
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part I

15-213/15-513: Introduction to Computer Systems
21st Lecture, July 20, 2023

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Networks
 A network is a hierarchical system of boxes and wires

organized by geographical proximity
▪ LAN (Local Area Network) spans a building or campus

▪ Ethernet is most prominent example

▪ WAN (Wide Area Network) spans country or world

▪ Typically high-speed point-to-point (mostly optical) links

▪ Also: SAN (Storage area network), MAN (Metropolitan), etc., etc.

 An internetwork (internet) is an interconnected set of
networks
▪ The Global IP Internet (uppercase “I”) is the most famous example

of an internet (lowercase “i”)

 Let’s see how an internet is built from the ground up

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The ARPANET in December 1970

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Map of 460 Billion Device Connections to
the Internet collected by the Carna Botnet

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization of a Network Host

main
memory

I/O
bridge

MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Old Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

 Spans room or floor in a building

 Operation
▪ Each Ethernet adapter has a unique 48-bit address (MAC address)

▪ E.g., 00:16:ea:e3:54:e6

▪ Hosts send bits to any other host in chunks called frames
▪ Hub slavishly copies each bit from each port to every other port

▪ Every host sees every bit

[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

host host host

hub
100 Mb/s100 Mb/s

port

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

 Spans building or campus

 Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub
100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual View of LANs

 For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host host host...

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: internets

 Multiple incompatible LANs can be physically connected by
specialized computers called routers

 The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible

(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router

LAN 1 LAN 2

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Structure of an internet

 Ad hoc interconnection of networks
▪ No particular topology

▪ Vastly different router & link capacities

 Send packets from source to destination by hopping through
networks
▪ Router forms bridge from one network to another

▪ Different packets may take different routes

router

router

router
router

router

router

host
host

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Notion of an internet Protocol

 How is it possible to send bits across incompatible LANs
and WANs?

 Solution: protocol software running on each host and
router
▪ Protocol is a set of rules that governs how hosts and routers should

cooperate when they transfer data from network to network.

▪ Smooths out the differences between the different networks

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Does an internet Protocol Do?

 Provides a naming scheme
▪ An internet protocol defines a uniform format for host addresses

▪ Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

 Provides a delivery mechanism
▪ An internet protocol defines a standard transfer unit (packet)

▪ Packet consists of header and payload

▪ Header: contains info such as packet size, source and destination
addresses

▪ Payload: contains data bits sent from source host

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LAN2

Transferring internet Data Via Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: internet packet header
FH: LAN frame header

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Issues

 We are glossing over a number of important questions:
▪ What if different networks have different maximum frame sizes?

(segmentation)

▪ How do routers know where to forward frames?

▪ How are routers informed when the network topology changes?

▪ What if packets get lost?

 These (and other) questions are addressed by the area of
systems known as computer networking

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global IP Internet (upper case)

 Most famous example of an internet

 Based on the TCP/IP protocol family
▪ IP (Internet Protocol)

▪ Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

▪ UDP (User Datagram Protocol)

▪ Uses IP to provide unreliable datagram delivery from
process-to-process

▪ TCP (Transmission Control Protocol)

▪ Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the
sockets interface

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Internet Components

 Internet backbone:
▪ collection of routers (nationwide or worldwide) connected by high-speed

point-to-point networks

 Internet Exchange Points (IXP):
▪ router that connects multiple backbones (often referred to as peers)

▪ Also called Network Access Points (NAP)

 Regional networks:
▪ smaller backbones that cover smaller geographical areas

(e.g., cities or states)

 Point of presence (POP):
▪ machine that is connected to the Internet

 Internet Service Providers (ISPs):
▪ provide dial-up or direct access to POPs

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internet Connection Hierarchy

IXP IXP

Backbone BackboneBackboneBackbone

IXP

POP POP POP

Regional net

POPPOP POP

POPPOP

Small Business

Big BusinessISP

POP POP POP POP

Pgh employee

Cable
modem

DC employee

POP

T3

T1

ISP (for individuals)

