Code Optimization

15-213/15-513: Introduction to Computer Systems 12th Lecture, June 13, 2023

Instructors:

Brian Railing

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

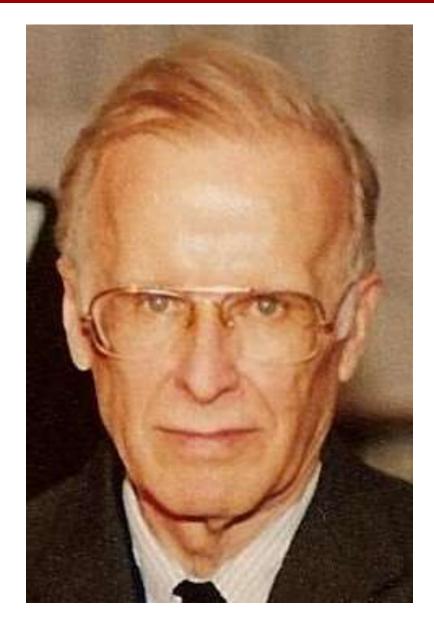
- Principles and goals of compiler optimization
- Examples of optimizations
- Obstacles to optimization
- Machine-dependent optimization
- Benchmark example

Back in the Good Old Days, when the term "software" sounded funny and Real Computers were made out of drums and vacuum tubes, Real Programmers wrote in machine code. Not FORTRAN. Not RATFOR. Not, even, assembly language. Machine Code.

Raw, unadorned, inscrutable hexadecimal numbers. Directly.

— "The Story of Mel, a Real Programmer" Ed Nather, 1983

Rear Admiral Grace Hopper


- First person to find an actual bug (a moth)
- Invented first compiler in 1951 (precursor to COBOL)
- "I decided data processors ought to be able to write their programs in English, and the computers would translate them into machine code"

Relay \$70 Panel F (moth) in relay. 1545 First actual case of bug being found.

John Backus

- Developed FORTRAN in 1957 for the IBM 704
- Oldest machineindependent programming language still in use today
- "Much of my work has come from being lazy. I didn't like writing programs, and so, when I was working on the IBM 701, I started work on a programming system to make it easier to write programs"

Fran Allen

- Pioneer of many optimizing compilation techniques
- Wrote a paper in 1966 that introduced the concept of the control flow graph, which is still central to compiler theory today
- First woman to win the ACM Turing Award

Goals of compiler optimization

Minimize number of instructions

- Don't do calculations more than once
- Don't do unnecessary calculations at all
- Avoid slow instructions (multiplication, division)

Avoid waiting for memory

- Keep everything in registers whenever possible
- Access memory in cache-friendly patterns
- Load data from memory early, and only once

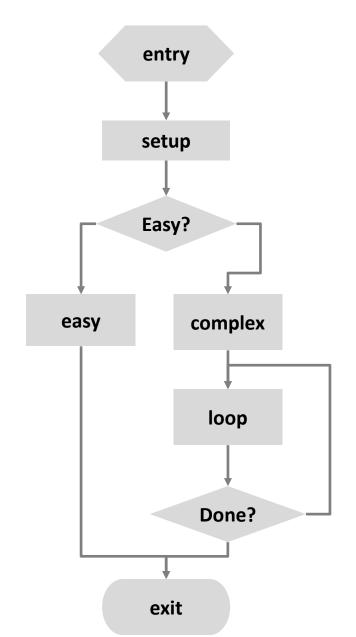
Avoid branching

- Don't make unnecessary decisions at all
- Make it easier for the CPU to predict branch destinations
- "Unroll" loops to spread cost of branches over more instructions

Limits to compiler optimization

- Generally cannot improve algorithmic complexity
 - Only constant factors, but those can be worth 10x or more...

