Carnegie Mellon

Synchronization: Advanced

15-213/15-513: Introduction to Computer Systems
25t Lecture, July 27, 2023

Instructors:
Brian Railing

Carnegie Mellon

Announcements

m Proxy lab checkpoint released tomorrow (7/28)

m Final exam Aug 10 / 26

Carnegie Mellon

Today

Review: Races, Mutual Exclusion

Races

Carnegie Mellon

m A race occurs when correctness of the program depends on one
thread reaching point x before another thread reaches pointy

}

}

int cnt;

int main(int argc, cha

/* thread routine */
void *thread(void *var

pthread t tl1, t2;

Pthread create(&tl,
Pthread create(&t2,
Pthread join(tl, NUL
Pthread join(t2, NUL
return (counter !'= 2

for (int i = 0; 1 <
cnt++;
return NULL;

Thread 2

safe

— o o o N
U, Unsafe region
x o o — —
L, unsafe
x o [[o
H,
e -~ -~ *— Thread 1
H, L, U, S T,

Carnegie Mellon

Races

m Some races can be fixed with mutual exclusion

int cnt;
pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
int main(int argc, char** argv) ({
pthread t tl1, t2;
Pthread create(&tl, NULL, thread, NULL);
Pthread create(&t2, NULL, thread, NULL);
Pthread join(tl, NULL);
Pthread join(t2, NULL);
return (counter !'= 20000) ;

}

void *thread (void *vargp) {
for (int i = 0; i < 10000; i++) {
pthread mutex lock (&lock) ;
cnt++;
pthread mutex unlock (&lock) ;

}
return NULL;

Carnegie Mellon

Races

m Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) ({
pthread t tid[N];
int i;
for (i = 0; 1 < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; 1 < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread(void *vargp) {
int myid = *(int *)vargp;
printf ("Hello from thread %d\n", myid);
return NULL;

Carnegie Mellon

Races

m Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) ({
pthread t tid[N];
int i;
for (i = 0; 1 < N; i++)
Pthread create(&tid[i], NULL, thread, &i);
for (i = 0; 1 < N; i++)
Pthread join(tid[i], N Thread
return O;

} O o

printf

/* thread routine */
void *thread(void *vargp) y
i id = * (i * .
:|.n1_: myid (int *)vargr myld —

printf ("Hello from thresc
return NULL; 2 P

} start

P = = > > — Pa rent

i=0 &i PC i++

Carnegie Mellon

Races

m This race can be fixed by copying data

int main(int argc, char** argv) ({
pthread t tid[N];
int i;
for (i = 0; i < N; i++)
Pthread create(&tid[i], NULL, thread, [(void *)1i);
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread(void *vargp) {
int myid = [(int)wvargp;
printf ("Hello from thread %d\n", myid);
return NULL;

Carnegie Mellon

Races

m This race can also be fixed with a semaphore

sem t sem;
int main(int argc, char** argv) ({
pthread t tid[N];
int i;
Sem init(&sem, 0, 0); // initially closed
for (1 = 0; i < N; i++) {
Pthread create(&tid[i], NULL, thread, &i);
sem wait (&sem);
}
for (i = 0; i < N; i++)
Pthread join(tid[i], NULL);
return O;

}

void *thread(void *vargp) {
int myid = *(int *)vargp;
sem post (&sem) ;
printf ("Hello from thread %d\n", myid);
return NULL;

Carnegie Mellon

Not all races involve threads $ rm myfile.txt

m Time of check to time of use (TOCTOU)

if (access("myfile.txt", R OK) == 0) { <« Check
FILE *fp = fopen('myfile.txt", "r"); < Use
while (fgets(fp, buf, sizeof buf) !'= NULL)

process line (buf) ;
fclose (£fp) ;
} else {
fprintf (stderr, "myfile.txt not found\n");
}

m Fix: Don’t check, just use (but be ready for failure)

FILE *fp = fopen('myfile.txt", "xr");
if (£p) {
while (fgets(fp, buf, sizeof buf) != NULL)
process line (buf) ;
fclose (fp) ;
} else {
fprintf (stderr, "myfile.txt: %s\n", strerror(errno)):;
}

10

Carnegie Mellon

Races involving signal handlers

m Event happens earlier than anticipated

void sigchld handler (int unused) ({
int status;
pid t pid;
while ((pid = waitpid (-1, &status, WNOHANG|WUNTRACED)) > 0)
job status change(pid, status);

}

void start fg job(char **argv) ({
pid t pid = fork();

if (pid == -1) {
perror ("fork") ;
return;

} else if (pid == 0) {
execve (argv[0] , argv, environ);
perror ("execve'") ;
exit(127) ;
} else {
add job(pid, argv);