POP

DSL
T1

Colocation
sites

Private
“peering”

agreements
between

two backbone
companies

often bypass
IXP

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware and Software Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
▪ 128.2.203.179

▪ 127.0.0.1 (always localhost)

2. As a convenience for humans, the Domain Name System
maps a set of identifiers called Internet domain names to IP
addresses:

▪ www.cs.cmu.edu “resolves to” 128.2.217.3

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

http://www.cs.cmu.edu/

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: IPv4 and IPv6

 IPv4 (Internet Protocol version 4) specified 1981
▪ 32-bit host addresses (192.0.2.43)
▪ Known to not be enough for everyone since ~1990

 IPv6 (Internet Protocol version 6) specified 1996
▪ 128-bit addresses (2001:0db8:0:0:0:0:cafe:la7e)
▪ Intended to replace IPv4
▪ Very slow adoption due to need to replace routers

(CMU’s network doesn’t support IPv6 at all!)

 Application programmers mostly don’t have to care
▪ Sockets API makes it easy to write code that seamlessly

uses either, as necessary

IPv6 traffic to Google
https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct

▪ IP addresses are always stored in memory in network byte order
(big-endian byte order)

▪ True in general for any integer transferred in a packet header from one
machine to another.

▪ E.g., the port number used to identify an Internet connection.

/* Internet address structure */

struct in_addr {

 uint32_t s_addr; /* network byte order (big-endian) */

};

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dotted Decimal Notation

 By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period

▪ IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
54.230.48.28

First-level domain names

Second-level domain names

Third-level domain names

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Domain Naming System (DNS)

 The Internet maintains a mapping between IP addresses and
domain names in a worldwide distributed database called DNS

 Conceptually, programmers can view the DNS database as a
collection of millions of host entries.
▪ Each host entry defines the mapping between a set of domain names and IP

addresses.

▪ In a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings

 Can explore properties of DNS mappings using nslookup

▪ (Output edited for brevity)

 Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost

Address: 127.0.0.1

linux> hostname

whaleshark.ics.cs.cmu.edu

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)

 Simple case: one-to-one mapping between domain name and IP
address:

 Multiple domain names mapped to the same IP address:

 And backwards:

linux> nslookup whaleshark.ics.cs.cmu.edu

Address: 128.2.210.175

linux> nslookup cs.mit.edu

Address: 18.25.0.23

linux> nslookup eecs.mit.edu

Address: 18.25.0.23

linux> nslookup 18.25.0.23

23.0.25.18.in-addr.arpa name = eecs.mit.edu.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)

 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com

Address: 104.244.42.65

Address: 104.244.42.129

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup www.twitter.com

Address: 104.244.42.129

Address: 104.244.42.65

Address: 104.244.42.193

Address: 104.244.42.1

linux> nslookup ics.cs.cmu.edu

(No Address given)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Client-Server Transaction

 Most network applications are based on the client-server
model:
▪ A server process and one or more client processes

▪ Server manages some resource

▪ Server provides service by manipulating resource for clients

▪ Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(3) Internet Connections
 Clients and servers most often communicate by sending

streams of bytes over TCP connections. Each connection is:
▪ Point-to-point: connects a pair of processes.

▪ Full-duplex: data can flow in both directions at the same time,

▪ Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

 A socket is an endpoint of a connection
▪ Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
▪ Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.

▪ Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Well-known Service Names and Ports

 Popular services have permanently assigned well-known
ports and corresponding well-known service names:
▪ echo servers: echo 7

▪ ftp servers: ftp 21

▪ ssh servers: ssh 22

▪ email servers: smtp 25

▪ Unencrypted Web servers: http 80

▪ SSL/TLS encrypted Web: https 443

 Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Connection

 A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)
▪ (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface

 Set of system-level functions used in conjunction with
Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
▪ Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets

 What is a socket?
▪ To the kernel, a socket is an endpoint of communication

▪ To an application, a socket is a file descriptor that lets the
application read/write from/to the network