Must not cause any change in program behavior


- Programmer may not care about "edge case" behavior, but compiler does not know that
- Exception: language may declare some changes acceptable

Often only analyze one function at a time

- Whole-program analysis ("LTO") expensive but gaining popularity
- Exception: *inlining* merges many functions into one
- Tricky to anticipate run-time inputs
 - Profile-guided optimization can help with common case, but...
 - "Worst case" performance can be just as important as "normal"
 - Especially for code exposed to *malicious* input (e.g. network servers)

Two kinds of optimizations

- Local optimizations work inside a single basic block
 - Constant folding, strength reduction, dead code elimination, (local) CSE, ...
- Global optimizations process the entire control flow graph of a function
 - Loop transformations, code motion, (global) CSE, ...

Today

- Principles and goals of compiler optimization
- Examples of optimizations
- Obstacles to optimization
- Machine-dependent optimization
- Benchmark example

Next several slides done live...

https://godbolt.org/z/Es5s8qsvj

- Go to Godbolt (the compiler explorer) to play around with C and the resulting assembly generated under different compiler optimizations (change the flag from –O3 to –Og, etc. to see more or less aggressive optimization).
- If you missed class, aof the concepts we explored during the live demo are explained in the next few slides, so peek at them and then try playing with the compiler explorer!

Constant folding

Do arithmetic in the compiler

```
long mask = 0xFF << 8; →
long mask = 0xFF00;</pre>
```

- Any expression with constant inputs can be folded
- Might even be able to remove library calls...

size_t namelen = strlen("Harry Bovik"); →
size_t namelen = 11;

Dead code elimination

Don't emit code that will never be executed

if (0) { puts("Kilroy was here"); }
if (1) { puts("Only bozos on this bus"); }

Don't emit code whose result is overwritten

$$x = 23;$$

x = 42;

These may look silly, but...

- Can be produced by other optimizations
- Assignments to x might be far apart

Common subexpression elimination

Factor out repeated calculations, only do them once

Code motion

- Move calculations out of a loop
- Only valid if every iteration would produce same result

Inlining

Copy body of a function into its caller(s)

- Can create opportunities for many other optimizations
- Can make code much bigger and therefore slower (size; i-cache)

```
int func(int y) {
int pred(int x) {
    if (x == 0)
                                   int tmp;
        return 0;
                                   if (y == 0) tmp = 0; else tmp = y - 1;
    else
                                   if (0 == 0) tmp += 0; else tmp += 0 - 1;
        return x - 1;
}
                                   if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
                                   return tmp;
int func(int y) {
                                 }
    return pred(y)
         + pred(0)
         + pred(y+1);
}
```

Inlining

Copy body of a function into its caller(s)

- Can create opportunities for many other optimizations
- Can make code much bigger and therefore slower

```
int func(int y) {
int pred(int x) {
    if (x == 0)
                                  int tmp;
        return 0;
                                  if (y == 0) tmp = 0; else tmp = y - 1;
   else
                                  if (0 == 0) tmp += 0; else tmp += 0 - 1;
        return x - 1;
}
                                  if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
                                  return tmp;
int func(int y) {
                                }
    return pred(y)
         + pred(0)
         + pred(y+1);
                                                    Does nothing
                                                                       Can constant fold
                                   Always true
}
```

Inlining

Copy body of a function into its caller(s)

- Can create opportunities for many other optimizations
- Can make code much bigger and therefore slower

```
int func(int y) {
    int tmp;
    if (y == 0) tmp = 0; else tmp = y - 1;
    if (0 == 0) tmp += 0; else tmp += 0 - 1;
    if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;
    return tmp;
}
int func(int y) {
    int tmp = 0;
    int tmp = 0;
    if (y != 0) tmp = y - 1;
    if (y != -1) tmp += y;
    return tmp;
}
```

Today

- Principles and goals of compiler optimization
- Examples of optimizations
- Obstacles to optimization
- Machine-dependent optimization
- Benchmark example

Memory Aliasing

```
/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
    }
}</pre>
```

.L4:	<mark>movq</mark> pxor	<mark>\$0, (%rsi)</mark> %xmm0, %xmm0
	addsd <mark>movsd</mark> addq cmpq jne	(%rdi), %xmm0 <mark>%xmm0, (%rsi)</mark> \$8, %rdi %rcx, %rdi .L4

- Code updates b[i] on every iteration
- Why couldn't compiler optimize this away?

