
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking

15-213/15-513: Introduction to Computer Systems
15th Lecture, June 23, 2023

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Lab and Code Reviews

 Malloc Deadlines
▪ Checkpoint due Friday July 7

▪ Final Submission due Friday July 14

 Malloc (Final) Bootcamp
▪ Friday July 7 as lecture

▪ Most helpful if you have finished the checkpoint (or are close)

 Code Reviews
▪ All labs from cache lab onwards will be code reviewed one-on-one

▪ You must make an appointment with a TA for this part of the grade

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Linking
▪ Motivation

▪ What it does

▪ How it works

 Activity

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)

{

int val = sum(array, 2);

return val;

}

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

}

main.c sum.c

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking
 Programs are translated and linked using a compiler driver:

▪ linux> gcc -Og -o prog main.c sum.c

▪ linux> ./prog

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

sum.c

sum.o

prog

Source files

Separately compiled
relocatable object files

Fully linked executable object file
(contains code and data for all functions
defined in main.c and sum.c)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers?

 Reason 1: Modularity

▪ Program can be written as a collection of smaller source files,
rather than one monolithic mass.

▪ Can build libraries of common functions

▪ e.g., Math library, standard C library

▪ Header files in C declare types that are defined in libraries

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Linkers? (cont)

 Reason 2: Efficiency
▪ Time: Separate compilation

▪ Change one source file, compile, and then relink.

▪ No need to recompile other source files.

▪ Can compile multiple files concurrently.

▪ Space: Libraries

▪ Common functions can be aggregated into a single file...

▪ Option 1: Static Linking

– Executable files and running memory images contain only
the library code they actually use

▪ Option 2: Dynamic linking

– Executable files contain no library code

– During execution, single copy of library code can be shared
across all executing processes

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do?

 Step 1: Symbol resolution

▪ Programs define and reference symbols (global variables and functions):

▪ void swap() {…} /* define symbol swap */

▪ swap(); /* reference symbol swap */

▪ int *xp = &x; /* define symbol xp, reference x */

▪ Symbol definitions are stored in object file (by assembler) in symbol table.

▪ Symbol table is an array of entries

▪ Each entry includes name, size, and location of symbol.

▪ During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Symbols in Example C Program

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc, char** argv)

{

int val = sum(array, 2);

return val;

}

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

}

main.c sum.c

Definitions

Reference

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Do Linkers Do? (cont’d)

 Step 2: Relocation

▪ Merges separate code and data sections into single sections

▪ Relocates symbols from their relative locations in the .o files to
their final absolute memory locations in the executable.

▪ Updates all references to these symbols to reflect their new
positions.

Let’s look at these two steps in more detail….

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Kinds of Object Files (Modules)

 Relocatable object file (.o file)

▪ Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

▪ Each .o file is produced from exactly one source (.c) file

 Executable object file (a.out file)

▪ Contains code and data in a form that can be copied directly into
memory and then executed.

 Shared object file (.so file)

▪ Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

▪ Called Dynamic Link Libraries (DLLs) by Windows

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Executable and Linkable Format (ELF)

 Standard binary format for object files

 One unified format for
▪ Relocatable object files (.o),

▪ Executable object files (a.out)

▪ Shared object files (.so)

 Generic name: ELF binaries

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format
 Elf header

▪ Word size, byte ordering, file type (.o, exec, .so),
machine type, etc.

 Segment header table

▪ Page size, virtual address memory segments
(sections), segment sizes.

 .text section

▪ Code

 .rodata section

▪ Read only data: jump tables, string constants, ...

 .data section

▪ Initialized global variables

 .bss section

▪ Uninitialized global variables

▪ “Block Started by Symbol”

▪ “Better Save Space”

▪ Has section header but occupies no space

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ELF Object File Format (cont.)

