Introduction to GDB and
Debugging

15-213/18-213/15-513/14-513/18-613: Introduction to
Computer Systems

Big Questions

e How can code be debugged?
o Whatiscode tracing?
o Whatisvalgrind?
o Whatis GDB?

e Howdoyouuse GDB?

Tools for Debugging

Code Tracing Valgrind —»ﬂ

printf() malloc/free bug Everything else

Debugging Basics: Code Tracing

Code Tracing

e Use print statements to determine variable values
at different points in code

O

Insert print statements after sections of code
m Keep track of values
Can also print out several values at a time to see how
values change
Think through the actual vs expected outputs

Why use code tracing?

When to Use

When Not to Use

Easy and relatively
simple code
Tracing conditional
pathsin anif
statement

Messy and
complicated
programs
Typically prints out
variable values
regardless of if the
value has changed
o “Tidal wave of
output”

Code Tracing Example

BAD
- Prints out series of
main() { unhelpful information

sum = @;
(i=0; 1i<=16; it+t) {
sum += i;

} (cum % ——) [

sum divisble by 2
sum greater than 48

printf(
(sum_>
printt(

ST ———
sum = sum - 37;
printf(

i
A
Sum =_<Siim_ -

printf(

sum not divisible by 6

e - GOOD

- Not super complicated code
- Trace through if/else chain

- RISK: bugintrace code!

}

printf(

352
it
3
13
i:
3:%
i:
a:
i:
33
3
iz
3
13
i:
i:
i:
i:
i:
13
a2
a:
i:
13
i:
3:%
i:
iz
i:
33
i:
iz
3
13
i:
it
i:
i:
i:
T
32
iz
i:
13

Debugging Memory: Valgrind

Va lg ri nd Why use Valgrind?
When to Use When Not to Use
e Tool for debugging, memory leak detection, and profiling
e Valgrind flags errors that don’t appear without valgrind e Dealingwith e Program
memory (especially contains no
. . C . dynamic memory invalid reads
Using v:i\lgrlnd (Make sure Valgrind is installed): allocation) and writes and
$ valgrind ./a.out e Whenever bugs no leaked
o _ occur. Get instant memory
HEAP SWY')) feedback about e Ifthetestcase
==41495== in use at exit: 0 bytes in 0 blocks . -
what the bug is, is inherently
==41495== total heap usage: 1 allocs, 1 frees, 8 bytes allocated . .
—41495== where it occurred, §Iow, then this
==41495== All heap blocks were freed --- no leaks are possible andVVhy IipntigOOd
choice

Running Valgrind

Recommended Valgrind Options:

$ valgrind --leak-resolution=high --leak-check=full
—-show-reachable=yes —--track-fds=yes ./myProgram argl arg2

Feel free to look through $ man valgrind and play around with options

Invalid Reads and Writes

e Reading freed variables int foo(int y) { _ _
e Readinguninitialized variables i;:r*:a;;z matioc(sizeot(nt))y
e Writing to uninitialized memory free (bar) ;
o Caused by writing too much data printf (“*bar: %d \n”, *bar);
return y;

to allocated memory

Invalid Reads and Writes Sample Output

==13757== Memcheck, a memory error detector
13757== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
13757== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==13757== Command: ./a.out
==13757==

valid read of size 4
ORBO0 afs/andrew.cmu. edu/usrS/alhoffma/prlvate/18213 summer/course_development/lab3/a.out)
13757== Address ex5205@40 is @ bytes inside a block of size 4 free'd
==13757=— at ox4ac2BoeD: free (vg replace malloc.c:540)

by 0x400605: main (in /afs/andrew.cmu.edu/usr5/alhoffma/private/18213 summer/course development/lab3/a.out)
Block was alloc'd at

at ox4C29F73: malloc (vg_replace malloc.c:309)

by 0x4005D5: main (in /afs/andrew.cmu.edu/usr5/alhoffma/private/18213 summer/course development/lab3/a.out)

e at exit: @ bytes in @ blocks
total heap usage: 1 allocs, 1 frees, 4 bytes allocated
==13757==
==13757== All heap blocks were freed -- no leaks are possible

