
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part II

15-213/15-513: Introduction to Computer Systems
22nd Lecture, July 19, 2024

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders

 Shell lab due on Friday, July 19 at 11:59pm EDT

 Proxy lab out tonight
▪ Final due Friday, August 2 (no extensions!)

 SFS lab out tonight (probably)
▪ Also due Friday, August 2 (no extensions!)

 Final exam: Thursday August 1 (unless google form)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Review:
Echo

Server
+ Client

Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read

socket write

Connection
request

socket read

close

close
EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Setting up connections

 Application protocol example: HTTP

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start client Start server

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Generic Socket Address

 Generic socket address:
▪ For address arguments to connect, bind, and accept

struct sockaddr {

 uint16_t sa_family; /* Protocol family */

 char sa_data[14]; /* Address data. */

};

sa_family

Family Specific

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Socket Address Structures

 Internet (IPv4) specific socket address:
▪ Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 uint16_t sin_family; /* Protocol family (always AF_INET) */

 uint16_t sin_port; /* Port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 getaddrinfo converts string representations of hostnames,
host addresses, ports, service names to socket address structures

SA list

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start client Start server

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA listSA list

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

 Example:

int socket(int domain, int type, int protocol)

int clientfd = socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a
reliable (TCP) connection

Protocol specific!

int clientfd = socket(ai->ai_family, ai->ai_socktype,

 ai->ai_protocol);

Use getaddrinfo and you don’t have
to know or care which protocol!

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listenfdclientfd

SA list SA list

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 Our convention: typedef struct sockaddr SA;

 Process can read bytes that arrive on the connection whose
endpoint is addr by reading from descriptor sockfd

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr

 Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

listenfd

listenfd <-> SA

SA list

clientfd

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen

 Kernel assumes that descriptor from socket function is an
active socket that will be on the client end

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests (128-ish by default)

int listen(int sockfd, int backlog);

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

SA list

clientfd

SA list

listenfd

listenfd <-> SA

listening listenfd

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor connfd that can be used
to communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
▪ If successful, then clientfd is now ready for reading and writing.

▪ Resulting connection is characterized by socket pair

 (x:y, addr.sin_addr:addr.sin_port)

▪ x is client address

▪ y is ephemeral port that uniquely identifies client process on
client host

 Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

connect/accept Illustrated
listenfd

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors

 Listening descriptor
▪ End point for client connection requests

▪ Created once and exists for lifetime of the server

 Connected descriptor
▪ End point of the connection between client and server

▪ A new descriptor is created each time the server accepts a
connection request from a client

▪ Exists only as long as it takes to service client

 Why the distinction?
▪ Allows for concurrent servers that can communicate over many

client connections simultaneously

▪ E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

listening listenfd

connected connfdconnected (to SA) clientfd

SA list SA list

clientfd listenfd

listenfd <-> SA

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd

int open_clientfd(char *hostname, char *port) {

 int clientfd;

 struct addrinfo hints, *listp, *p;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Open a connection */

 hints.ai_flags = AI_NUMERICSERV; /* …using numeric port arg. */

 hints.ai_flags |= AI_ADDRCONFIG; /* Recommended for connections */

 Getaddrinfo(hostname, port, &hints, &listp);

csapp.c

 Establish a connection with a server

AI_ADDRCONFIG means “use whichever of IPv4 and IPv6 works
on this computer”. Good practice for clients, not for servers.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

getaddrinfo

ai_canonname

result

ai_addr

ai_next

addrinfo structs

Socket address structs

NULL

ai_addr

ai_next

NULL

ai_addr

NULL

 Clients: walk this list, trying each socket address in turn, until the calls to
socket and connect succeed.

 Servers: walk the list calling socket, listen, bind for all addresses, then
use select to accept connections on any of them (beyond our scope)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_clientfd (cont)

/* Walk the list for one that we can successfully connect to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((clientfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

 /* Connect to the server */

 if (connect(clientfd, p->ai_addr, p->ai_addrlen) != -1)

 break; /* Success */

 Close(clientfd); /* Connect failed, try another */

 }

 /* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* All connects failed */

return -1;

 else /* The last connect succeeded */

 return clientfd;

} csapp.c

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

getaddrinfogetaddrinfo

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd

int open_listenfd(char *port)

{

 struct addrinfo hints, *listp, *p;

 int listenfd, optval=1;

 /* Get a list of potential server addresses */

 memset(&hints, 0, sizeof(struct addrinfo));

 hints.ai_socktype = SOCK_STREAM; /* Accept connect. */

 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG; /* …on any IP addr */

 hints.ai_flags |= AI_NUMERICSERV; /* …using port no. */

 Getaddrinfo(NULL, port, &hints, &listp);

csapp.c

 Create a listening descriptor that can be used to accept
connection requests from clients.