▪ Using the FD abstraction lets you reuse code & interfaces

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Programming Example

 Echo server and client

 Server
▪ Accepts connection request

▪ Repeats back lines as they are typed

 Client
▪ Requests connection to server

▪ Repeatedly:

▪ Read line from terminal

▪ Send to server

▪ Read reply from server

▪ Print line to terminal

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server/Client Session Example

whaleshark: ./echoserveri 6616

Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707) (A)

server received 26 bytes (B)

server received 17 bytes (C)

Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708) (D)

server received 29 bytes (E)

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (A)

This line is being echoed (B)

This line is being echoed

This one is, too (C)

This one is, too

^D

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (D)

This one is a new connection (E)

This one is a new connection

^D

Client

Server

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Unbuffered RIO Input/Output
 Same interface as Unix read and write

 Especially useful for transferring data on network sockets

▪ rio_readn returns short count only if it encounters EOF

▪ Only use it when you know how many bytes to read

▪ rio_writen never returns a short count

▪ Calls to rio_readn and rio_writen can be interleaved arbitrarily on
the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);

ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Buffered RIO Input Functions

 Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

▪ rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
▪ Especially useful for reading text lines from network sockets

▪ Stopping conditions
▪ maxlen bytes read
▪ EOF encountered
▪ Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)

{

 int clientfd;

 char *host, *port, buf[MAXLINE];

rio_t rio;

host = argv[1];

port = argv[2];

clientfd = Open_clientfd(host, port);

Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {

Rio_writen(clientfd, buf, strlen(buf));

Rio_readlineb(&rio, buf, MAXLINE);

Fputs(buf, stdout);

}

 Close(clientfd);

 exit(0);

} echoclient.c

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Echo Server: Main Routine
#include "csapp.h”

void echo(int connfd);

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr; /* Enough room for any addr */

 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage); /* Important! */

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 Getnameinfo((SA *) &clientaddr, clientlen,

 client_hostname, MAXLINE, client_port, MAXLINE, 0);

 printf("Connected to (%s, %s)\n", client_hostname, client_port);

 echo(connfd);

 Close(connfd);

 }

 exit(0);

} echoserveri.c

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server: echo function

void echo(int connfd)

{

size_t n;

char buf[MAXLINE];

rio_t rio;

Rio_readinitb(&rio, connfd);

 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

 printf("server received %d bytes\n", (int)n);

 Rio_writen(connfd, buf, n);

 }

}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
▪ EOF condition caused by client calling close(clientfd)

echo.c

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures

 Generic socket address:
▪ For address arguments to connect, bind, and accept (next lecture)

▪ Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed

▪ For casting convenience, we adopt the Stevens convention:

 typedef struct sockaddr SA;

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data */

};

sa_family

Family Specific

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures

 Internet (IPv4) specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
▪ Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
▪ Reentrant (can be safely used by threaded programs).

▪ Allows us to write portable protocol-independent code

▪ Works with both IPv4 and IPv6

 Disadvantages
▪ Somewhat complex

▪ Fortunately, a small number of usage patterns suffice in most cases.

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
▪ freeadderinfo frees the entire linked list.

▪ gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */

 const char *service, /* Port or service name */

 const struct addrinfo *hints,/* Input parameters */

 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

struct addrinfo {

 int ai_flags; /* Hints argument flags */

 int ai_family; /* First arg to socket function */

 int ai_socktype; /* Second arg to socket function */

 int ai_protocol; /* Third arg to socket function */

 char *ai_canonname; /* Canonical host name */

 size_t ai_addrlen; /* Size of ai_addr struct */

 struct sockaddr *ai_addr; /* Ptr to socket address structure */

 struct addrinfo *ai_next; /* Ptr to next item in linked list */

};

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
▪ Replaces obsolete gethostbyaddr and getservbyport funcs.