 .symtab section
▪ Symbol table

▪ Procedure and static variable names

▪ Section names and locations

 .rel.text section
▪ Relocation info for .text section

▪ Addresses of instructions that will need to be
modified in the executable

▪ Instructions for modifying

 .rel.data section
▪ Relocation info for .data section

▪ Addresses of pointer data that will need to be
modified in the merged executable

 .debug section
▪ Info for symbolic debugging (gcc -g)

 Section header table

▪ Offsets and sizes of each section

ELF header

Segment header table
(required for executables)

.text section

.rodata section

.bss section

.symtab section

.rel.txt section

.rel.data section

.debug section

Section header table

0

.data section

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Symbols

 Global symbols
▪ Symbols defined by module m that can be referenced by other modules.

▪ e.g., non-static C functions and non-static global variables.

 External symbols
▪ Global symbols that are referenced by module m but defined by some

other module.

 Local symbols
▪ Symbols that are defined and referenced exclusively by module m.

▪ e.g, C functions and global variables defined with the static attribute.

▪ Local linker symbols are not local program variables

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 1: Symbol Resolution

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)

{

int val = sum(array, 2);

return val;

} main.c

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

} sum.c

Referencing
a global…

Defining
a global

Linker knows
nothing of val

Referencing
a global…

…that’s defined here

Linker knows
nothing of i or s

…that’s defined here

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

• incr

• foo

• a

• argc

• argv

• b

• main

• printf

• Others?

Symbol Identification

Which of the following names will be in the symbol
table of symbols.o?

symbols.c:

int incr = 1;

static int foo(int a) {

int b = a + incr;

return b;

}

int main(int argc,

char* argv[]) {

printf("%d\n", foo(5));

return 0;

}

Names:
• incr

• foo

• a

• argc

• argv

• b

• main

• printf

• "%d\n"

Can find this with readelf:
linux> readelf –s symbols.o

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Local Symbols

 Local non-static C variables vs. local static C variables
▪ Local non-static C variables: stored on the stack

▪ Local static C variables: stored in either .bss or .data

static int x = 15;

int f() {

static int x = 17;

return x++;

}

int g() {

static int x = 19;

return x += 14;

}

int h() {

return x += 27;

}

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unique names, e.g., x,
x.1721 and x.1724.

static-local.c

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Linker Resolves Duplicate Symbol
Definitions

 Program symbols are either strong or weak
▪ Strong: procedures and initialized globals

▪ Weak: uninitialized globals

▪ Or ones declared with specifier extern

int foo=5;

p1() {

}

int foo;

p2() {

}

p1.c p2.c

strong

weak

strong

strong

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker’s Symbol Rules

 Rule 1: Multiple strong symbols are not allowed
▪ Each item can be defined only once

▪ Otherwise: Linker error

 Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
▪ References to the weak symbol resolve to the strong symbol

 Rule 3: If there are multiple weak symbols, pick an arbitrary
one
▪ Can override this with gcc –fno-common

 Puzzles on the next slide

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linker Puzzles

int x;

p1() {}

int x;

p2() {}

int x;

int y;

p1() {}

double x;

p2() {}

int x=7;

int y=5;

p1() {}

double x;

p2() {}

int x=7;

p1() {}

int x;

p2() {}

int x;

p1() {} p1() {} Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 might overwrite y!
Nasty!

Important: Linker does not do type checking.

References to x will refer to the same initialized
variable.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

/* Global strong symbol */

double x = 3.14;

Type Mismatch Example

 Compiles without any errors or warnings

 What gets printed?

long int x; /* Weak symbol */

int main(int argc,

char *argv[]) {

printf("%ld\n", x);

return 0;

}

/* Global strong symbol */

double x = 3.14;

mismatch-variable.cmismatch-main.c

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global Variables

 Avoid if you can

 Otherwise
▪ Use static if you can

▪ Initialize if you define a global variable

▪ Use extern if you reference an external global variable

▪ Treated as weak symbol

▪ But also causes linker error if not defined in some file

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use of extern in .h Files (#1)

#include "global.h"

int f() {

return g+1;

}

c1.c
global.h

extern int g;

int f();

#include <stdio.h>

#include "global.h”

int g = 0;

int main(int argc, char argv[]) {

int t = f();

printf("Calling f yields %d\n", t);

return 0;

}

c2.c

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking Example

int sum(int *a, int n);

int array[2] = {1, 2};

int main(int argc,char **argv)

{

int val = sum(array, 2);

return val;

} main.c

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n; i++) {

s += a[i];

