
Carnegie Mellon

1

The Future of Computing
and the Future of 15-213
15-213: Introduction to Computer Systems
Last Lecture, Aug. 1, 2022



Carnegie Mellon

2

Logistics – Last Two Weeks of Class

 This is the last official lecture
▪ Remaining class sessions are open TA+faculty office hours

 Proxy lab checkpoint is due August 4

 Proxy lab final is due August 11
▪ NO GRACE DAYS

▪ Any extension is technically an incomplete

 Exam is August 10, here, 12:30-3:30pm
▪ Disability accommodations? Go to ODR Testing Center instead

 Prof. Railing is on vacation
▪ Prof. Weinberg’s email is zackw@cmu.edu

▪ Prof. Weinberg’s office is GHC 4124

▪ I’ll be there after class till 4pm, every day this week and next, except:

▪ Thursday Aug. 3

▪ Thursday Aug. 10

▪ Friday Aug. 11



Carnegie Mellon

3

50 Years of “Moore’s Law” 

Source: Our World in Data https://ourworldindata.org/technological-change

https://ourworldindata.org/technological-change


Carnegie Mellon

4

What Moore’s Law Has Meant

 1976 Cray 1
▪ 250 M Ops/second

▪ ~170,000 chips

▪ 0.5B transistors

▪ 5,000 kg, 115 KW

▪ $9M

▪ 80 manufactured

 2014 iPhone 6
▪ > 4 B Ops/second

▪ ~10 chips

▪ > 3B transistors

▪ 120 g, < 5 W

▪ $649

▪ 10 million sold in first 3 days



Carnegie Mellon

5

Exponential trends can’t continue forever

Source: Wikipedia https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second

https://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second


Carnegie Mellon

6

Exponential trends can’t continue forever



Carnegie Mellon

7

Clock rate → single thread performance



Carnegie Mellon

8

If all else fails, add parallelism…



Carnegie Mellon

9

Parallel Computation and 213

 Last week we had classes on parallel programming

 In shell lab you have to think about concurrent processes

 In proxy lab you will use threads to serve many 
simultaneous clients
▪ But the concurrency isn’t really the point of either lab

 We’re working on a new lab where concurrency is the 
most important thing
▪ Also covers file system semantics and the craft of modifying 

existing code

▪ Not done, but we’d like to show it to you anyway…



Carnegie Mellon

10

The Shark File System Lab

 Requin wrote a file system to store his files

 He needs your help to finish it
▪ Several important functions are not implemented

▪ Only one program can access the file system at a time

▪ There’s some other problems (we’ll let you discover them ;-)

 Handed out on Autolab / Github Classroom as usual
▪ https://autolab.andrew.cmu.edu/courses/15213-

m23/assessments/sfslab

▪ 213 students only

▪ Released Wednesday evening

 NOT FOR CREDIT, just for fun
▪ But it may help with the final

▪ You might want to finish proxy lab first

Requin hard at work

https://autolab.andrew.cmu.edu/courses/15213-m23/assessments/sfslab
https://autolab.andrew.cmu.edu/courses/15213-m23/assessments/sfslab


Carnegie Mellon

11

SFS Lab Overview

sfslab-handout $ ls
Makefile The usual helper files…

README

check-format

helper.mk

lua/ Interpreter for the Lua scripting language (used in traces)

sfs-disk.c This is the file you’ll need to modify

sfs-disk.h Interface between sfs-disk.c and sfs-tester.c

sfs-driver.py Runs sets of traces

sfs-tester.c Runs one trace; can also be used interactively

traces/ Our tests for your code (more to come…)

YOUR-FEEDBACK.md Write your thoughts on this lab here and ‘make submit’ it



Carnegie Mellon

12

SFS Lab Traces

 Like proxy lab, traces are in four categories

 S traces test single-threaded correctness
▪ You can pass these traces by implementing the functions 

sfs_getpos, sfs_seek, and sfs_rename

 C traces test concurrent correctness
▪ To pass these traces you will need to revise sfs-disk.c and make it 

thread-safe

 P traces test concurrent performance
▪ There aren’t any P traces yet

 X traces test optional additional features
▪ For people who want to go beyond our basic expectations