AI_PASSIVE means “I plan to listen on this socket.”
AI_ADDRCONFIG normally not used for servers, but we use it for convenience

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Walk the list for one that we can bind to */

for (p = listp; p; p = p->ai_next) {

/* Create a socket descriptor */

if ((listenfd = socket(p->ai_family, p->ai_socktype,

p->ai_protocol)) < 0)

continue; /* Socket failed, try the next */

/* Eliminates "Address already in use" error from bind */

Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

(const void *)&optval , sizeof(int));

/* Bind the descriptor to the address */

if (bind(listenfd, p->ai_addr, p->ai_addrlen) == 0)

 break; /* Success */

 Close(listenfd); /* Bind failed, try the next */

 } csapp.c

A production server would not break out of the loop on the first success.
We do that for simplicity only.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Helper: open_listenfd (cont)

/* Clean up */

 Freeaddrinfo(listp);

 if (!p) /* No address worked */

return -1;

 /* Make it a listening socket ready to accept conn. requests */

 if (listen(listenfd, LISTENQ) < 0) {

 Close(listenfd);

return -1;

}

 return listenfd;

} csapp.c

 Key point: open_clientfd and open_listenfd are
both independent of any particular version of IP.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
▪ Our simple echo server

▪ Web servers

▪ Mail servers

 Usage:
▪ linux> telnet <host> <portnumber>

▪ Creates a connection with a server running on <host> and
listening on port <portnumber>

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing the Echo Server With telnet

whaleshark> ./echoserveri 15213

Connected to (MAKOSHARK.ICS.CS.CMU.EDU, 50280)

server received 11 bytes

server received 8 bytes

makoshark> telnet whaleshark.ics.cs.cmu.edu 15213

Trying 128.2.210.175...

Connected to whaleshark.ics.cs.cmu.edu (128.2.210.175).

Escape character is '^]'.

Hi there!

Hi there!

Howdy!

Howdy!

^]

telnet> quit

Connection closed.

makoshark>

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Setting up connections

 Application protocol example: HTTP

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Server Basics

Web
server

HTTP request

HTTP response
(content)

 Clients and servers communicate
using the HyperText Transfer
Protocol (HTTP)

▪ Client and server establish TCP
connection

▪ Client requests content

▪ Server responds with requested
content

▪ Client and server close connection
(eventually)

 Current version is HTTP/2.0
but HTTP/1.1 widely used still

▪ RFC 2616, June, 1999.

Web
client

(browser)

http://www.w3.org/Protocols/rfc2616/rfc2616.html

IP

TCP

HTTP

Datagrams

Streams

Web content

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Web Content

 Web servers return content to clients
▪ content: a sequence of bytes with an associated MIME (Multipurpose

Internet Mail Extensions) type

 Example MIME types
▪ text/html HTML document

▪ text/plain Unformatted text

▪ image/gif Binary image encoded in GIF format

▪ image/png Binary image encoded in PNG format

▪ image/jpeg Binary image encoded in JPEG format

You can find the complete list of MIME types at:
http://www.iana.org/assignments/media-types/media-types.xhtml

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Static and Dynamic Content

 The content returned in HTTP responses can be either static or
dynamic
▪ Static content: content stored in files and retrieved in response to an HTTP

request

▪ Examples: HTML files, images, audio clips, Javascript programs

▪ Request identifies which content file

▪ Dynamic content: content produced on-the-fly in response to an HTTP
request

▪ Example: content produced by a program executed by the server on
behalf of the client

▪ Request identifies file containing executable code

 Web content associated with a file that is managed by the server

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

URLs and how clients and servers use them

 Unique name for a file: URL (Universal Resource Locator)

 Example URL: http://www.cmu.edu:80/index.html

 Clients use prefix (http://www.cmu.edu:80) to infer:

▪ What kind (protocol) of server to contact (HTTP)

▪ Where the server is (www.cmu.edu)

▪ What port it is listening on (80)

 Servers use suffix (/index.html) to:

▪ Determine if request is for static or dynamic content.

▪ No hard and fast rules for this

▪ One convention: executables reside in cgi-bin directory

▪ Find file on file system

▪ Initial “/” in suffix denotes home directory for requested content.

▪ Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Request Example
GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: blank line terminates headers

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Requests

 HTTP request is a request line, followed by zero or more
request headers

 Request line: <method> <uri> <version>
▪ <method> is one of GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

▪ <uri> is typically URL for proxies, URL suffix for servers

▪ A URL is a type of URI (Uniform Resource Identifier)

▪ See http://www.ietf.org/rfc/rfc2396.txt

▪ <version> is HTTP version of request (HTTP/1.0 or HTTP/1.1)

 Request headers: <header name>: <header data>

▪ Provide additional information to the server

http://www.ietf.org/rfc/rfc2396.txt

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HTTP Responses
 HTTP response is a response line followed by zero or more

response headers, possibly followed by content, with blank line
(“\r\n”) separating headers from content.

