
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Basic Concepts

15-213/15-513: Introduction to Computer Systems
13th Lecture, June 18, 2024

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime
▪ For data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

“The break”

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
▪ Explicit allocator: application allocates and frees space

▪ e.g., malloc and free in C

▪ Implicit allocator: application allocates, but does not free space

▪ e.g., new and garbage collection in Java

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

▪ If size == 0, returns NULL

▪ Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

▪ Returns the block pointed at by p to pool of available memory

▪ p must come from a previous call to malloc, calloc, or realloc

Other functions

▪ calloc: Version of malloc that initializes allocated block to zero

▪ realloc: Changes the size of a previously allocated block

▪ sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

malloc Example
#include <stdio.h>

#include <stdlib.h>

void foo(long n) {

long i, *p;

/* Allocate a block of n longs */

 p = (long *) malloc(n * sizeof(long));

 if (p == NULL) {

perror("malloc");

exit(0);

}

/* Initialize allocated block */

for (i=0; i<n; i++)

p[i] = i;

/* Do something with p */

. . .

/* Return allocated block to the heap */

 free(p);

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Visualization Convention

 1 square = 1 “word” = 8 bytes

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Lowest address
within heap

Highest address
within heap

(“the break”, adjustable
by sbrk system call)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation Example
(Conceptual)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

Gap for alignment

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constraints

 Applications
▪ Can issue arbitrary sequence of malloc and free requests

▪ free request must be to a malloc’d block

 Explicit Allocators
▪ Can’t control number or size of allocated blocks

▪ Must respond immediately to malloc requests

▪ i.e., can’t reorder or buffer requests

▪ Must allocate blocks from free memory

▪ i.e., can only place allocated blocks in free memory

▪ Must align blocks so they satisfy all alignment requirements

▪ 16-byte (x86-64) alignment on 64-bit systems

▪ Can manipulate and modify only free memory

▪ Can’t move the allocated blocks once they are malloc’d

▪ i.e., compaction is not allowed. Why not?

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Throughput

 Given some sequence of malloc and free requests:

▪ 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1

 Goals: maximize throughput and peak memory utilization
▪ These goals are often conflicting

 Throughput:
▪ Number of completed requests per unit time

▪ Example:

▪ 5,000 malloc calls and 5,000 free calls in 10 seconds

▪ Throughput is 1,000 operations/second

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Performance Goal: Minimize Overhead

 Given some sequence of malloc and free requests:
▪ 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1

 After 𝒌 requests we have:

 Def: Aggregate payload 𝑷𝒌
▪ malloc(p) results in a block with a payload of p bytes

▪ The aggregate payload 𝑃𝑘 is the sum of currently allocated payloads

▪ The peak aggregate payload max
𝑖≤𝑘

𝑃𝑖 is the maximum aggregate payload

at any point in the sequence up to request

 Def: Current heap size 𝑯𝒌
▪ Assume heap only grows when allocator uses sbrk, never shrinks

 Def: Overhead, 𝑶𝒌
▪ Fraction of heap space NOT used for program data

▪ 𝑂𝑘 = (ൗ𝐻𝑘 max
𝑖≤𝑘

𝑃𝑖) − 1.0

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Example

 Benchmark

 syn-array-short
▪ Trace provided with

malloc lab

▪ Allocate & free 10 blocks

▪ a = allocate

▪ f = free

▪ Bias toward allocate at
beginning & free at end

▪ Blocks number 1–10

▪ Allocated: Sum of all
allocated amounts

▪ Peak: Max so far of
Allocated

Step Command Delta Allocated Peak
1 a 0 9904 9904 9904 9904
2 a 1 50084 50084 59988 59988
3 a 2 20 20 60008 60008
4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792
6 a 4 840 840 60848 76792
7 a 5 3244 3244 64092 76792
8 f 0 -9904 54188 76792
9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036
13 a 8 136 136 40088 90036
14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036
16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036
18 f 8 -136 3264 90036
19 f 5 -3244 20 90036
20 f 9 -20 0 90036