Memory Aliasing

```
/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows1(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        b[i] = 0;
        for (j = 0; j < n; j++)
            b[i] += a[i*n + j];
    }
}</pre>
```

Value of B:

double $A[9] = {0, 1, 2,}$	double A[9] = $\{0, 1, 2,$	init: [4, 8, 16]
<pre>4, 8, 16}, 32, 64, 128};</pre>	3, 22, <mark>224</mark> }, 32, 64, 128};	i = 0: [3, 8, 16]
double $B[3] = A+3;$		i = 1: [3, 22, 16]
<pre>sum_rows1(A, B, 3);</pre>		i = 2: [3, 22, 224]

- Code updates b[i] on every iteration
- Must consider possibility that these updates will affect program behavior

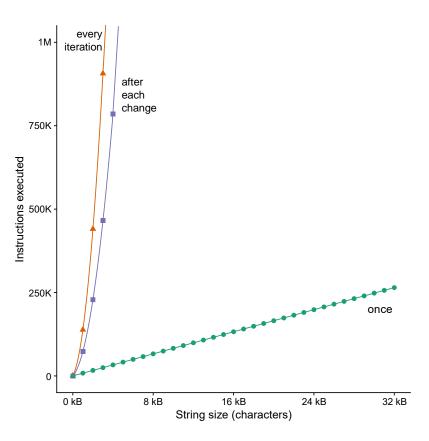
Avoiding Aliasing Penalties

```
/* Sum rows of n X n matrix a and store in vector b. */
void sum_rows2(double *a, double *b, long n) {
    long i, j;
    for (i = 0; i < n; i++) {
        double val = 0;
        for (j = 0; j < n; j++)
            val += a[i*n + j];
        b[i] = val;
    }
}</pre>
```

	pxor	%xmm0, %xmm0
.L4:		
	addsd	(%rdi), %xmm0
	addq	\$8, %rdi
	cmpq	%rax, %rdi
	jne	.L4
	movsd	%xmm0, (%rsi)

- Use a local variable for intermediate results
- Use restrict keyword

• Tells compiler that this is the "only" pointer to that memory location Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition


Can't move function calls out of loops

```
void lower quadratic(char *s) {
  size t i;
  for (i = 0; i < strlen(s); i++)</pre>
                                                                                    strlen called on
    if (s[i] >= 'A' && s[i] <= 'Z')
                                                                                     every iteration
      s[i] += 'a' - 'A';
                                                    75M
}
void lower still quadratic(char *s) {
                                                  Instructions executed
M05
  size t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z') {
      s[i] += 'a' - 'A';
      n = strlen(s);
                                                    25M
                                                                                         strlen called
                                                                                      after each change
}
void lower linear(char *s) {
                                                                                      strien called once
  size t i, n = strlen(s);
  for (i = 0; i < n; i++)
                                                       0 kB
                                                                 8 kB
                                                                           16 kB
                                                                                     24 kB
                                                                                              32 kB
                                                                     String size (characters)
    if (s[i] >= 'A' && s[i] <= 'Z')
      s[i] += 'a' - 'A';
                                    Lots more examples of this kind of bug:
}
                                        accidentallyquadratic.tumblr.com
```

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Can't move function calls out of loops

