
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

15-213/15-513: Introduction to Computer Systems
19th Lecture, July 13, 2023

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Signals

 If we have time: Nonlocal Jumps

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

 Shell designed to run indefinitely
▪ Should not accumulate unneeded resources

▪ Memory

▪ Child processes

▪ File descriptors

 Our example shell correctly waits for and reaps foreground
jobs

 But what about background jobs?
▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Could run the entire computer out of memory

▪ More likely, run out of PIDs

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Printers Used to Catch on Fire

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Highly Exceptional Control Flow

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/char/lp.c?h=v5.0-rc3

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:
▪ From startup to shutdown, each CPU core simply reads and executes

(interprets) a sequence of instructions, one at a time *

▪ This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

* Externally, from an architectural
viewpoint (internally, the CPU
may use parallel out-of-order
execution)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
▪ Jumps and branches

▪ Call and return

React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

 System needs mechanisms for “exceptional control flow”

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
▪ 1. Exceptions

▪ Change in control flow in response to a system event
(i.e., change in system state)

▪ Implemented using combination of hardware and OS software

 Higher level mechanisms
▪ 2. Process context switch

▪ Implemented by OS software and hardware timer

▪ 3. Signals

▪ Implemented by OS software

▪ 4. Nonlocal jumps: setjmp() and longjmp()

▪ Implemented by C runtime library

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Signals

 If we have time: Nonlocal Jumps

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions

 An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
▪ Kernel is the memory-resident part of the OS

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O
request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
•Return to I_next
•Abort

Event I_current
I_next

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1

2
...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Taxonomy of Hardware ECF

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
▪ Indicated by setting the processor’s interrupt pin

▪ Handler returns to “next” instruction

 Examples:
▪ Timer interrupt

▪ Every few ms, an external timer chip triggers an interrupt

▪ Used by the kernel to take back control from user programs

▪ I/O interrupt from external device

▪ Hitting Ctrl-C at the keyboard

▪ Arrival of a packet from a network

▪ Arrival of data from a disk

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions

 Caused by events that occur as a result of executing an
instruction:
▪ Traps

▪ Intentional, set program up to “trip the trap” and do something

▪ Examples: system calls, gdb breakpoints

▪ Returns control to “next” instruction

▪ Faults

▪ Unintentional but possibly recoverable

▪ Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

▪ Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

▪ Unintentional and unrecoverable

▪ Examples: illegal instruction, parity error, machine check

▪ Aborts current program

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/34989/quizzes/103053

https://canvas.cmu.edu/courses/34989/quizzes/103053

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Signals

 If we have time: Nonlocal Jumps

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System

 Exceptions
▪ Hardware and operating system kernel software

 Process Context Switch
▪ Hardware timer and kernel software

 Signals
▪ Kernel software and application software

 Nonlocal jumps
▪ Application code

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

 Shell designed to run indefinitely
▪ Should not accumulate unneeded resources

▪ Memory

▪ Child processes

▪ File descriptors

 Our example shell correctly waits for and reaps foreground
jobs

 But what about background jobs?
▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Will create a memory leak that could run the kernel out of memory

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

 Solution: Exceptional control flow
▪ The kernel will interrupt regular processing to alert us when a background

process completes

▪ In Unix, the alert mechanism is called a signal

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 A signal is a small message that notifies a process that an
event of some type has occurred in the system
▪ Akin to exceptions and interrupts

▪ Sent from the kernel (sometimes at the request of another process) to a
process

▪ Signal type is identified by small integer ID’s (1-30)

▪ Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

 Kernel sends a signal to a destination process by updating some
state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
▪ Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)

▪ Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by

the kernel to react in some way to the signal

 Some possible ways to react:
▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes

to signal handler

(3) Signal

handler runs
(4) Signal handler

returns to

next instruction

Icurr
Inext

(1) Signal received

by process

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received
▪ There can be at most one pending signal of each type

▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
▪ Blocked signals can be sent, but will not be received until the signal is

unblocked

▪ Some signals cannot be blocked (SIGKILL, SIGSTOP) or can only be
blocked when sent by other processes (SIGSEGV, SIGILL, etc)

 A pending signal is received at most once

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
▪ pending: represents the set of pending signals