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Visualization

▪ Plot 𝑃𝑘 (allocated) and max
𝑖≤𝑘

 𝑃𝑘 (peak)

as a function of 𝑘 (step)

▪ Y-axis normalized — fraction of maximum

Step Command Delta Allocated Peak

1 a 0 9904 9904 9904 9904

2 a 1 50084 50084 59988 59988

3 a 2 20 20 60008 60008

4 a 3 16784 16784 76792 76792

5 f 3 -16784 60008 76792

6 a 4 840 840 60848 76792

7 a 5 3244 3244 64092 76792

8 f 0 -9904 54188 76792

9 a 6 2012 2012 56200 76792

10 f 2 -20 56180 76792

11 a 7 33856 33856 90036 90036

12 f 1 -50084 39952 90036

13 a 8 136 136 40088 90036

14 f 7 -33856 6232 90036

15 f 6 -2012 4220 90036

16 a 9 20 20 4240 90036

17 f 4 -840 3400 90036

18 f 8 -136 3264 90036

19 f 5 -3244 20 90036

20 f 9 -20 0 90036

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
or

m
al

iz
ed

 A
gg

re
ga

te
 M

em
or

y
Step

Allocated Peak

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Typical Benchmark Behavior

 Longer sequence of mallocs & frees (40,000 blocks)
▪ Starts with all mallocs, and shifts toward all frees

 Allocator must manage space efficiently the whole time

 Production allocators can shrink the heap

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Data Fit

DataAllocated

Peak

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fragmentation

 Poor memory utilization caused by fragmentation
▪ Internal fragmentation

▪ External fragmentation

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

▪ Overhead of maintaining heap data structures

▪ Padding for alignment purposes

▪ Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests

▪ Thus, easy to measure

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internal Fragmentation Effect

 Purple line: additional heap size due to
 allocator’s data + padding for alignment
▪ For this benchmark, 1.5% overhead

▪ Cannot achieve in practice

▪ Especially since cannot move allocated blocks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Perfect Fit

Data Fit

DataAllocated

Peak

Peak + Internal Frag

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no single free block is large enough

 Depends on the pattern of future requests
▪ Thus, difficult to measure

p4 = malloc(64) Yikes! (what would happen now?)

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

External Fragmentation Effect

 Green line: additional heap size due to external fragmentation

 Best Fit: One allocation strategy
▪ (To be discussed later)

▪ Total overhead = 8.3% on this benchmark

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Best Fit

Perfect Fit

Data Fit

DataAllocated

Peak

Peak + Internal Frag

Peak + All Frag (Best Fit)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reuse a block that has been freed?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Knowing How Much to Free
 Standard method

▪ Keep the length (in bytes) of a block in the word preceding the
block.

▪ Including the header

▪ This word is often called the header field or header

▪ Requires an extra word for every allocated block

p0 = malloc(32)

p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Method 1: Implicit Free List

 For each block we need both size and allocation status
▪ Could store this information in two words: wasteful!

 Standard trick
▪ When blocks are aligned, some low-order address bits are always 0

▪ Instead of storing an always-0 bit, use it as an allocated/free flag

▪ When reading the Size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”
Headers are at non-aligned positions
➔ Payloads are aligned

Unused

heap_start heap_end

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Data Structures

 Block declaration

 Getting payload from block pointer

 Getting header from payload

typedef uint64_t word_t;

typedef struct block

{

 word_t header;

 unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) bp

 - offsetof(block_t, payload));

// Zero length array

// bp points to a payload

// block_t *block

C function offsetof(struct, member) returns offset of member within struct

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Header access

 Getting allocated bit from header

 Getting size from header

 Initializing header

return header & 0x1;

Size a

return header & ~0xfL;

block->header = size | alloc;

// block_t *block

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Traversing list

 Find next block

static block_t *find_next(block_t *block)