Memory Leaks

e Forgetting to free memory after int foo(int y) {
. . int *bar = malloc(sizeof (int));
using it _
)) *bar = y;
o Sometimes, there is overhead printf (“bar: %d \n”, *bar);
memory that is never freed return y;

m Memory thatis allocated by }
a programmer should
always be freed

Types of Memory Leaks

Still Reachable Indirectly Lost
e Blockis still pointed at, programmer could e Blockis “lost” because the blocks that point
go back and free it before exiting to it are themselves lost
Definitely Lost Possibly Lost
e No pointer to the block can be found e Pointer exists but it points to an internal

part of the memory block

Memory Leaks Sample Output

==15013== Memcheck, a memory error detector
==15013== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==15013== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==15013== Command: ./a.out
==15013==

: 32

exit: 4 bytes in 1 blocks

==15013== total heap usage: 1 allocs, @ frees, 4 bytes allocated
==15013==
==15013== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==15013== at @x4C29F73: malloc (vg replace malloc.c:309)
==15013== by 0x400595: main (in /afs/andrew.cmu.edu/usr5/alhoffma/private/18213 summer/course_development/lab3/a.out)

==15013== LEAK SUMMARY:
1 blocks

y -
—15013— indirectly lost: in © blocks
==15013== possibly lost: in @ blocks
==15013== still reachable: in © blocks
——15013— suppressed: in @ blocks
==15013==

Debugging Everything: GDB

What is GDB?

GNU Debugger
Powerful debugger that lets you inspect
your program as it’s executing

e Allows you to see what is going on ‘inside’
another program

e Breaks abstraction between program and
machine

Why use GDB?

When to Use

When Not to Use

Complicated code
that you need to
step through

Need to find values
at specific points
Valgrind was not
helpful

To inspect machine
state

NOTE: This is
intentionally left blank
(Often Super Useful!)

GDB Takeaways

e GDBis apowerful debugger that has the capabilities to
o Set breakpoints stop at line of code
o Setwatchpoints stop when variable changes
o Printvalues
o Step through execution
o Backtrace see previous function calls
e These capabilities will be useful for debugging general code in 213
o GDB has many functionalities beyond these slides, check out this link for more features
s https://sourceware.org/gdb/current/onlinedocs/gdb/

https://sourceware.org/gdb/current/onlinedocs/gdb/

Helpful Resource:
https://sourceware.org/gd
b/current/onlinedocs/gdb/

Starting GDB

e You canopen gdb by typing into the shell:
o) $ gdb
o (gdb) run 15213 //runprogram
e Typegdbandthen abinary to specify which program to run
o $ gdb <binary> ($ gdb ./a.out)
e You canoptionally have gdb pass any arguments after the executable file using --args
@ $ gdb --args gcc -02 -c foo.c
e Quitting GDB:
o (gdb) quit [expression]
© (gdb) gq
o ortype an end-of-file character (usually Ctrl-d)
e More GDB options and help:
o $gdb-help OR$gdb-h

https://sourceware.org/gdb/current/onlinedocs/gdb/
https://sourceware.org/gdb/current/onlinedocs/gdb/

GDB Commands

Controlled Program Execution

(gdb) CTRL + c: stopsexecution

(gdb) next (n): runnextline of program and does NOT step into functions
o (gdb) next X (n X): runnextXlinesof function
o (gdb) nexti: runnextline of assembly code and does NOT step into functions
(gdb) step (s): runnextline of program AND step into functions
o (gdb) step X (s X): stepthrough next Xlines of function
o (gdb) stepi: stepthrough next line of assembly code

(gdb) continue (c) : continue running code until next breakpoint or error
(gdb) finish (£) :runcode until current functionis finished

Connecting Execution with Code

e (gdb) disassemble (disas) : disassemble source code into assembly code
o NOTdis: dis ==disable breakpoints
e (gdb) list (1) : list 10lines of source code from current line

o (gdb) list X (1 X): list 10lines of source code from line number X
o (gdb) list fnName (1 fnName) : list 10 lines of source code from fnName function

Breakpoints

e Abreakpoint makes your program stop whenever a certain point in the program is reached

e (gdb)break function name: breaks once you call a specific function. (break abbreviated b)
e (gdb)break *0x..: breakswhenyou execute instruction at a certain address

e (gdb)info b: displaysinformation about all breakpoints currently set

e (gdb)disable #: disables breakpointwith ID equal to # ($disa isshort form not $disas!!!)
e (gdb)clear [location]: delete breakpoints accordingto where they are in your program.

