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Computer Networks
 A network is a hierarchical system of boxes and wires 

organized by geographical proximity
▪ LAN (Local Area Network)  spans a building or campus

▪ Ethernet is most prominent example

▪ WAN (Wide Area Network) spans country or world

▪ Typically high-speed point-to-point (mostly optical) links

▪ Also: SAN (Storage area network), MAN (Metropolitan), etc., etc.

 An internetwork (internet) is an interconnected set of 
networks
▪ The Global IP Internet (uppercase “I”) is the most famous example 

of an internet (lowercase “i”)

 Let’s see how an internet is built from the ground up



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The ARPANET in December 1970
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A Map of 460 Billion Device Connections to 
the Internet collected by the Carna Botnet
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Hardware Organization of a Network Host
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Old Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts connected 
by wires (twisted pairs) to a hub

 Spans room or floor in a building

 Operation
▪ Each Ethernet adapter has a unique 48-bit address (MAC address)

▪ E.g., 00:16:ea:e3:54:e6

▪ Hosts send bits to any other host in chunks called frames
▪ Hub slavishly copies each bit from each port to every other port

▪ Every host sees every bit

[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

host host host

hub
100 Mb/s100 Mb/s

port
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Next Level: Bridged Ethernet Segment

 Spans building or campus

 Bridges cleverly learn which hosts are reachable from which 
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub
100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub
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Conceptual View of LANs

 For simplicity, hubs, bridges, and wires are often shown as a 
collection of hosts attached to a single wire:

host host host...
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Next Level: internets

 Multiple incompatible LANs can be physically connected by 
specialized computers called routers

 The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible 

(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router

LAN 1 LAN  2
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Logical Structure of an internet

 Ad hoc interconnection of networks
▪ No particular topology

▪ Vastly different router & link capacities

 Send packets from source to destination by hopping through 
networks
▪ Router forms bridge from one network to another

▪ Different packets may take different routes

router

router

router
router

router

router

host
host
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The Notion of an internet Protocol

 How is it possible to send bits across incompatible LANs 
and WANs?

 Solution:  protocol software running on each host and 
router 
▪ Protocol is a set of rules that governs how hosts and routers should 

cooperate when they transfer data from network to network. 

▪ Smooths out the differences between the different networks
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What Does an internet Protocol Do?

 Provides a naming scheme
▪ An internet protocol defines a uniform format for host addresses

▪ Each host (and router) is assigned at least one of these internet 
addresses that uniquely identifies it

 Provides a delivery mechanism
▪ An internet protocol defines a standard transfer unit (packet)

▪ Packet consists of header and payload

▪ Header: contains info such as packet size, source and destination 
addresses

▪ Payload: contains data bits sent from source host
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LAN2

Transferring internet Data Via Encapsulation
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Other Issues

 We are glossing over a number of important questions:
▪ What if different networks have different maximum frame sizes? 

(segmentation)

▪ How do routers know where to forward frames?

▪ How are routers informed when the network topology changes?

▪ What if packets get lost?

 These (and other) questions are addressed by the area of  
systems known as computer networking
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Global IP Internet (upper case)

 Most famous example of an internet

 Based on the TCP/IP protocol family
▪ IP (Internet Protocol)

▪ Provides basic naming scheme and unreliable delivery capability 
of packets (datagrams) from host-to-host

▪ UDP (User Datagram Protocol)

▪ Uses IP to provide unreliable datagram delivery from 
process-to-process

▪ TCP (Transmission Control Protocol)

▪ Uses IP to provide reliable byte streams from process-to-process 
over connections

 Accessed via a mix of Unix file I/O and functions from the 
sockets interface
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Basic Internet Components

 Internet backbone:
▪ collection of routers (nationwide or worldwide) connected by high-speed 

point-to-point networks

 Internet Exchange Points (IXP):
▪ router that connects multiple backbones (often referred to as peers)

▪ Also called Network Access Points (NAP)

 Regional networks:
▪ smaller backbones that cover smaller geographical areas 

(e.g., cities or states) 

 Point of presence (POP):
▪ machine that is connected to the Internet

 Internet Service Providers (ISPs):
▪ provide dial-up or direct access to POPs
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Internet Connection Hierarchy
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Hardware and Software Organization 
of an Internet Application
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A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
▪ 128.2.203.179