{

 return (block_t *) ((unsigned char *) block

 + get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)

{

 block_t *block;

 for (block = heap_start; block != heap_end;

 block = find_next(block)) {

 {

 if (!(get_alloc(block))

 && (asize <= get_size(block)))

 return block;

 }

 return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Can take linear time in total number of blocks (allocated and free)

▪ In practice it can cause “splinters” at beginning of list

 Next fit:

▪ Like first fit, but search list starting where previous search finished

▪ Should often be faster than first fit: avoids re-scanning unhelpful blocks

▪ Some research suggests that fragmentation is worse

 Best fit:

▪ Search the list, choose the best free block: fits, with fewest bytes left over

▪ Keeps fragments small—usually improves memory utilization

▪ Will typically run slower than first fit

▪ Still a greedy algorithm. No guarantee of optimality

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comparing Strategies

 Total Overheads (for this benchmark)
▪ Perfect Fit: 1.6%

▪ Best Fit: 8.3%

▪ First Fit: 11.9%

▪ Next Fit: 21.6%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

m
o

ry
 U

se
d

 /
 P

e
ak

 D
at

a

Operation / Operation Count

Next Fit

First Fit

Best Fit

Perfect Fit

Data Fit

Data

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
▪ Since allocated space might be smaller than free space, we might want

to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

}

1632 3216

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Freeing a Block

 Simplest implementation:
▪ Need only clear the “allocated” flag

▪ But can lead to “false fragmentation”

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous

free space, but the allocator

won’t be able to find it

8

8

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

 32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

1

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Coalescing

 Join (coalesce) with next block, if it is free
▪ Coalescing with next block

▪ How do we coalesce with previous block?

▪ How do we know where it starts?

▪ How can we determine whether its allocated?

1632 16

free(p) p

64 16

64

48 16

logically
gone

8

8

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

▪ Replicate size/allocated word at “bottom” (end) of free blocks

▪ Allows us to traverse the “list” backwards, but requires extra space

▪ Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/40739/quizzes/123407

https://canvas.cmu.edu/courses/40739/quizzes/123407

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

 Locating footer of current block
const size_t dsize = 2*sizeof(word_t);

static word_t *header_to_footer(block_t *block)

{

 size_t asize = get_size(block);

 return (word_t *) (block->payload + asize - dsize);

}

header payload header payloadunused footer

asize

dsize

asize

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation with Footers

 Locating footer of previous block

static word_t *find_prev_footer(block_t *block)

{

 return &(block->header) - 1;

}

header payload header payloadunused footer

1 word

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Splitting Free Block: Full Version

64

p

split_block(p, 32)

static void split_block(block_t *block, size_t asize){

 size_t block_size = get_size(block);

 if ((block_size - asize) >= min_block_size) {

 write_header(block, asize, true);

 write_footer(block, asize, true);

 block_t *block_next = find_next(block);

 write_header(block_next, block_size - asize, false);

 write_footer(block_next, block_size - asize, false);

}

32 32 1632 3264 16

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 1

Constant Time Coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constant Time Coalescing (Case 2)

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 0

Constant Time Coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap Structure

 Dummy footer before first header
▪ Marked as allocated

▪ Prevents accidental coalescing when freeing first block

 Dummy header after last footer
▪ Prevents accidental coalescing when freeing final block

Start
of

heap
16/0 32/1 32/164/0

Dummy
Header

8/1

Dummy
Footer

8/1

heap_start heap_end

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Malloc Code
const size_t dsize = 2*sizeof(word_t);

void *mm_malloc(size_t size)

{

 size_t asize = round_up(size + dsize, dsize);

 block_t *block = find_fit(asize);

 if (block == NULL)

 return NULL;

 size_t block_size = get_size(block);

 write_header(block, block_size, true);

 write_footer(block, block_size, true);

 split_block(block, asize);

 return header_to_payload(block);

}

round_up(n, m)

=

m *((n+m-1)/m)

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Top-Level Free Code
void mm_free(void *bp)

{

 block_t *block = payload_to_header(bp);

 size_t size = get_size(block);

 write_header(block, size, false);

 write_footer(block, size, false);

 coalesce_block(block);

}

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disadvantages of Boundary Tags

 Internal fragmentation

 Can it be optimized?
▪ Which blocks need the footer tag?