SIGCHLD delivered

1

Carnegie Mellon

Race Elimination

m Don’t share state

= e.g. use malloc to generate separate copy of argument for each
thread

m Don’t check before using
= Attempt to use, see if it failed

m Use synchronization primitives

= Which synchronization primitive? Depends on the situation

12

Carnegie Mellon

Today

Deadlock

13

Carnegie Mellon

Deadlock

m A program is deadlocked when
it is waiting for an event which
cannot ever happen

= Mathematical impossibility, not . ! -
just practical
) |SE
m Most common form: Bl =] =
" Thread A is waiting for thread B to
do something . i .
" Thread B is waiting for thread A to

do something

= Neither can make forward progress

14

Carnegie Mellon

Deadlock caused by wrong locking order

void *thread 1 (void *arg) ({ void *thread 2 (void *arg) ({
pthread mutex lock (&ma) ; pthread mutex lock (&mB) ;
pthread mutex lock (&mB) ; pthread mutex lock (&ma) ;
// do stuff ... // do stuff ...
pthread mutex unlock (&ma) ; pthread mutex unlock (&mB) ;
pthread mutex unlock (&mB) ; pthread mutex unlock (&ma) ;
} }

Live coding demo: deadlocks

15

Carnegie Mellon

Deadlock Visualized in Progress Graph

Thread 1
U(b) —
Forbidden region
for b
U(a) -
L(b) - °
Deadlock Forbidden region
L(a) _ region

Deadlock state:
cannot move
up or right -
both threads
are stuck

| | |
L(b) L(a) U(b)

Thread 0

Any trajectory that enters

the deadlock region will
eventually reach the

deadlock state where each
thread is waiting for the other
to release a lock

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: trajectory
variations may mean deadlock
bugs are nondeterministic
(don’t always manifest,
making them hard to debug)

16

Carnegie Mellon

Fix this deadlock with consistent ordering

void *thread 1(void *arg) ({ Always possible to move
pthread mutex lock (&ma) ; .
pthread mutex lock (&mB) ; up or move ”ght
// do stuff ... U(b) — Forbid
pthread mutex unlock (&mA) ; den
pthread mutex unlock (&mB) ; U(a) - region

} forb

void *thread 2(void *arg) ({ L(b) -
pthread mutex lock (&mA) ;
pthread mutex lock (&mB) ; Forbidden region

| fora

// do stuff ... L(a)
pthread mutex unlock (&mB) ; I | | |

} PSR I el) Inconsistent unlock order ~ VY(a)

does not matter

17

Carnegie Mellon

Today

Semaphores, Events, and Queues

18

Carnegie Mellon

Recall: Semaphores

m Integer value, always >=0
m P(s) operation (aka sem wait)

= |fsis zero, wait for a V operation to happen.
" Then subtract 1 from s and return.

m V(s) operation (aka sem post)
= Add1tos.

= |f there are any threads waiting inside a P operation,
resume one of them

m Any thread may call P; any thread may call V; no ordering
requirements

= Key difference from mutexes

19

Carnegie Mellon

Semaphores for Events

m Remember this program from Tuesday’s quiz?

#define N 4 int main(void) {
long *pointers[N]; long 1i;

pthread t tids[N];
void *thread(void *vargp) {

long myid = (long) vargp; for (i = 0; 1 < N; i++)
pointers[myid] = &myid; Pthread create(&tids[i], NULL,
sleep(2) ; thread, (void *) 1i);
return NULL; sleep (1) ;

} for (i = 0; i < N; i++)

printf ("Thread #%1d has "
"local value %1ld\n",
i, *pointers[i]);
for (i = 0; i < N; i++)
Pthread join(tids[i], NULL);
return O;

m Let’s fixit.

m With semaphores.

Live coding demo: event semaphores
20

Carnegie Mellon

Semaphores for Events

#define N 4

long *pointers|[N];
sem_ t ready[N];
sem t finish;

void *thread(void *vargp) {
long myid = (long) vargp;
pointers[myid] = &myid;
sem post (&ready[myid]) ;
sem wait (&finish);
return NULL;

int main(void) {
long 1i;
pthread t tids([N];

Sem init(&finish, 0, 0);
for (i = 0; i < N; i++) {
Sem init (&ready[i], 0, 0);
Pthread create(&tids[i], NULL,
thread, (void *) i) ;
}
for (i = 0; i < N; i++) {
sem wait (&ready[i])
printf ("Thread #%1d has "
"local value %1d\n",
i, *pointers[i]):;
}
for (i = 0; i < N; i++)
sem post (&finish);
for (i = 0; i < N; i++)
Pthread join(tids[i], NULL);
return 0O;

21

Carnegie Mellon

Queues, Producers, and Consumers

producer ,| shared o[consumer
thread queue thread

m Common synchronization pattern:
" Producer waits for empty slot, inserts item in queue, and notifies consumer
= Consumer waits for item, removes it from queue, and notifies producer
m Examples
" Multimedia processing:
= Producer creates video frames, consumer renders them
= Event-driven graphical user interfaces

= Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in queue

= Consumer retrieves events from queue and paints the display

22

Carnegie Mellon

Producer-Consumer on 1-entry Queue

m Maintain two semaphores: full + empty

full
0
| empty R
empty buffer
1
full
1
J full R
empty buffer
0

23

Carnegie Mellon

Why 2 Semaphores for 1-entry Queue?
m Consider multiple producers & multiple consumers

e ———,| shared -~

m Producers will contend with each to get empty
m Consumers will contend with each other to get full

Producers Consumers

P (&shared.empty) ; empty full P (&shared. full) ;
shared.buf = item; item = shared.buf;

V(&shared. full) ; V (&shared.empty) ;

24

Carnegie Mellon

Producer-Consumer on n-element Queue

en 0 and n elements @
° / °
[]
[)

e YY)

m Requires a mutex and two counting semaphores:
" mutex: enforces mutually exclusive access to the queue’s innards

" slots:countsthe available slots in the queue

" jtems:countsthe available items in the queue

m Makes use of semaphore values > 1 (up to n)

25

Carnegie Mellon

Today

Reader-Writer Locks and Starvation

26

Carnegie Mellon

Readers-Writers Problem

Read/ /

Write < @(> ‘ 2ead-only
Access @/ \ ccess

. &) _

m Problem statement:
" Reader threads only read the object

= Writer threads modify the object (read/write access)
= Writers must have exclusive access to the object

= Unlimited number of readers can access the object

m Occurs frequently in real systems, e.g.,
® Online airline reservation system
= Multithreaded caching Web proxy

27

Carnegie Mellon

Pthreads Reader/Writer Lock

m Datatypepthread rwlock t
m Operations

= Acquire read lock

pthread rwlock rdlock (pthread rwlock t *rwlock)
= Acquire write lock

pthread rwlock wrlock (pthread rwlock t *rwlock)
= Release (either) lock

pthread rwlock unlock (pthread rwlock t *rwlock)

m Must be used correctly!

= Up to programmer to decide what requires read access and what
requires write access

28

Carnegie Mellon

Reader/Writer Starvation

m Thread 1 has a read lock. Thread 2 is waiting for a write
lock. Thread 3 tries to take a read lock. What happens?

R1
]

R2

m Option 1: R2 gets read lock immediately
" Endless stream of overlapping readers - W waits forever

R1

?

m Option 2: Writer always gets lock as soon as possible
" Endless stream of overlapping writers - readers wait forever

R1 (not shown)

W === o
R2 =======-

29

Carnegie Mellon

Starvation

m A thread is starved when it makes no forward progress for
an unacceptably long time
= Unlike deadlock, it’s possible for it to get unstuck eventually
= “Unacceptably long” depends on the application

m Algorithms that guarantee no starvation are called fair

" Fair R/W locks: every waiter receives the lock in first-come first-
served order (several readers can receive the lock at the same time)

R1 --
Y,V —

R2 ===m=mm-

® Fairness is more complicated to implement

® Fairness can mean all threads are slower than they would be in an
unfair system (e.g. “lock convoy problem”)

30

Carnegie Mellon

Quiz

https://canvas.cmu.edu/courses/34989/quizzes/103049

31

https://canvas.cmu.edu/courses/34989/quizzes/103049

Carnegie Mellon

Today

Thread-Safe API Design

32

Carnegie Mellon

Thread-Safe APIs

m A function is thread-safe if it always produces correct
results when called repeatedly from multiple concurrent
threads.

m Reasons for a function not to be thread-safe:

1.

2.
3.
4

Internal shared state, no locking (e.g. yourmalloc)
Internal state modified across multiple uses (e.g. rand)
Returns a pointer to a static variable (e.g. strtok)

Calls a function that does any of the above

33

Carnegie Mellon

Thread-Unsafe Functions (Class 1)

m These functions would be thread-safe if they began with
pthread mutex lock (&l) and ended with
pthread mutex unlock (&l) forsomelockl

m Good example:malloc, realloc, free

= Your implementation will crash if called from multiple concurrent
threads

= The Clibrary’s implementation won’t; it has internal locks

m Locking slows things down, of course

34

Carnegie Mellon

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations

= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */
void srand(unsigned int seed) ({
next = seed;

}

m Difference from class 1: locking would not fix the problem

= 2 threads call rand() simultaneously, both get different results than if

only one made a sequence of calls to rand()
35

Carnegie Mellon

Fixing Class 2 Thread-Unsafe Functions

m Pass state as part of argument
= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)
{
*nextp = *nextp*1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

X

m Requires APl change
m Callers responsible for allocating space for state

36

Carnegie Mellon

Thread-Unsafe Functions (Class 3)

m Returning a pointer to a
static variable

m Like class 2, locking inside
function would not help
= Race between use of result
and calls from another thread
m Fix: make caller supply
space for result

= Requires APl change
(also like class 2)

= Can be awkward for caller:
how much space is required?