▪ Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */

 char *host, size_t hostlen, /* Out: host */

 char *serv, size_t servlen, /* Out: service */

 int flags); /* optional flags */

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)

{

 struct addrinfo *p, *listp, hints;

 char buf[MAXLINE];

 int rc, flags;

 /* Get a list of addrinfo records */

 memset(&hints, 0, sizeof(struct addrinfo));

 // hints.ai_family = AF_INET; /* IPv4 only */

 hints.ai_socktype = SOCK_STREAM; /* Connections only */

 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {

 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));

 exit(1);

 }

hostinfo.c

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example (cont)

/* Walk the list and display each IP address */

 flags = NI_NUMERICHOST; /* Display address instead of name */

for (p = listp; p; p = p->ai_next) {

Getnameinfo(p->ai_addr, p->ai_addrlen,

buf, MAXLINE, NULL, 0, flags);

printf("%s\n", buf);

}

 /* Clean up */

 Freeaddrinfo(listp);

 exit(0);

} hostinfo.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running hostinfo

whaleshark> ./hostinfo localhost

127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu

128.2.210.175

whaleshark> ./hostinfo twitter.com

199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198

whaleshark> ./hostinfo google.com

172.217.15.110

2607:f8b0:4004:802::200e

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next time

 Using getaddrinfo for host and service conversion

 Writing clients and servers

	Slide 1: Network Programming: Part I 15-213/15-513: Introduction to Computer Systems 21st Lecture, July 20, 2023
	Slide 2: Computer Networks
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: A Map of 460 Billion Device Connections to the Internet collected by the Carna Botnet
	Slide 9: Hardware Organization of a Network Host
	Slide 10: Old Lowest Level: Ethernet Segment
	Slide 11: Next Level: Bridged Ethernet Segment
	Slide 12: Conceptual View of LANs
	Slide 13: Next Level: internets
	Slide 14: Logical Structure of an internet
	Slide 15: The Notion of an internet Protocol
	Slide 16: What Does an internet Protocol Do?
	Slide 17: Transferring internet Data Via Encapsulation
	Slide 18: Other Issues
	Slide 19: Global IP Internet (upper case)
	Slide 20: Basic Internet Components
	Slide 21: Internet Connection Hierarchy
	Slide 22: Hardware and Software Organization of an Internet Application
	Slide 23: A Programmer’s View of the Internet
	Slide 24: Aside: IPv4 and IPv6
	Slide 25: (1) IP Addresses
	Slide 26: Dotted Decimal Notation
	Slide 27: (2) Internet Domain Names
	Slide 28
	Slide 29: Domain Naming System (DNS)
	Slide 30: Properties of DNS Mappings
	Slide 31: Properties of DNS Mappings (cont)
	Slide 32: Properties of DNS Mappings (cont)
	Slide 33: A Client-Server Transaction
	Slide 34: (3) Internet Connections
	Slide 35: Well-known Service Names and Ports
	Slide 36: Anatomy of a Connection
	Slide 37: Using Ports to Identify Services
	Slide 38: Sockets Interface
	Slide 39: Sockets
	Slide 40: Socket Programming Example
	Slide 41: Echo Server/Client Session Example
	Slide 42: Echo Server + Client Structure
	Slide 43: Echo Server + Client Structure
	Slide 44: Recall: Unbuffered RIO Input/Output
	Slide 45: Recall: Buffered RIO Input Functions
	Slide 46: Echo Client: Main Routine
	Slide 47: Echo Server + Client Structure
	Slide 48: Iterative Echo Server: Main Routine
	Slide 49: Echo Server: echo function
	Slide 50: Socket Address Structures
	Slide 51: Socket Address Structures
	Slide 52: Host and Service Conversion: getaddrinfo
	Slide 53: Host and Service Conversion: getaddrinfo
	Slide 54: Linked List Returned by getaddrinfo
	Slide 55: addrinfo Struct
	Slide 56: Host and Service Conversion: getnameinfo
	Slide 57: Conversion Example
	Slide 58: Conversion Example (cont)
	Slide 59: Running hostinfo
	Slide 60: Next time