▪ Kernel sets bit k in pending when a signal of type k is sent

▪ Kernel clears bit k in pending when a signal of type k is received

▪ blocked: represents the set of blocked signals

▪ Can be set and cleared by using the sigprocmask function

▪ Also referred to as the signal mask.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see
text for details)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

 /bin/kill program
sends arbitrary signal to a
process or process group

 Examples
▪ /bin/kill –9 24818

Send SIGKILL to process 24818

▪ /bin/kill –9 –24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group
▪ SIGINT – default action is to terminate each process

▪ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */

while(1)

;

}

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked

▪ The set of pending nonblocked signals for process p

 If (pnb == 0)

▪ Pass control to next instruction in the logical flow for p

 Else
▪ Choose least nonzero bit k in pnb and force process p to receive

signal k

▪ The receipt of the signal triggers some action by p

▪ Repeat for all nonzero k in pnb

▪ Pass control to next instruction in logical flow for p

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

 Each signal type has a predefined default action, which is
one of:
▪ The process terminates

▪ The process stops until restarted by a SIGCONT signal

▪ The process ignores the signal

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
▪ handler_t *signal(int signum, handler_t *handler)

 Different values for handler:

▪ SIG_IGN: ignore signals of type signum

▪ SIG_DFL: revert to the default action on receipt of signals of type signum

▪ Otherwise, handler is the address of a user-level signal handler

▪ Called when process receives signal of type signum

▪ Referred to as “installing” the handler

▪ Executing handler is called “catching” or “handling” the signal

▪ When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */

{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");

sleep(2);

printf("Well...");

fflush(stdout);

sleep(1);

printf("OK. :-)\n");

exit(0);

}

int main(int argc, char** argv)

{

/* Install the SIGINT handler */

if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */

pause();

return 0;

} sigint.c

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

 But, this flow exists only until returns to main program

Process A

while (1)

;

Process A

handler(){

…

}

Process B

Time

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal sent
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers

 Handlers can be interrupted by other handlers

(2) Control passes

to handler S

Main program

(5) Handler T

returns to

handler S

Icurr

Inext

(1) Program

catches signal s

Handler S Handler T

(3) Program

catches signal t

(4) Control passes

to handler T

(6) Handler S

returns to

main

program

(7) Main program

resumes

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

 Implicit blocking mechanism
▪ Kernel blocks any pending signals of type currently being handled

▪ e.g., a SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
▪ sigprocmask function

 Supporting functions
▪ sigemptyset – Create empty set

▪ sigfillset – Add every signal number to set

▪ sigaddset – Add signal number to set

▪ sigdelset – Delete signal number from set

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

sigemptyset(&mask);

sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */

sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */

sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

 Handlers are tricky because they are concurrent with
main program and share the same global data structures
▪ Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term

 For now here are some guidelines to help you avoid
trouble.

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers

 G0: Keep your handlers as simple as possible
▪ e.g., set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals
▪ To prevent possible corruption

 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t

▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)

▪ Flag declared this way does not need to be protected like other globals

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals

 Posix guarantees 117 functions to be async-signal-safe
▪ Source: “man 7 signal-safety”

▪ Popular functions on the list:

▪ _exit, write, wait, waitpid, sleep, kill

▪ Popular functions that are not on the list:

▪ printf, sprintf, malloc, exit

▪ Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers
▪ ssize_t sio_puts(char s[]) /* Put string */

▪ ssize_t sio_putl(long v) /* Put long */

▪ void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{

sio_puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep(2);

sio_puts("Well...");

sleep(1);

sio_puts("OK. :-)\n");

_exit(0);

} sigintsafe.c

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf!

▪ Handles restricted class of printf format strings

▪ Recognizes: %c %s %d %u %x %%

▪ Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */

{

sio_printf("So you think you can stop the bomb"

" (process %d) with ctrl-%c, do you?\n",

(int) getpid(), 'c');

sleep(2);

sio_puts("Well...");

sleep(1);

sio_puts("OK. :-)\n");

_exit(0);

}

sigintsafe.c

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
▪ For each signal type, one

bit indicates whether or
not signal is pending…

▪ …thus at most one
pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;

void child_handler(int sig) {

int olderrno = errno;

pid_t pid;

if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;

sio_puts("Handler reaped child ");

sio_putl((long)pid);

sio_puts(" \n");

sleep(1);

errno = olderrno;

}

void fork14() {

pid_t pid[N];

int i;

ccount = N;

signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {

if ((pid[i] = fork()) == 0) {

sleep(1);

exit(0); /* Child exits */

}

}

while (ccount > 0) /* Parent spins */

;

} forks.c

whaleshark> ./forks 14

Handler reaped child 23240

Handler reaped child 23241

. . .(hangs)

Correct Signal Handling

N == 5

This code is incorrect!