▪ 127.0.0.1 (always localhost)

2. As a convenience for humans, the Domain Name System 
maps a set of identifiers called Internet domain names to IP 
addresses:

▪ www.cs.cmu.edu “resolves to” 128.2.217.3

3. A process on one Internet host can communicate with a 
process on another Internet host over a connection

http://www.cs.cmu.edu/
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Aside: IPv4 and IPv6

 IPv4 (Internet Protocol version 4) specified 1981
▪ 32-bit host addresses (192.0.2.43)
▪ Known to not be enough for everyone since ~1990

 IPv6 (Internet Protocol version 6) specified 1996
▪ 128-bit addresses (2001:0db8:0:0:0:0:cafe:la7e)
▪ Intended to replace IPv4
▪ Very slow adoption due to need to replace routers

(CMU’s network doesn’t support IPv6 at all!)

 Application programmers mostly don’t have to care
▪ Sockets API makes it easy to write code that seamlessly 

uses either, as necessary

IPv6 traffic to Google
https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html
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(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct

▪ IP addresses are always stored in memory in network byte order 
(big-endian byte order)

▪ True in general for any integer transferred in a packet header from one 
machine to another.

▪ E.g., the port number used to identify an Internet connection.

/* Internet address structure */

struct in_addr {

    uint32_t  s_addr; /* network byte order (big-endian) */

};
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Dotted Decimal Notation

 By convention, each byte in a 32-bit IP address is represented 
by its decimal value and separated by a period

▪ IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described 
later) to convert between IP addresses and dotted decimal 
format.
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(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece
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128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon
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54.230.48.28

First-level domain names

Second-level domain names

Third-level domain names
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Domain Naming System (DNS)

 The Internet maintains a mapping between IP addresses and 
domain names in a worldwide distributed database called DNS

 Conceptually, programmers can view the DNS database as a 
collection of millions of host entries.
▪ Each host entry defines the mapping between a set of domain names and IP 

addresses.

▪ In a mathematical sense, a host entry is an equivalence class of domain 
names and IP addresses.
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Properties of DNS Mappings

 Can explore properties of DNS mappings using nslookup 

▪ (Output edited for brevity)

 Each host has a locally defined domain name localhost 
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost

Address: 127.0.0.1

linux> hostname

whaleshark.ics.cs.cmu.edu
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Properties of DNS Mappings (cont)

 Simple case: one-to-one mapping between domain name and IP 
address:

 Multiple domain names mapped to the same IP address:

 And backwards:

linux> nslookup whaleshark.ics.cs.cmu.edu

Address: 128.2.210.175

linux> nslookup cs.mit.edu

Address: 18.25.0.23

linux> nslookup eecs.mit.edu

Address: 18.25.0.23

linux> nslookup 18.25.0.23

23.0.25.18.in-addr.arpa name = eecs.mit.edu.
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Properties of DNS Mappings (cont)

 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com

Address: 104.244.42.65

Address: 104.244.42.129

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup www.twitter.com

Address: 104.244.42.129

Address: 104.244.42.65

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup ics.cs.cmu.edu

(No Address given)
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A Client-Server Transaction

 Most network applications are based on the client-server 
model:
▪ A server process and one or more client processes

▪ Server manages some resource

▪ Server provides service by manipulating resource for clients

▪ Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client 
handles

response

2. Server 
handles
request

Resource

Note: clients and servers are processes running on hosts 
(can be the same or different hosts)
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(3) Internet Connections
 Clients and servers most often communicate by sending 

streams of bytes over TCP connections. Each connection is:
▪ Point-to-point: connects a pair of processes.

▪ Full-duplex: data can flow in both directions at the same time,

▪ Reliable: stream of bytes sent by the source is eventually received by 
the destination in the same order it was sent. 

 A socket is an endpoint of a connection
▪ Socket address is an IPaddress:port  pair

 A port is a 16-bit integer that identifies a process:
▪ Ephemeral port: Assigned automatically by client kernel when client 

makes a connection request.