▪ What does that mean?

Size

Payload and
padding

a

Size a

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks

 When sizes are multiples of 16, have 4 spare bits

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 ?0

m1 ?0

n 01

m2 11

n+m1 ?0

n+m1 ?0

m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
 (previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Key Allocator Policies
 Placement policy:

▪ First-fit, next-fit, best-fit, etc.

▪ Trades off lower throughput for less fragmentation

▪ Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
▪ When do we go ahead and split free blocks?

▪ How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called

▪ Deferred coalescing: try to improve performance of free by deferring
coalescing until needed.

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists: Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
▪ used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

	Slide 1: Dynamic Memory Allocation: Basic Concepts 15-213/15-513: Introduction to Computer Systems 13th Lecture, June 18, 2024
	Slide 2: Today
	Slide 3: Dynamic Memory Allocation
	Slide 4: Dynamic Memory Allocation
	Slide 5: The malloc Package
	Slide 6: malloc Example
	Slide 7: Heap Visualization Convention
	Slide 8: Allocation Example (Conceptual)
	Slide 9: Constraints
	Slide 10: Performance Goal: Throughput
	Slide 11: Performance Goal: Minimize Overhead
	Slide 12: Benchmark Example
	Slide 13: Benchmark Visualization
	Slide 14: Typical Benchmark Behavior
	Slide 15: Fragmentation
	Slide 16: Internal Fragmentation
	Slide 17: Internal Fragmentation Effect
	Slide 18: External Fragmentation
	Slide 19: External Fragmentation Effect
	Slide 20: Implementation Issues
	Slide 21: Knowing How Much to Free
	Slide 22: Keeping Track of Free Blocks
	Slide 23: Today
	Slide 24: Method 1: Implicit Free List
	Slide 25: Detailed Implicit Free List Example
	Slide 26: Implicit List: Data Structures
	Slide 27: Implicit List: Header access
	Slide 28: Implicit List: Traversing list
	Slide 29: Implicit List: Finding a Free Block
	Slide 30: Implicit List: Finding a Free Block
	Slide 31: Comparing Strategies
	Slide 32: Implicit List: Allocating in Free Block
	Slide 33: Implicit List: Splitting Free Block
	Slide 34: Implicit List: Freeing a Block
	Slide 35: Implicit List: Coalescing
	Slide 36: Implicit List: Coalescing
	Slide 37: Implicit List: Bidirectional Coalescing
	Slide 38: Quiz
	Slide 39: Implementation with Footers
	Slide 40: Implementation with Footers
	Slide 41: Splitting Free Block: Full Version
	Slide 42: Constant Time Coalescing
	Slide 43: Constant Time Coalescing (Case 1)
	Slide 44: Constant Time Coalescing (Case 2)
	Slide 45: Constant Time Coalescing (Case 3)
	Slide 46: Constant Time Coalescing (Case 4)
	Slide 47: Heap Structure
	Slide 48: Top-Level Malloc Code
	Slide 49: Top-Level Free Code
	Slide 50: Disadvantages of Boundary Tags
	Slide 51: No Boundary Tag for Allocated Blocks
	Slide 52: No Boundary Tag for Allocated Blocks (Case 1)
	Slide 53: No Boundary Tag for Allocated Blocks (Case 2)
	Slide 54: No Boundary Tag for Allocated Blocks (Case 3)
	Slide 55: No Boundary Tag for Allocated Blocks (Case 4)
	Slide 56: Summary of Key Allocator Policies
	Slide 57: Implicit Lists: Summary

