This happened
because the compiler ran out of integer argument registers.

Problem 8. Where does the function getV allocate its array? How does it pass this
location to getValue?

Solutions 2/4

Procedures

getV allocates its array on the stack. It passes this location to getValue by using a
normal pointer stored in a standard argument register.

Problem 9. Which registers are treated as call-preserved by mult4? Which register
does mult4 expect to contain a return value? (It may help to disassemble mult2 as
well.)

%rbx, %r12, and %r13 are call-preserved. %rax contains return values.
Problem 10. What does the function mrec do?

mrec computes the factorial of its integer argument.

3 Activity 3 (Optional, Time Permitting): Endianness Preview

Rerun gdb -args ./calls and continue to the point where you printed the stack
before.

Problem 11. The first eight bytes of the stack contain the number 0x15213. What do
you expect the first two bytes of the stack to contain?

Logically, among the eight bytes there should be three with the values 0x01, 0x52,
and 0x13, and the other five should all be zero. They could be in any order, but it would
make sense for their order to relate somehow to the place value of the bits. . . and that’s
as far as we can guess.

(We did mention, briefly at the end of a previous class, the additional piece of
information you need to answer this question, but you might have missed it.)

Problem 12. Check your hypothesis by running x/2xb $rsp. What did the first two
bytes of the stack contain? What can you deduce about the order in which each
integer’s bytes are stored?

We see the bytes 0x13 and 0x52 — each integer’s bytes are stored least significant to
most significant.

Appendix: x86-64 ELF Calling Convention Summary

The following table lists all of the x86-64 integer registers, indicates whether each is
call-preserved or call-clobbered, and gives the conventional function of each.

Solutions 3/4

Procedures

Solutions

Register

Call Treatment Function

%rax
%rbx
%rcx
%rdx
%rbp
%rsp
%rsi
%rdi
%r8

%r9

%rl®
%ril
%r12
%rl3
%rl4d
%rl5

Clobbered
Preserved
Clobbered
Clobbered
Preserved
Preserved
Clobbered
Clobbered
Clobbered
Clobbered
Clobbered
Clobbered
Preserved
Preserved
Preserved
Preserved

Return value

Argument #4
Argument #3

Stack pointer
Argument #2
Argument #1
Argument #5
Argument #6

4/4

	Activity 1: Calls
	Activity 2: Arguments and Local Variables
	Activity 3 (Optional, Time Permitting): Endianness Preview