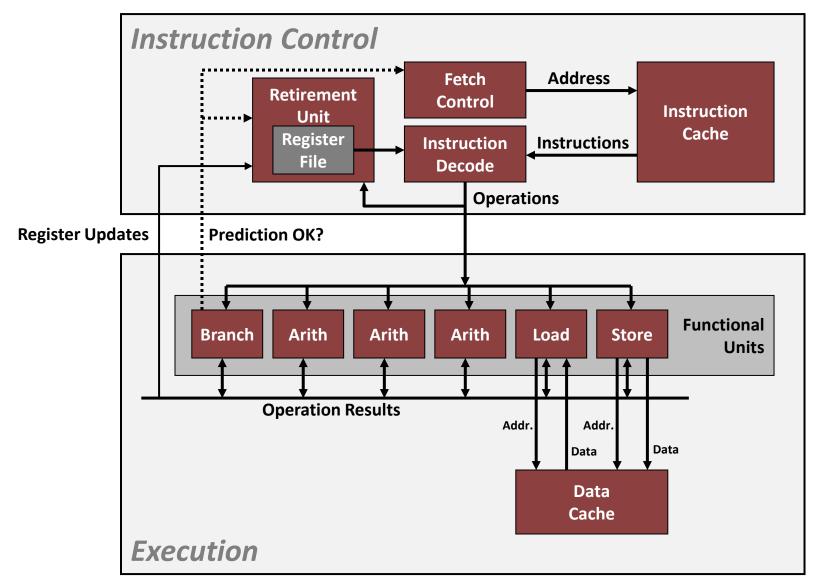
```
void lower quadratic(char *s) {
  size t i;
  for (i = 0; i < strlen(s); i++)</pre>
    if (s[i] \ge 'A' \&\& s[i] <= 'Z')
      s[i] += 'a' - 'A';
}
void lower still quadratic(char *s) {
  size t i, n = strlen(s);
  for (i = 0; i < n; i++)
    if (s[i] >= 'A' && s[i] <= 'Z') {
      s[i] += 'a' - 'A';
      n = strlen(s);
}
void lower linear(char *s) {
  size t i, n = strlen(s);
  for (i = 0; i < n; i++)
```


s[i] += 'a' - 'A';

}

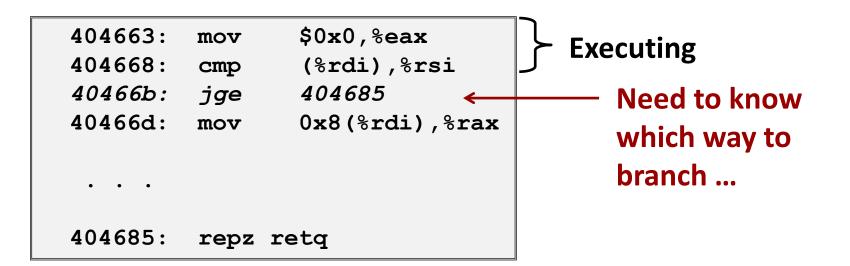
if (s[i] >= 'A' && s[i] <= 'Z')

Quiz


https://canvas.cmu.edu/courses/34989/quizzes/103072

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

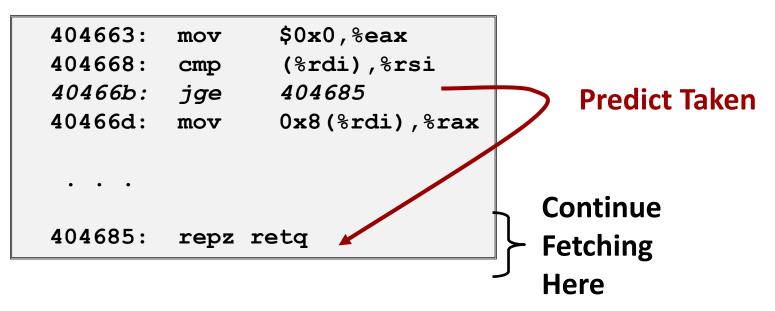
Today


- Principles and goals of compiler optimization
- Examples of optimizations
- Obstacles to optimization
- Machine-dependent optimization
- Benchmark example