▪ More to do with filesystem capabilities than with concurrency



Carnegie Mellon

13

SFS Lab Logistics

 We’re still actively designing this lab

 We will be updating the handout over the next two weeks
▪ Use “make update-handout” to pull updates

 We want your suggestions and commentary
▪ Write whatever you want us to see in the “YOUR-FEEDBACK.md”

file, “make submit” will send it to us

▪ Write your own trace files! “make submit” will also send those in

 Feel free to change ANYTHING
▪ Except for the “lua” subdirectory, which we didn’t write

▪ (You’re encouraged to read the code in the “lua” subdirectory, 
especially if you are curious about how interpreters work)



Carnegie Mellon

14

SFS Lab Resources

 Guides for concurrent programming with C and pthreads:
▪ https://randu.org/tutorials/threads/

▪ https://web.archive.org/web/20180512055837/https://www.cs.nmsu.
edu/~jcook/Tools/pthreads/pthreads.html

▪ https://www.mit.edu/people/proven/IAP_2000/index.html

▪ I don’t love any of these. If you find a better one please tell us about it.

 Documentation for the Lua scripting language:
▪ https://www.lua.org/docs.html

▪ https://lualanes.github.io/lanes/

 The only documentation for SFS itself is the writeup and 
comments in sfs-disk.c, sfs-disk.h, and sfs-tester.c.
▪ We regret the inconvenience.

▪ Do not hesitate to ask questions (on Piazza, in class, in TA office hours, 
show up to Prof. Weinberg’s office any time the door is open)

https://randu.org/tutorials/threads/
https://web.archive.org/web/20180512055837/https://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
https://web.archive.org/web/20180512055837/https://www.cs.nmsu.edu/~jcook/Tools/pthreads/pthreads.html
https://www.mit.edu/people/proven/IAP_2000/index.html
https://www.lua.org/docs.html
https://lualanes.github.io/lanes/


Carnegie Mellon

15

Can’t outrun Amdahl

 Moore:
▪ Most CPU functions got faster

simultaneously

▪ Memory density scaled too!

▪ I/O (& mem latency) was the
primary bottleneck to work around

 Multicore:
▪ Only some algorithms can be parallelized

 GPUs / SIMD
▪ Only some algorithms can be vectorized

 Special purpose instructions, custom ASICs
▪ Only good for that one thing

𝑆 =
1

1 − 𝑝 +
𝑝
𝑠

lim
𝑏→0

𝑎 + 𝑏 = 𝑎



Carnegie Mellon

16

This machine costs 150 million dollars



Carnegie Mellon

17

Exponential capital cost → 
exponentially fewer manufacturers



Carnegie Mellon

18

The future of computing isn’t (only) 
about speed anymore.



Carnegie Mellon

19





Carnegie Mellon

21

Bugs reported to the National Vulnerability Database (USA), 2001–present
(only security-critical bugs are counted) 



Carnegie Mellon

22

Actual bug in attack lab phase 3

Buggy
void touch3(char *sval)

{

if (hexmatch(cookie, sval)) {

printf(

"Touch3!: You called touch3(\"%s\")\n",
sval);

validate(3);

} else {

printf(
"Misfire: You called touch3(\"%s\")\n",
sval);

fail(3);

}

exit(0);

}

Fixed
void touch3(char *sval)

{

if (hexmatch(cookie, sval)) {

report_touch3("Touch3!", sval);

validate(3);

} else {

report_touch3("Misfire", sval);

fail(3);

}

exit(0);