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
sio_puts("Handler reaped child ");
sio_putl((long)pid);
sio_puts(" \n");

}
if (errno != ECHILD)

sio_error("wait error");
errno = olderrno;

}
whaleshark> ./forks 15

Handler reaped child 23246

Handler reaped child 23247

Handler reaped child 23248

Handler reaped child 23249

Handler reaped child 23250

whaleshark>

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)

{

int olderrno = errno;

sigset_t mask_all, prev_all;

pid_t pid;

sigfillset(&mask_all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

deletejob(pid); /* Delete the child from the job list */

sigprocmask(SIG_SETMASK, &prev_all, NULL);

}

if (pid != 0 && errno != ECHILD)

sio_error("waitpid error");

errno = olderrno;

}

 SIGCHLD handler for a simple shell
▪ Blocks all signals while running critical code

procmask1.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, prev_all;

int n = N; /* N = 5 */

sigfillset(&mask_all);

signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {

if ((pid = fork()) == 0) { /* Child */

execve("/bin/date", argv, NULL);

}

sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */

addjob(pid); /* Add the child to the job list */

sigprocmask(SIG_SETMASK, &prev_all, NULL);

}

exit(0);

}

 Simple shell with a subtle synchronization error because it
assumes parent runs before child

procmask1.c

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program Without Race

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, mask_one, prev_one;

int n = N; /* N = 5 */

sigfillset(&mask_all);

sigemptyset(&mask_one);

sigaddset(&mask_one, SIGCHLD);

signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {

sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

if ((pid = fork()) == 0) { /* Child process */

sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

execve("/bin/date", argv, NULL);

}

sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

addjob(pid); /* Add the child to the job list */

sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}

exit(0);

} procmask2.c

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)

{

int olderrno = errno;

pid = waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */

errno = olderrno;

}

void sigint_handler(int s)

{

}

 Handlers for program explicitly waiting for SIGCHLD to arrive

waitforsignal.c

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

signal(SIGCHLD, sigchld_handler);

signal(SIGINT, sigint_handler);

sigemptyset(&mask);

sigaddset(&mask, SIGCHLD);

while (n--) {

sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (fork() == 0) /* Child */

exit(0);

/* Parent */

pid = 0;

sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */

while (!pid)

;

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

}
waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Program is correct, but very wasteful
▪ Program in busy-wait loop

 Possible race condition
▪ Between checking pid and starting pause, might receive signal

 Safe, but slow
▪ Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid) /* Race! */

pause();

while (!pid) /* Too slow! */

sleep(1);

while (!pid)

;

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

signal(SIGCHLD, sigchld_handler);

signal(SIGINT, sigint_handler);

sigemptyset(&mask);

sigaddset(&mask, SIGCHLD);

while (n--) {

sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */

pid = 0;

while (!pid)

sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

} sigsuspend.c

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Exceptional Control Flow

 Exceptions

 Signals

 If we have time: Nonlocal Jumps

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
▪ Controlled to way to break the procedure call / return discipline

▪ Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

▪ Must be called before longjmp

▪ Identifies a return site for a subsequent longjmp

▪ Called once, returns one or more times

 Implementation:
▪ Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf

▪ Return 0

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

▪ Meaning:

▪ return from the setjmp remembered by jump buffer j again ...