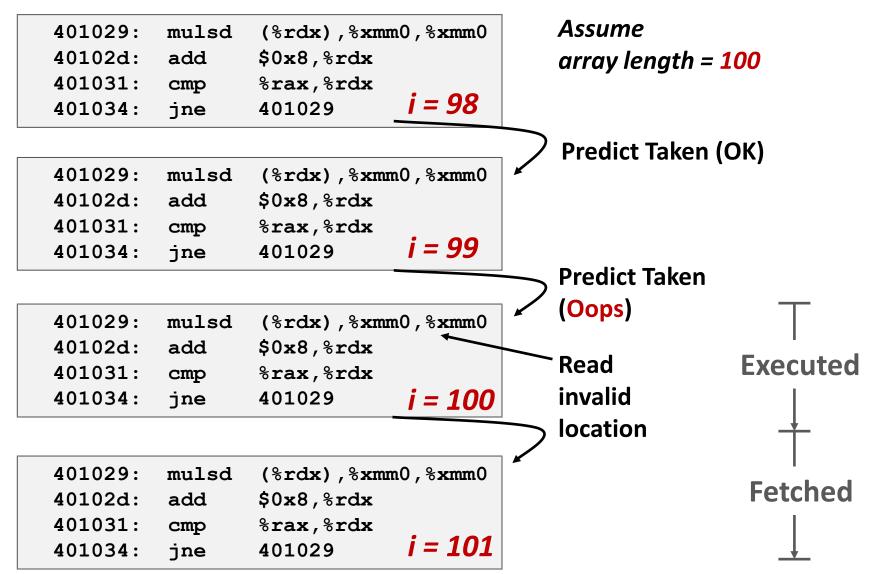
Modern CPU Design

Branches Are A Challenge

Instruction Control Unit must work well ahead of Execution Unit to generate enough operations to keep EU busy

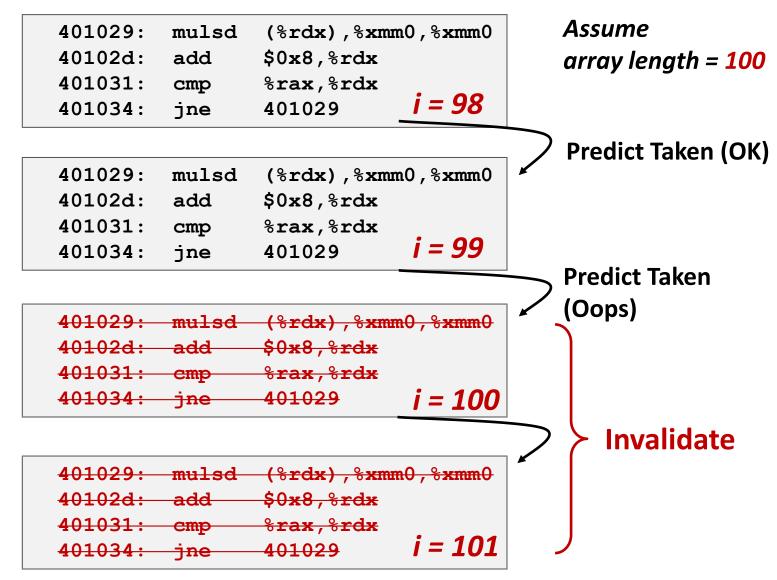


If the CPU has to wait for the result of the cmp before continuing to fetch instructions, may waste tens of cycles doing nothing!

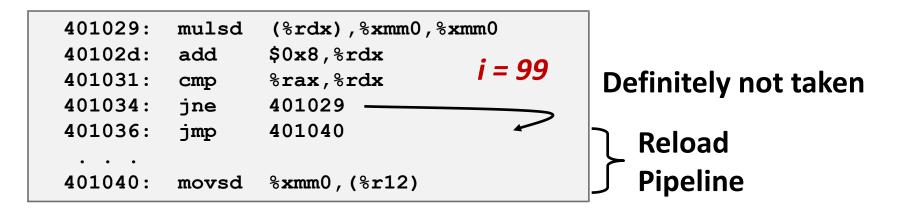

Branch Prediction

Guess which way branch will go

- Begin executing instructions at predicted position
- But don't actually modify register or memory data



Branch Prediction Through Loop


Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Branch Misprediction Invalidation

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Branch Misprediction Recovery

Performance Cost

- Multiple clock cycles on modern processor
- Can be a major performance limiter

Branch Prediction Numbers

• A simple heuristic:

- Backwards branches are often loops, so predict taken
- Forwards branches are often ifs, so predict not taken
- >95% prediction accuracy just with this!