/* Convert integer to string */

char *itoa(int x)

{
static char buf[1l1l];
snprintf (buf, 11, "%d", x);
return buf;

/* Convert integer to string
(thread-safe) */
void itoa r(int x, char *buf,
size t bufsz)

{

snprintf (buf, bufsz, "%d", x);

}

37

Carnegie Mellon

Thread-Unsafe Functions (Class 4)

m Calling thread-unsafe functions

= Any function that uses a class 1, 2, or 3 function internally is just as
thread-unsafe as that function itself

= This applies transitively

m Only fix is to modify the function to use only thread-safe
functions

®= This may or may not involve APl changes

38

Carnegie Mellon

Thread-Safe Library Functions

m Most ISO C library functions are thread-safe
= Examples:malloc, free, printf, scanf
= Exceptions: strtok, rand, asctime, ...

m Many older Unix C library functions are unsafe

® There is usually a safe replacement

Thread-unsafe function Class Reentrant version
asctime 3 strftime
ctime 3 strftime
localtime 3 strftime
gethostbyname 3 getaddrinfo
gethostbyaddr 3 getnameinfo
inet ntoa 3 getnameinfo
rand 2 rand r¥*

* The C library’s random number generators are all old

and not very “strong”. Use a modern CSPRNG instead. "

Carnegie Mellon

Reentrant Functions

m Def: A function is reentrant if it accesses no shared
variables when called by multiple threads.
" |Important subset of thread-safe functions
= Require no synchronization operations

= Only way to make a Class 2 function thread-safe is to make it
reentrant (e.g., rand r)

All functions

Thread-safe
functions

Thread-unsafe
functions

Reentrant
functions

40

Carnegie Mellon

Threads / Signals Interactions

fprintf.lock() l Re'ceive
|eurr signal

» Handler

i

m Many library functions use lock-and-copy for thread safety
= malloc
= Free lists
= fprintf, printf, puts
= So that outputs from multiple threads don’t interleave
= snprintf
= Calls malloc internally for scratch space
m OKto interrupt them with locks held

= .aslong as the handler doesn’t use them itself!

4

Carnegie Mellon

Bad Thread / Signal Interactions

fprintf.lock() Receive
curr signal

» Handler
+ fprintf.lock()

-
~—-a
-
~—~a
~—a
-
-
-

m What if:

= Signal received while library function holds lock
= Handler calls same (or related) library function

m Deadlock!

= Signal handler cannot proceed until it gets lock
" Main program cannot proceed until handler completes

m Key Point

" Threads employ symmetric concurrency

= Signal handling is asymmetric
42

	Slide 1: Synchronization: Advanced 15-213/15-513: Introduction to Computer Systems 25th Lecture, July 27, 2023
	Slide 2: Announcements
	Slide 3: Today
	Slide 4: Races
	Slide 5: Races
	Slide 6: Races
	Slide 7: Races
	Slide 8: Races
	Slide 9: Races
	Slide 10: Not all races involve threads
	Slide 11: Races involving signal handlers
	Slide 12: Race Elimination
	Slide 13: Today
	Slide 14: Deadlock
	Slide 15: Deadlock caused by wrong locking order
	Slide 16: Deadlock Visualized in Progress Graph
	Slide 17: Fix this deadlock with consistent ordering
	Slide 18: Today
	Slide 19: Recall: Semaphores
	Slide 20: Semaphores for Events
	Slide 21: Semaphores for Events
	Slide 22: Queues, Producers, and Consumers
	Slide 23: Producer-Consumer on 1-entry Queue
	Slide 24: Why 2 Semaphores for 1-entry Queue?
	Slide 25: Producer-Consumer on n-element Queue
	Slide 26: Today
	Slide 27: Readers-Writers Problem
	Slide 28: Pthreads Reader/Writer Lock
	Slide 29: Reader/Writer Starvation
	Slide 30: Starvation
	Slide 31: Quiz
	Slide 32: Today
	Slide 33: Thread-Safe APIs
	Slide 34: Thread-Unsafe Functions (Class 1)
	Slide 35: Thread-Unsafe Functions (Class 2)
	Slide 36: Fixing Class 2 Thread-Unsafe Functions
	Slide 37: Thread-Unsafe Functions (Class 3)
	Slide 38: Thread-Unsafe Functions (Class 4)
	Slide 39: Thread-Safe Library Functions
	Slide 40: Reentrant Functions
	Slide 41: Threads / Signals Interactions
	Slide 42: Bad Thread / Signal Interactions