Settingbreakpoint ___ | KEREEDEDD
Breakpoint 1 at @x400c20: file actl.c, line 5.
(gdb) run 15213
Starting program: /afs/andrew.cmu.edu/usr24/adithir/private/15213-m20/rec3/actl 15213

Breakpomt hit e N Breakpoint 1, main (argc=2, argv=ex7fffffffe208) at actl.c:5
5 int ret = printf("%s\n", argvlargc-1]);

(gdb) ¢

Continuing.

15213

[Inferior 1 (process 6203) exited with code 06]

i e (gdb) clear main
Breakpomt deleted Deleted breakpoint 1

Watchpoints

e Aspecial breakpoint that stops your program when the value of an expression changes
o The expression may be a value of a variable, or involve values combined by operators
e Enable, disable, and delete both breakpoints and watchpoints
e (gdb)delete [watchpoint] :deleteindividual breakpoints/ watchpoints by specifying
breakpoint numbers
o Ifnoargument is specified, delete all breakpoints, (gdb)d

Examples:
e (gdb)watch foo: watchthe value of asingle variable

e (gdb)watch *(int *)0x600850: watch for achangein anumerically entered address
(output) Watchpoint 1: *(int *) 6293584

Printing Values & Inspecting Memory

Printing Values Inspecting Memory
(gdb) print (p) [any valid e (gdb) x/nfu [memory address]:
expression] equivalentto (gdb) print * (addr)

o Printlocal variables or memory locations © n: inspectnextnunits of memory

o Besuretocasttotheright datatype o £ (format)_ : can be represgnted as:)

s (eg p*(long*)ptr) m d(decimal), x (hexadecimal), s (string)
5 (gdb) print (p) *pntr: printsvalue of o u (unit) : canberepresented as:
pointer m b(bytes), w(words/ 4 bytes)

o (gdb) print (p) *(struct_t*) tmp:
casts tmp to struct_t* and prints internal values
(gdb) print (p) expr: printsvalue of data . .
type These are just spme common ways to inspect
memory and print values, check the resources
links for more uses

Backtrace

o Print sequence of function calls that led to this point
o Helpful to use when programs crash

e (gdb) up N (u N):goupN functioncalls
e (gdb) down N (d N): godown N function calls

(gdb) backtrace (bt) : printsasummary of how program got where it is

Program received signal SIGINT, Interrupt.

0x00629424 in _ kernel vsyscall ()
(gdb) bt

#0

Previous o

“frames” _— :Z

#5
#6
#7
#8
#9

0x00629424
0x00d59ee3
Ox00cfafo4
ox00cf8aff
0x00cf8eab
0x00cf99ca
0x00cf8c49
0x00cce7c2
0x00cd8as5e
0x08048419

(gdb) i

in _ kernel vsyscall ()

in _ write nocancel () from /lib/libc.so0.6

in I0 new file write () from /lib/libc.s0.6

in new do write () from /lib/libc.so0.6

in _I0 new do write () from /lib/libc.s0.6

in I0 new file overflow () from /lib/libc.so0.6
in I0 new file xsputn () from /lib/libc.s0.6
in vfprintf () from /lib/libc.so0.6

in printf () from /lib/libc.s0.6

in main () at invader.c:44

Calling Functions & Changing Values

Calling your program’s functions
- Examples:
e (gdb) call expr: Evaluate the expression expr without displaying void returned values.

Changing values:
e (gdb) set [variable] expression: change the value associated with avariable, memory
address, or expression

o Evaluates the specified expression. If the expression includes the assignment operator (
evaluated and the assignment will be done.

e Theonly difference between the set variable and the print commands is printing the value

), that operator will be

— Will be useful later...

Lab Time!

https://tinyurl.com/y6ca8kea

Feedback:

https://tinyurl.com/213bootcamp3

Resources

https://www.tutorialspoint.com/gnu debugger/index.htm

https://sourceware.org/gdb/current/onlinedocs/gdb/ [scroll down for more information]

https://www.tutorialspoint.com/gnu_debugger/index.htm
https://sourceware.org/gdb/current/onlinedocs/gdb/