Fancier algorithms track behavior of each branch

- Subject of ongoing research
- 2011 record (<u>https://www.jilp.org/jwac-2/program/JWAC-2-program.htm</u>): 34.1 mispredictions per 1000 instructions
- Current research focuses on the remaining handful of "impossible to predict" branches (strongly data-dependent, no correlation with history)
 - e.g. <u>https://hps.ece.utexas.edu/pub/PruettPatt_BranchRunahead.pdf</u>

Optimizing for Branch Prediction

Reduce # of branches

- Transform loops
- Unroll loops
- Use conditional moves
 - Not always a good idea

Make branches predictable

- Sort data https://stackoverflow.com/guestions/11227809
- Avoid indirect branches
 - function pointers
 - virtual methods

```
.Loop:
```

movzbl 0(%rbp,%rbx), %edx -65(%rdx), %ecx leal \$25, %cl cmpb .Lskip ia addl \$32, %edx %dl, 0(%rbp,%rbx) movb .Lskip: \$1, %rbx addl %rax, %rbx cmpq jb .Loop

.Loop:

MOVZDI	0(%rbp,%rbx), %edx	
movl	<mark>%edx, %esi</mark>	
leal	-65(%rdx), %ecx	
addl	\$32, %edx	
cmpb	\$25, %cl	
cmova	<pre>%esi, %edx</pre>	
movb	%dl, 0(%rbp,%rbx)	
addl	\$1, %rbx	
cmpq	%rax, %rbx	Memory write
jb	.Loop	now
		unconditional!

Loop Unrolling

- Amortize cost of loop condition by duplicating body
- Creates opportunities for CSE, code motion, scheduling
- Prepares code for vectorization
- Can hurt performance by increasing code size

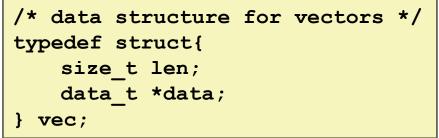
```
for (size_t i = 0; i < nelts; i++) {
     A[i] = B[i]*k + C[i];
}</pre>
```

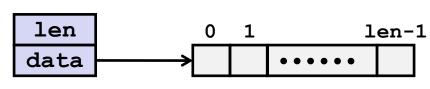
```
for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i ] = B[i ]*k + C[i ];
    A[i+1] = B[i+1]*k + C[i+1];
    A[i+2] = B[i+2]*k + C[i+2];
    A[i+3] = B[i+3]*k + C[i+3];
}</pre>
```

When would this change be incorrect?

Scheduling

- Rearrange instructions to make it easier for the CPU to keep all functional units busy
- For instance, move all the loads to the top of an unrolled loop
 - Now maybe it's more obvious why we need lots of registers


```
for (size_t i = 0; i < nelts - 4; i += 4) {
    A[i ] = B[i ]*k + C[i ];
    A[i+1] = B[i+1]*k + C[i+1];
    A[i+2] = B[i+2]*k + C[i+2];
    A[i+3] = B[i+3]*k + C[i+3];
}
for (size_t i = 0; i < nelts - 4; i += 4) {
    B0 = B[i]; B1 = B[i+1]; B2 = B[i+2]; B3 = B[i+3];
    C0 = C[i]; C1 = C[i+1]; C2 = C[i+2]; C3 = B[i+3];
    A[i ] = B0*k + C0;
    A[i+1] = B1*k + C1;
    A[i+2] = B2*k + C2;
    A[i+3] = B3*k + C3;
}</pre>
```


When would this change be incorrect?