▪ Well-known port: Associated with some service provided by a server 
(e.g., port 80 is associated with Web servers)
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Well-known Service Names and Ports

 Popular services have permanently assigned well-known 
ports and corresponding well-known service names:
▪ echo servers:   echo  7

▪ ftp servers:       ftp 21

▪ ssh servers:      ssh 22

▪ email servers:  smtp 25

▪ Unencrypted Web servers:    http 80

▪ SSL/TLS encrypted Web: https 443

 Mappings between well-known ports and service names 
is contained in the file /etc/services on each Linux 
machine. 
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Anatomy of a Connection

 A connection is uniquely identified by the socket 
addresses of its endpoints (socket pair)
▪ (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242 

Server host address
208.216.181.15

51213 is an ephemeral port 
allocated by the kernel 

80 is a well-known port
associated with Web servers
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Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client
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Sockets Interface

 Set of system-level functions used in conjunction with 
Unix I/O to build network applications. 

 Created in the early 80’s as part of the original Berkeley 
distribution of Unix that contained an early version of the 
Internet protocols.

 Available on all modern systems 
▪ Unix variants, Windows, OS X, IOS, Android, ARM
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Client Server

Sockets

 What is a socket?
▪ To the kernel, a socket is an endpoint of communication

▪ To an application, a socket is a file descriptor that lets the 
application read/write from/to the network

▪ Using the FD abstraction lets you reuse code & interfaces

 Clients and servers communicate with each other by 
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket 
I/O is how the application “opens” the socket descriptors

clientfd serverfd
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Socket Programming Example

 Echo server and client

 Server
▪ Accepts connection request

▪ Repeats back lines as they are typed

 Client
▪ Requests connection to server

▪ Repeatedly:

▪ Read line from terminal

▪ Send to server

▪ Read reply from server

▪ Print line to terminal
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Echo Server/Client Session Example

whaleshark: ./echoserveri 6616

Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707) (A)

server received 26 bytes (B)

server received 17 bytes (C)

Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708) (D)

server received 29 bytes (E)

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (A)

This line is being echoed (B)

This line is being echoed

This one is, too (C)

This one is, too

^D

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (D)

This one is a new connection (E)

This one is a new connection

^D

Client

Server
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5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client / 
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

open_listenfd

open_clientfd

Await connection
request from client
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5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client / 
Server
Session

Echo
Server

+ Client
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Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from client

accept

open_listenfd

open_clientfd
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Recall: Unbuffered RIO Input/Output
 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on 
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

     Return: num. bytes transferred if OK,  0 on EOF (rio_readn only), -1 on error 
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Recall: Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially 
cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file 
fd and stores the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪  maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

                          Return: num. bytes read if OK, 0 on EOF, -1 on error
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Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)

{

    int clientfd;

    char *host, *port, buf[MAXLINE];

rio_t rio;

host = argv[1];

port = argv[2];

clientfd = Open_clientfd(host, port);

Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {

Rio_writen(clientfd, buf, strlen(buf));

Rio_readlineb(&rio, buf, MAXLINE);

Fputs(buf, stdout);

}

    Close(clientfd); 

    exit(0);

} echoclient.c
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5. Drop client
4. Disconnect client
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Iterative Echo Server: Main Routine
#include "csapp.h”

void echo(int connfd);

int main(int argc, char **argv)

{

    int listenfd, connfd;

    socklen_t clientlen;

    struct sockaddr_storage clientaddr; /* Enough room for any addr */  

    char client_hostname[MAXLINE], client_port[MAXLINE];

    listenfd = Open_listenfd(argv[1]);

    while (1) {

 clientlen = sizeof(struct sockaddr_storage); /* Important! */

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 Getnameinfo((SA *) &clientaddr, clientlen, 

                    client_hostname, MAXLINE, client_port, MAXLINE, 0);

 printf("Connected to (%s, %s)\n", client_hostname, client_port);

 echo(connfd);

 Close(connfd);

    }

    exit(0);

} echoserveri.c
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Echo Server: echo function

void echo(int connfd)

{

size_t n;

char buf[MAXLINE];

rio_t rio;

Rio_readinitb(&rio, connfd);

    while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) { 

        printf("server received %d bytes\n", (int)n);