}

return s;

} sum.c

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Step 2: Relocation

main()

main.o

sum()

sum.o

System code

int array[2]={1,2}

System data

Relocatable Object Files

.text

.data

.text

.data

.text

Headers

main()

sum()

0

More system code

Executable Object File

.text

.symtab

.debug

.data

System code

System data

int array[2]={1,2}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocation Entries

Source: objdump –r –d main.o

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp

4: be 02 00 00 00 mov $0x2,%esi

9: bf 00 00 00 00 mov $0x0,%edi # %edi = &array

a: R_X86_64_32 array # Relocation entry

e: e8 00 00 00 00 callq 13 <main+0x13> # sum()

f: R_X86_64_PC32 sum-0x4 # Relocation entry

13: 48 83 c4 08 add $0x8,%rsp

17: c3 retq

main.o

int array[2] = {1, 2};

int main(int argc, char**

argv)

{

int val = sum(array, 2);

return val;

} main.c

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relocated .text section

00000000004004d0 <main>:

4004d0: 48 83 ec 08 sub $0x8,%rsp

4004d4: be 02 00 00 00 mov $0x2,%esi

4004d9: bf 18 10 60 00 mov $0x601018,%edi # %edi = &array

4004de: e8 05 00 00 00 callq 4004e8 <sum> # sum()

4004e3: 48 83 c4 08 add $0x8,%rsp

4004e7: c3 retq

00000000004004e8 <sum>:

4004e8: b8 00 00 00 00 mov $0x0,%eax

4004ed: ba 00 00 00 00 mov $0x0,%edx

4004f2: eb 09 jmp 4004fd <sum+0x15>

4004f4: 48 63 ca movslq %edx,%rcx

4004f7: 03 04 8f add (%rdi,%rcx,4),%eax

4004fa: 83 c2 01 add $0x1,%edx

4004fd: 39 f2 cmp %esi,%edx

4004ff: 7c f3 jl 4004f4 <sum+0xc>

400501: f3 c3 repz retq

callq instruction uses PC-relative addressing for sum():
0x4004e8 = 0x4004e3 + 0x5

Source: objdump -d prog

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Loading Executable Object Files

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.debug

Section header table
(required for relocatables)

0
Executable Object File Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

.rodata section

.line

.init section

.strtab

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity

 Get the activity
▪ Go to Canvas → Assignments

▪ Or here is a direct link:
https://www.cs.cmu.edu/~213/activities/linking.pdf

 Form groups of 2
▪ One person runs the activity on a shark machine

▪ The other person fills in the answers

https://www.cs.cmu.edu/~213/activities/linking.pdf

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking Recap

 Usually: Just happens, no big deal

 Sometimes: Strange errors

	Slide 1: Linking 15-213/15-513: Introduction to Computer Systems 15th Lecture, June 23, 2023
	Slide 2: Malloc Lab and Code Reviews
	Slide 3: Today
	Slide 4: Example C Program
	Slide 5: Linking
	Slide 6: Why Linkers?
	Slide 7: Why Linkers? (cont)
	Slide 8: What Do Linkers Do?
	Slide 9: Symbols in Example C Program
	Slide 10: What Do Linkers Do? (cont’d)
	Slide 11: Three Kinds of Object Files (Modules)
	Slide 12: Executable and Linkable Format (ELF)
	Slide 13: ELF Object File Format
	Slide 14: ELF Object File Format (cont.)
	Slide 15: Linker Symbols
	Slide 16: Step 1: Symbol Resolution
	Slide 17: Symbol Identification
	Slide 18: Local Symbols
	Slide 19: How Linker Resolves Duplicate Symbol Definitions
	Slide 20: Linker’s Symbol Rules
	Slide 21: Linker Puzzles
	Slide 22: Type Mismatch Example
	Slide 23: Global Variables
	Slide 24: Use of extern in .h Files (#1)
	Slide 26: Linking Example
	Slide 27: Step 2: Relocation
	Slide 28: Relocation Entries
	Slide 29: Relocated .text section
	Slide 30: Loading Executable Object Files
	Slide 31: Activity
	Slide 32: Linking Recap