 Response line:

 <version> <status code> <status msg>

▪ <version> is HTTP version of the response

▪ <status code> is numeric status

▪ <status msg> is corresponding English text

▪ 200 OK Request was handled without error

▪ 301 Moved Provide alternate URL

▪ 404 Not found Server couldn’t find the file

 Response headers: <header name>: <header data>
▪ Provide additional information about response

▪ Content-Type: MIME type of content in response body

▪ Content-Length: Length of content in response body

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET / HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: blank line terminates headers

HTTP/1.1 301 Moved Permanently Server: response line

Date: Wed, 05 Nov 2014 17:05:11 GMT Server: followed by 5 response headers

Server: Apache/1.3.42 (Unix) Server: this is an Apache server

Location: http://www.cmu.edu/index.shtml Server: page has moved here

Transfer-Encoding: chunked Server: response body will be chunked

Content-Type: text/html; charset=... Server: expect HTML in response body

Server: empty line terminates headers

15c Server: first line in response body

<HTML><HEAD> Server: start of HTML content

…

</BODY></HTML> Server: end of HTML content

0 Server: last line in response body

Connection closed by foreign host. Server: closes connection

 HTTP standard requires that each text line end with “\r\n”

 Blank line (“\r\n”) terminates request and response headers

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP Transaction, Take 2
whaleshark> telnet www.cmu.edu 80 Client: open connection to server

Trying 128.2.42.52... Telnet prints 3 lines to terminal

Connected to WWW-CMU-PROD-VIP.ANDREW.cmu.edu.

Escape character is '^]'.

GET /index.shtml HTTP/1.1 Client: request line

Host: www.cmu.edu Client: required HTTP/1.1 header

 Client: blank line terminates headers

HTTP/1.1 200 OK Server: response line

Date: Wed, 05 Nov 2014 17:37:26 GMT Server: followed by 4 response headers

Server: Apache/1.3.42 (Unix)

Transfer-Encoding: chunked

Content-Type: text/html; charset=...

Server: empty line terminates headers

1000 Server: begin response body

<html ..> Server: first line of HTML content

…

</html>

0 Server: end response body

Connection closed by foreign host. Server: close connection

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example HTTP(S) Transaction, Take 3
whaleshark> openssl s_client www.cs.cmu.edu:443

CONNECTED(00000005)

…

Certificate chain

…

-

Server certificate

-----BEGIN CERTIFICATE-----

MIIGDjCCBPagAwIBAgIRAMiF7LBPDoySilnNoU+mp+gwDQYJKoZIhvcNAQELBQAw

djELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk1JMRIwEAYDVQQHEwlBbm4gQXJib3Ix

EjAQBgNVBAoTCUludGVybmV0MjERMA8GA1UECxMISW5Db21tb24xHzAdBgNVBAMT

wkWkvDVBBCwKXrShVxQNsj6J

…

-----END CERTIFICATE-----

subject=/C=US/postalCode=15213/ST=PA/L=Pittsburgh/street=5000 Forbes

Ave/O=Carnegie Mellon University/OU=School of Computer

Science/CN=www.cs.cmu.edu issuer=/C=US/ST=MI/L=Ann

Arbor/O=Internet2/OU=InCommon/CN=InCommon RSA Server CA

SSL handshake has read 6274 bytes and written 483 bytes

…

>GET / HTTP/1.0

HTTP/1.1 200 OK

Date: Tue, 12 Nov 2019 04:22:15 GMT

Server: Apache/2.4.10 (Ubuntu)

Set-Cookie: SHIBLOCATION=scsweb; path=/; domain=.cs.cmu.edu

... HTML Content Continues Below ...

http://www.cs.cmu.edu:443/

	Slide 1: Network Programming: Part II 15-213/15-513: Introduction to Computer Systems 22nd Lecture, July 19, 2024
	Slide 2: Reminders
	Slide 3: Review: Echo Server + Client Structure
	Slide 4: Today
	Slide 5
	Slide 6: Review: Generic Socket Address
	Slide 7: Review: Socket Address Structures
	Slide 8: Review: getaddrinfo
	Slide 9
	Slide 10: Sockets Interface: socket
	Slide 11: Sockets Interface
	Slide 12: Sockets Interface: bind
	Slide 13: Sockets Interface
	Slide 14: Sockets Interface: listen
	Slide 15: Sockets Interface
	Slide 16: Sockets Interface: accept
	Slide 17: Sockets Interface
	Slide 18: Sockets Interface: connect
	Slide 19: connect/accept Illustrated
	Slide 20: Connected vs. Listening Descriptors
	Slide 21
	Slide 22
	Slide 23: Sockets Helper: open_clientfd
	Slide 24: getaddrinfo
	Slide 25: Sockets Helper: open_clientfd (cont)
	Slide 26
	Slide 27: Sockets Helper: open_listenfd
	Slide 28: Sockets Helper: open_listenfd (cont)
	Slide 29: Sockets Helper: open_listenfd (cont)
	Slide 30: Testing Servers Using telnet
	Slide 31: Testing the Echo Server With telnet
	Slide 32: Today
	Slide 33: Web Server Basics
	Slide 34: Web Content
	Slide 35: Static and Dynamic Content
	Slide 36: URLs and how clients and servers use them
	Slide 37: HTTP Request Example
	Slide 38: HTTP Requests
	Slide 39: HTTP Responses
	Slide 40: Example HTTP Transaction
	Slide 41: Example HTTP Transaction, Take 2
	Slide 42: Example HTTP(S) Transaction, Take 3