 Rio_writen(connfd, buf, n);

    }

}

 The server uses RIO to read and echo text lines until EOF 
(end-of-file) condition is encountered.
▪ EOF condition caused by client calling  close(clientfd)

echo.c



Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures

 Generic socket address:
▪ For address arguments to connect, bind, and accept (next lecture)

▪ Necessary only because C did not have generic (void *) pointers when 
the sockets interface was designed

▪ For casting convenience, we adopt the Stevens convention: 

     typedef struct sockaddr SA;

struct sockaddr { 

  uint16_t  sa_family;    /* Protocol family */ 

  char      sa_data[14];  /* Address data  */ 

};       

sa_family

Family Specific
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Socket Address Structures

 Internet (IPv4) specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *) 

for functions that take socket address arguments. 

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in  { 

  uint16_t        sin_family;  /* Protocol family (always AF_INET) */ 

  uint16_t        sin_port;    /* Port num in network byte order */ 

  struct in_addr  sin_addr;    /* IP addr in network byte order */ 

  unsigned char   sin_zero[8]; /* Pad to sizeof(struct sockaddr) */ 

}; 

sin_port

AF_INET

sin_addr

sin_family
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Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string 
representations of hostnames, host addresses, ports, and 
service names to socket address structures. 
▪ Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code

▪ Works with both IPv4 and IPv6

 Disadvantages
▪ Somewhat complex

▪ Fortunately, a small number of usage patterns suffice in most cases.
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Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result 
that points to a linked list of addrinfo structs, each of which 
points to a corresponding socket address struct, and which 
contains arguments for the sockets interface functions.

 Helper functions:
▪ freeadderinfo frees the entire linked list.

▪ gai_strerror converts error code to an error message. 

int getaddrinfo(const char *host,            /* Hostname or address */

                const char *service,         /* Port or service name */

                const struct addrinfo *hints,/* Input parameters */

                struct addrinfo **result);   /* Output linked list */

void freeaddrinfo(struct addrinfo *result);  /* Free linked list */

const char *gai_strerror(int errcode);       /* Return error msg */
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Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL
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addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains 
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed 
directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

struct addrinfo {

    int              ai_flags;     /* Hints argument flags */

    int              ai_family;    /* First arg to socket function */

    int              ai_socktype;  /* Second arg to socket function */

    int              ai_protocol;  /* Third arg to socket function  */

    char            *ai_canonname; /* Canonical host name */

    size_t           ai_addrlen;   /* Size of ai_addr struct */

    struct sockaddr *ai_addr;      /* Ptr to socket address structure */

    struct addrinfo *ai_next;      /* Ptr to next item in linked list */

};
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Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a 
socket address to the corresponding host and service. 
▪ Replaces obsolete gethostbyaddr and getservbyport funcs.

▪ Reentrant and protocol independent. 

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */

                char *host, size_t hostlen,    /* Out: host */

                char *serv, size_t servlen,    /* Out: service */

                int flags);                    /* optional flags */
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Conversion Example

#include "csapp.h"

int main(int argc, char **argv)

{

    struct addrinfo *p, *listp, hints;

    char buf[MAXLINE];

    int rc, flags;

    /* Get a list of addrinfo records */

    memset(&hints, 0, sizeof(struct addrinfo));

   // hints.ai_family = AF_INET;       /* IPv4 only */

    hints.ai_socktype = SOCK_STREAM; /* Connections only */

    if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

        fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));

        exit(1);

    }

hostinfo.c
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Conversion Example (cont)

/* Walk the list and display each IP address */

    flags = NI_NUMERICHOST; /* Display address instead of name */

for (p = listp; p; p = p->ai_next) {

Getnameinfo(p->ai_addr, p->ai_addrlen, 

buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);

}

    /* Clean up */

    Freeaddrinfo(listp);

    exit(0);

} hostinfo.c
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Running hostinfo

whaleshark> ./hostinfo localhost

127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu

128.2.210.175

whaleshark> ./hostinfo twitter.com

199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198

whaleshark> ./hostinfo google.com

172.217.15.110

2607:f8b0:4004:802::200e
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Next time 

 Using getaddrinfo for host and service conversion

 Writing clients and servers
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