Today

- Principles and goals of compiler optimization
- Examples of optimizations
- Obstacles to optimization
- Machine-dependent optimization
- Benchmark example

Benchmark Example: Data Type for Vectors

Data Types

- Use different declarations for data t
- int
- long
- float
- double

```
/* retrieve vector element
    and store at val */
int get_vec_element
    (*vec v, size_t idx, data_t *val)
{
    if (idx >= v->len)
        return 0;
    *val = v->data[idx];
    return 1;
}
```

Benchmark Computation

```
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

Compute sum or product of vector elements

Data Types

- Use different declarations for data_t
- int
- long
- float
- double

Operations

- Use different definitions of OP and IDENT
- + / 0
- * / 1

Cycles Per Element (CPE)

- Convenient way to express performance of program that operates on vectors or lists
- Length = n
- In our case: CPE = cycles per OP
- Cycles = CPE*n + Overhead
 - CPE is slope of line

Benchmark Performance

```
void combine1(vec_ptr v, data_t *dest)
{
    long int i;
    *dest = IDENT;
    for (i = 0; i < vec_length(v); i++) {
        data_t val;
        get_vec_element(v, i, &val);
        *dest = *dest OP val;
    }
}</pre>
```

Compute sum or product of vector elements

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine1 unoptimized	22.68	20.02	19.98	20.18
Combine1 –O1	10.12	10.12	10.17	11.14
Combine1 –O3	4.5	4.5	6	7.8

Results in CPE (cycles per element)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Basic Optimizations

```
void combine4(vec_ptr v, data_t *dest)
{
    long i;
    long length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
       t = t OP d[i];
    *dest = t;
}</pre>
```

- Move vec_length out of loop
- Avoid bounds check on each cycle
- Accumulate in temporary

Effect of Basic Optimizations

```
void combine4(vec_ptr v, data_t *dest)
{
    long i;
    long length = vec_length(v);
    data_t *d = get_vec_start(v);
    data_t t = IDENT;
    for (i = 0; i < length; i++)
       t = t OP d[i];
    *dest = t;
}</pre>
```

Method	Integer		Double FP	
Operation	Add	Mult	Add	Mult
Combine1 unoptimized	22.68	20.02	19.98	20.18
Combine1 –O1	10.12	10.12	10.17	11.14
Combine1 –O3	4.5	4.5	6	7.8
Combine4	1.27	3.01	3.01	5.01

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Loop Unrolling

```
void unroll2a combine(vec ptr v, data t *dest)
{
    long length = vec length(v);
    long limit = length-1;
    data t *d = get vec start(v);
    data t x0 = IDENT;
    data t x1 = IDENT;
    long i;
    /* Combine 2 elements at a time */
    for (i = 0; i < limit; i+=2) {
       x0 = x0 OP d[i];
       x1 = x1 \text{ OP } d[i+1];
    }
    /* Finish any remaining elements */
    for (; i < length; i++) {</pre>
        x0 = x0 OP d[i];
    }
    *dest = x0 OP x1;
}
```

Loop Unrolled Assembly

Remember modern CPU designs

- Multiple functional units
- So how many cycles should this loop take to execute?

.L3:		
	imulq	(%rdx), %rcx
	addq	\$16, %rdx
	imulq	-8(%rdx), %rdi
	cmpq	%r8, %rdx
	jne	. L3

Effect of Loop Unrolling

Method	Integer		Double FP				
Operation	Add	Mult	Add	Mult			
Combine1 unoptimized	22.68	20.02	19.98	20.18			
Combine1 –01	10.12	10.12	10.17	11.14			
Combine1 –O3	4.5	4.5	6	7.8			
Combine4	1.27	3.01	3.01	5.01			
Unroll	0.81	1.51	1.51	2.51			
Multiple instructions every cycle!							

Going Further

- Compiler optimizations are an easy gain
 - 20 CPE down to 3-5 CPE
- With careful hand tuning and computer architecture knowledge
 - 4-16 elements per cycle
 - Newest compilers are closing this gap

Summary: Getting High Performance

- Good compiler and flags
- Don't do anything sub-optimal
 - Watch out for hidden algorithmic inefficiencies
 - Write compiler-friendly code
 - Watch out for optimization blockers: procedure calls & memory references
 - Look carefully at innermost loops (where most work is done)

Tune code for machine

- Exploit instruction-level parallelism
- Avoid unpredictable branches
- Make code cache friendly