}

void report_touch3(const char *tag, const char *sval) {

const char *p;

printf("%s: You called touch3(\"", tag);

for (p = sval; *p; p++) {

unsigned char c = (unsigned char)*p;

if (c < ' ' || c > '~')

printf("\\x%02x", c);

} else if (c == '\\') {

putchar('\\');

putchar('\\');

} else if (c == '"') {

putchar('\\');



Carnegie Mellon

23

Gerald Holzmann, “Code Inflation”, IEEE Software 2015 
<https://ieeexplore.ieee.org/document/7057573>

https://ieeexplore.ieee.org/document/7057573


Carnegie Mellon

24

The local newspaper website…

1166 HTTP requests
47 MB of data transferred
Still loading stuff in the background 1 minute after this screen stabilized



Carnegie Mellon

25

… without the ads

87 HTTP requests
7.4 MB of data transferred
No network activity after 1.5 seconds



Carnegie Mellon

26

Conflicting incentives

 I want to read the news
▪ I don’t want ads distracting 

me from the news

▪ I don’t want to wait for
irrelevant pictures to load

 I want to discuss the news
with my friends
▪ I want to be able to share 

individual articles with them

▪ They should be able to read
the whole thing without
subscribing

 I want the subscription
fee to be small

 The newspaper needs 
money to operate
▪ Salaries for reporters, editors, 

photographers

▪ Website hosting fees

▪ Print and distribute paper 
edition

 Subscription fees have 
never been sufficient
▪ Advertising makes up the

difference

▪ Advertising means newspaper 
answers to advertisers



Carnegie Mellon

27

“algorithm???
that thing where

social media sites get money from advertisers
the more shit you click on

so they shove content at you
that is theoretically to your interest

but actually is content that will keep you clicking,
including content that enrages you,

because they don't care about giving you shit you like
just about keeping you engaged as long as possible,

and oh also did we mention
this ties into the modern lack of data privacy,

the algorithm is watching everything you interact with
to profile you better for advertising to you,

it's spying on you across platforms whenever possible,”

— @jmtorres on Tumblr



Carnegie Mellon

28

Not all problems have 
technical solutions

Evi Nemeth’s extended OSI protocol stack, quoted
in https://www.linuxjournal.com/article/10726

https://www.linuxjournal.com/article/10726


Carnegie Mellon

29
Image from ch. 11 of https://www.forth.com/starting-forth/

https://www.forth.com/starting-forth/


Carnegie Mellon

30

Customizability
This is what my text editor looks like.
I write everything (except PowerPoint decks ;-) in this interface.



Carnegie Mellon

31

Customizability

 This is what the same 
editor looks like if I 
start it up without any 
customization.

 I’ve written hundreds 
of lines of Lisp to get  
this thing exactly the 
way I want it.

 Most of that is about 
behavior, not 
appearance.



Carnegie Mellon

32

Raise your hand if you know someone who is afraid to 
experiment with their computer.



Carnegie Mellon

33



Carnegie Mellon

34

Industry prioritizes “out of box experience”

 Sleek, user friendly, …
▪ No customization

▪ No replaceable parts

▪ Surveillance for 
marketing

 Store everything in
the cloud
▪ Can offload expensive

computation to cloud

▪ Expensive paperweight 
if the net is down

 Not programmable by 
end user



Carnegie Mellon

35



Carnegie Mellon

36

Ads are the #1 vector for malware

https://www.crowdstrike.com/cybersecurity-101/malware/malvertising/
https://www.malwarebytes.com/malvertising

https://www.crowdstrike.com/cybersecurity-101/malware/malvertising/
https://www.malwarebytes.com/malvertising


Carnegie Mellon

37

App stores are the #2 vector for malware



Carnegie Mellon

38

Evi Nemeth’s extended OSI protocol stack, quoted
in https://www.linuxjournal.com/article/10726

Not all problems have 
technical solutions

(Firefox + uBlock Origin kills 
malvertising dead)

(but then the newspaper 
goes out of business…)

https://www.linuxjournal.com/article/10726


Carnegie Mellon

39

Another vision of the future

 Modular

▪ Long design life

▪ Repairable and upgradable

 Cloud not required

▪ Works if network is down

▪ You control your data

▪ Lose device? Lose data

 End user programmable

▪ Sacrifice polish and
out-of-box experience



Carnegie Mellon

40

“If you depend on proprietary 
mainstream mobile messenger 

applications, banking applications, 
use loyalty or travel apps, consume 
DRM media, or play mobile video 

games on your fruit or Android 
smartphone, then the PinePhone

Pro is likely not for you.”



