
Lecture 15: Linking 15-213/15-513/14-513 Summer 2024

Learning Objectives

• Be able to name the four principal steps of the C build process.

• Be able to identify which C language elements will produce labels and symbols.

• Recognize the difference between an object file’s symbol table and its relocation
table.

• Understand that types are a feature of the C language that disappear upon
compilation.

• Be able to recognize when globals clash, even if the compiler and/or linker cannot
tell.

Getting Started

To get set up for today’s activity, run these commands on a shark machine:

$ mkdir linking
$ cd linking
$ wget http://www.cs.cmu.edu/~213/activities/linking
$ chmod +x linking
$ ./linking

Then follow the instructions on your screen, filling in the discussion questions below
when you are prompted to do so. As you complete each part of the exercise, you’ll
reinvoke the linking executable repeatedly in the same manner.1

3 Phases of Compilation

Problem 1. In the first step, where did all the extra code coming from? What do you
think the lines beginning with ‘#’ and a number mean?

1In case you get lost or want to see a past set of instructions again, you can seek directly to any part
of the activity. Each invocation of linking outputs a “page number” in the upper-right corner; if
passed to linking as a command-line argument, this replays that part. You can also provide the
section numbers from this sheet.

1/5



Linking

Problem 2. The gcc -S main.c step produces a file called main.s. What type of file
is this? Examining its contents, you should notice labels corresponding to the global
variable and both functions. Given only a label’s name, can you tell what its C type is?

4 The Symbol Table

Problem 3. Looking at the addresses in the leftmost column, do you notice anything
suspicious about the locations of global and set_global?

5 Object File Sections

Problem 4. Which section contains set_global? How about global?

Problem 5. The output also contains flags describing the properties of each section.
Thinking back to attack lab, describe one limitation that these flags (or the lack thereof)
impose on each of the sections from your previous answer.

Problem 6. The sections’ offsets within the object file differ, but what do you notice
about their memory addresses (VMA and LMA)?

2/5



Linking

6 Relocations

Problem 7. Try disassembling the object file using objdump -d. At what address(es)
does the code seem to expect to find global? How about the printf() function?

Problem 8. The object file also includes what’s known as a “relocation table.” Examine
this with objdump -r. What locations does it record (the leftmost column), and do
you have a guess as to why this will be useful?

7 The BSS

Problem 9. global has moved to a different section: which one? Can you guess why
the compiler treats zero-initialized variables specially?

Problem 10. Look at the Size column. How large will the .bss section be in the
loaded process memory image? Now look at the entries in the File off column. How
large is the .bss section is the executable file? Can you infer how the .bss section is
treated differently from the other sections in an ELF executable?

10 Clashing Symbols

Problem 11. Take a quick look at both main_zero.c and helper.c. What do you think
will happen when we try to link these modules together?

3/5



Linking

13 Missing Declarations

Problem 12. Will building this program (linking against helper.o) work? If so, why?
If not, at what step of the build (preprocessing, compilation, assembly, or linking) will
it fail?

15 Mismatched Types

Problem 13. What’s wrong with the program now?

Problem 14. Will building this program work? If so, why? If not, at what step will it
fail?

16 (Advanced) Silent Failure

Problem 15. Did the build fail as early as you expected?

4/5



Linking

18 (Advanced) Mutability

Problem 16. What is inconsistent now? How do you expect the program to behave?

5/5


	Phases of Compilation
	The Symbol Table
	Object File Sections
	Relocations
	The BSS
	Clashing Symbols
	Missing Declarations
	Mismatched Types
	(Advanced) Silent Failure
	(Advanced) Mutability