▪ … this time returning i instead of 0

▪ Called after setjmp

▪ Called once, but never returns

 longjmp Implementation:

▪ Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

▪ Set %eax (the return value) to i

▪ Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */

void foo(void)

{

if (error1)

longjmp(buf, 1);

bar();

}

void bar(void)

{

if (error2)

longjmp(buf, 2);

}

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;

int error2 = 1;

void foo(void), bar(void);

int main()

{

switch(setjmp(buf)) {

case 0:

foo();

break;

case 1:

printf("Detected an error1 condition in foo\n");

break;

case 2:

printf("Detected an error2 condition in foo\n");

break;

default:

printf("Unknown error condition in foo\n");

}

exit(0);

}

setjmp/longjmp
Example (cont)

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline

▪ Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline

▪ Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)

{

siglongjmp(buf, 1);

}

int main()

{

if (!sigsetjmp(buf, 1)) {

Signal(SIGINT, handler);

Sio_puts("starting\n");

}

else

Sio_puts("restarting\n");

while(1) {

Sleep(1);

Sio_puts("processing...\n");

}

exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

	Slide 1: Exceptional Control Flow 15-213/15-513: Introduction to Computer Systems 19th Lecture, July 13, 2023
	Slide 2: Today
	Slide 3: Problem with Simple Shell Example
	Slide 4: Printers Used to Catch on Fire
	Slide 5: Highly Exceptional Control Flow
	Slide 6: Control Flow
	Slide 7: Altering the Control Flow
	Slide 8: Exceptional Control Flow
	Slide 9: Today
	Slide 10: Exceptions
	Slide 11: Exception Tables
	Slide 12: Taxonomy of Hardware ECF
	Slide 13: Asynchronous Exceptions (Interrupts)
	Slide 14: Synchronous Exceptions
	Slide 15: System Calls
	Slide 16: System Call Example: Opening File
	Slide 17: System Call Example: Opening File
	Slide 18: Fault Example: Page Fault
	Slide 19: Fault Example: Invalid Memory Reference
	Slide 20: Quiz
	Slide 21: Today
	Slide 22: ECF Exists at All Levels of a System
	Slide 23: Problem with Simple Shell Example
	Slide 24: ECF to the Rescue!
	Slide 25: Signals
	Slide 26: Signal Concepts: Sending a Signal
	Slide 27: Signal Concepts: Sending a Signal
	Slide 28: Signal Concepts: Sending a Signal
	Slide 29: Signal Concepts: Sending a Signal
	Slide 30: Signal Concepts: Sending a Signal
	Slide 31: Signal Concepts: Sending a Signal
	Slide 32: Signal Concepts: Receiving a Signal
	Slide 33: Signal Concepts: Pending and Blocked Signals
	Slide 34: Signal Concepts: Pending/Blocked Bits
	Slide 35: Signal Concepts: Sending a Signal
	Slide 36: Sending Signals: Process Groups
	Slide 37: Sending Signals with /bin/kill Program
	Slide 38: Sending Signals from the Keyboard
	Slide 39: Example of ctrl-c and ctrl-z
	Slide 40: Sending Signals with kill Function
	Slide 41: Receiving Signals
	Slide 42: Receiving Signals
	Slide 43: Default Actions
	Slide 44: Installing Signal Handlers
	Slide 45: Signal Handling Example
	Slide 46: Signals Handlers as Concurrent Flows
	Slide 47: Another View of Signal Handlers as Concurrent Flows
	Slide 48: Nested Signal Handlers
	Slide 49: Blocking and Unblocking Signals
	Slide 50: Temporarily Blocking Signals
	Slide 51: Safe Signal Handling
	Slide 52: Guidelines for Writing Safe Handlers
	Slide 53: Async-Signal-Safety
	Slide 54: Safe Formatted Output: Option #1
	Slide 55: Safe Formatted Output: Option #2
	Slide 56: Correct Signal Handling
	Slide 57: Correct Signal Handling
	Slide 58: Synchronizing Flows to Avoid Races
	Slide 59: Synchronizing Flows to Avoid Races
	Slide 60: Corrected Shell Program Without Race
	Slide 61: Explicitly Waiting for Signals
	Slide 62: Explicitly Waiting for Signals
	Slide 63: Explicitly Waiting for Signals
	Slide 64: Waiting for Signals with sigsuspend
	Slide 65: Waiting for Signals with sigsuspend
	Slide 66: Today
	Slide 67: Nonlocal Jumps: setjmp/longjmp
	Slide 68: setjmp/longjmp (cont)
	Slide 69: setjmp/longjmp Example
	Slide 70: setjmp/longjmp Example (cont)
	Slide 71: Limitations of Nonlocal Jumps
	Slide 72: Limitations of Long Jumps (cont.)
	Slide 73: Putting It All Together: A Program That Restarts Itself When ctrl-c’d