Carnegie Mellon

41

Why can’t we have it both ways?

 Seamless cloud backups AND offline operation?

 Easy to use out of box AND fully customizable and 
programmable?

 Arbitrary software installation AND malware-free app 
store?

 “Free software” operating system AND ability to run 
proprietary applications when necessary?

 Long service life, end user repairable?



Carnegie Mellon

42

Customizability for Non-Programmers

https://sugarforbrains.neocities.org/

https://sugarforbrains.neocities.org/


Carnegie Mellon

43

Customizability for Non-Programmers

https://www.youtube.com/watch?v=ccMwukZcv3k

https://www.youtube.com/watch?v=ccMwukZcv3k


Carnegie Mellon

44

Customizability for Non-Programmers

https://docs.blender.org/manual/

https://docs.blender.org/manual/


Carnegie Mellon

45

Customizability for Non-Programmers

https://noiseengineering.us/blogs/loquelic-literitas-the-blog/have-no-fear-modular-is-here-modular-synths-for-musicians

https://noiseengineering.us/blogs/loquelic-literitas-the-blog/have-no-fear-modular-is-here-modular-synths-for-musicians


Carnegie Mellon

46

Customizability for Non-Programmers

https://hackpgh.org/

https://hackpgh.org/


Carnegie Mellon

47

The Last Quiz

https://canvas.cmu.edu/courses/34989/quizzes/105559

https://canvas.cmu.edu/courses/34989/quizzes/105559

	Slide 1: The Future of Computing and the Future of 15-213 15-213: Introduction to Computer Systems Last Lecture, Aug. 1, 2022
	Slide 2: Logistics – Last Two Weeks of Class
	Slide 3: 50 Years of “Moore’s Law” 
	Slide 4: What Moore’s Law Has Meant
	Slide 5: Exponential trends can’t continue forever
	Slide 6: Exponential trends can’t continue forever
	Slide 7: Clock rate → single thread performance
	Slide 8: If all else fails, add parallelism…
	Slide 9: Parallel Computation and 213
	Slide 10: The Shark File System Lab
	Slide 11: SFS Lab Overview
	Slide 12: SFS Lab Traces
	Slide 13: SFS Lab Logistics
	Slide 14: SFS Lab Resources
	Slide 15: Can’t outrun Amdahl
	Slide 16: This machine costs 150 million dollars
	Slide 17: Exponential capital cost → exponentially fewer manufacturers
	Slide 18: The future of computing isn’t (only) about speed anymore.
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Actual bug in attack lab phase 3
	Slide 23
	Slide 24: The local newspaper website…
	Slide 25: … without the ads
	Slide 26: Conflicting incentives
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Customizability
	Slide 31: Customizability
	Slide 32
	Slide 33
	Slide 34: Industry prioritizes “out of box experience”
	Slide 35
	Slide 36: Ads are the #1 vector for malware
	Slide 37: App stores are the #2 vector for malware
	Slide 38
	Slide 39: Another vision of the future
	Slide 40
	Slide 41: Why can’t we have it both ways?
	Slide 42: Customizability for Non-Programmers
	Slide 43: Customizability for Non-Programmers
	Slide 44: Customizability for Non-Programmers
	Slide 45: Customizability for Non-Programmers
	Slide 46: Customizability for Non-Programmers
	Slide 47: The Last Quiz

