15-213

“The course that gives CMU its Zip!”

System-Level |/O
April 1, 2008

Topics
m Unix I/O
m Robust reading and writing
m Reading file metadata
m Sharing files
m |/O redirection
m Standard I/O
m Binary data files
m |/Oin Java

class20.ppt

Unix I/O Key Characteristics

Classic Unix/Linux I/O:

I/O operates on linear streams
of Bytes

m Can reposition insertion
point and extend file at end

I/O tends to be synchronous

m Read or write operation
block until data has been
transferred

Fine grained I/O
m One key-stroke at a time

m Each I/O event is handled by
the kernel and an
appropriate process

Mainframe |/O:

I/O operates on structured
records

m Functions to locate, insert,
remove, update records

I/O tends to be asynchronous

m Overlap I/O and computation
within a process

Coarse grained I/O

m Process writes “channel
programs” to be executed
by the I/O hardware

m Many I/O operations are
performed autonomously
with one interrupt at
completion

15-213, S’08

Unix Files

A Unix file is a sequence of m bytes:
mB,B,...,B, ..., B

m-1

All I/0O devices are represented as files:

m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:

m /dev/kmem (kernel memory image)
m /proc (kernel data structures)

15-213, S’08

Unix File Types

Reqgular file
m Binary or text file.

m Unix does not know the difference!
® But some library functions only work for text files

Directory file
m A file that contains the names and locations of other files.

Character special and block special files
m Terminals (character special) and disks (block special)

FIFO (named pipe)

m A file type used for interprocess communication

Socket

m A file type used for network communication between

a4 Processes 15-213, S'08

Unix I/O

Key Features

m Elegant mapping of files to devices allows kernel to export
simple interface called Unix 1/O.

m Important idea: All input and output is handled in a
consistent and uniform way.

Typical File Model B, | B eee B, 4B, Bk+J
m E.g., reading disk files 1
m Have read k bytes Current File Position = k

Basic Unix I/O operations (system calls):

m Opening and closing files
® open()and close()

m Changing the current file position (seek)
® Iseek (not discussed)

m Reading and writing a file
5 [read() and Write() 15-213, S'08

Opening Files

Opening a file informs the kernel that you are getting
ready to access that file.

int fd; /* Tile descriptor */

iIf ((fd = open("'/etc/hosts™™, O RDONLY)) < 0) {
perror(‘‘open');
exit(l);

+

Returns a small identifying integer file descriptor
m fd == -1indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:

m O0: standard input
m 1: standard output

m 2: standard error

-6 - 15-213, S’08

Closing Files

Closing a file informs the kernel that you are finished

accessing that file.

int fd; /* Tile descriptor */
int retval; /* return value */

iIT ((retval = close(fd)) < 0) {
perror(*‘close™);
exi1t(l);

ks

Closing an already closed file is arecipe for disaster in

threaded programs (more on this later)

Moral: Always check return codes, even for seemingly

benign functions such as close()

15-213, S’08

Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

IT ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(“read");
exit(l);

+

Returns number of bytes read from file fd into buf
m Return type ssize_ tis signed integer
m nbytes < Oindicates that an error occurred.

m short counts (nbytes < sizeof(buf)) are possible and
g arenoterrors! 15-213. S'08

Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
iIT ((hbytes = write(fd, buf, sizeof(buf)) < 0) {
perror('write');
exit(l);

}

Returns number of bytes written from buf to file fd.
m nbytes < Oindicates that an error occurred.

Transfers up to 512 bytes from address buf to file fd
m As with reads, short counts are possible and are not errors!

-9- 15-213, S’08

Unix I/O Example

Copying standard input to standard output one byte at a

time.
m This is extremely inefficient!

#include '"'csapp-.h"

int main(void)

{

char c;

while(Read(STDIN_FILENO, &c, 1) I= 0)
Write(STDOUT_FILENO, &c, 1);
exi1t(0);

Note the use of error handling wrappers for read and

~10 -

write (Appendix B).

15-213, S’08

Dealing with Short Counts

Short counts can occur in these situations:
m Encountering EOF (end-of-file) on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust 1/0) package from your textbook’s
csapp-c file (Appendix B).

® To be discussed

11— 15-213, S’'08

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in
applications such as network programs that are subject to short

counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
® rio _readnand rio_writen

m Buffered input of binary data and text lines
® rio _readlineb and rio_readnb
e Buffered RIO routines are thread-safe and can be interleaved on the same
descriptor.

Download from
csapp-.cs.cmu.edu/public/ics/code/src/csapp.-c

csapp.-cs.cmu.edu/public/ics/code/include/csapp-h

1o 15-213, S'08

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network
sockets

#include "‘csapp.h"

ssize_t rio _readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

® rio_readn returns short count only it encounters EOF.
® Only use it when you know how many bytes to read
® rio_writen never returns a short count.

m Callsto rio_readn and rio_writen can be interleaved

,3 arbitrarily on the same descriptor. 15213 S'08

Implementation of rio readn

/*

* rio_readn - robustly read n bytes (unbuffered)
*/

ssize_t rio _readn(int fd, void *usrbuf, size t n)

{
size _t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
iIT ((nread = read(fd, bufp, nleft)) < 0) {
iIT (errno == EINTR) /* i1nterrupted by sig
handler return */

nread = 0O; /* and call read() again */
else
return -1; /* errno set by read() */
+
else 1T (nread == 0)
break; /* EOF */
nleft -= nread;
bufp += nread;
+
return (n - nleft); /* return >= 0 */
+
- 14 -

15-213, S’08

Buffered 1/O: Motivation

/O Applications Read/Write One Character at a Time
m getc, putc, ungetc
m gets

® Read line of text, stopping at newline

Implementing as Calls to Unix I/O Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read

m Use Unix read to grab block of characters

m User input functions take one character at a time from buffer
_ 15— e Refill buffer when empty 15-213 508

Buffered 1/O: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

Buffer

«—— rio cnt ——

already read

unread

rio buf / _ /
rio_bufptr

Layered on Unix File

P
<

Buffered Portion

\ 4

not in buffer

already read

unread

unseen

—16 —

Current File Position /

15-213, S’08

Buffered I/O: Declaration

m All information contained in struct

Buffer

«—— rio cnt ——

already read

unread

rio buf / _ /
rio_bufptr

typedef struct {

int rio_fd;

int rio_cnt;

char *rio_bufptr;

char rio buf[RIO_BUFSIZE];
} rio_t;

/*
/*
/*
/*

descriptor for this internal buf */
unread bytes i1n internal buf */
next unread byte in internal buf */
internal buffer */

17 -

15-213, S’08

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include '"'csapp.h"
void rio_readinitb(rio_t *rp, int fd);

ssize t rio _readlineb(rio_t *rp, void *usrbuf, size t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readlineb reads atext line of up to maxlen bytes from
file ¥d and stores the line in usrbuf.
® Especially useful for reading text lines from network sockets

m Stopping conditions
® maxlen bytes read

® EOF encountered
® Newline (*\n’) encountered

_ 18- 15-213, S'08

Buffered RIO Input Functions (cont)

#include "'csapp.-.h"

void rio_readinitb(rio_t *rp, int fd);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
m rio_readnb reads up to n bytes from file fd.

m Stopping conditions
e maxlen bytes read
® EOF encountered

m Callsto rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor.
® Warning: Don’t interleave with calls to rio_readn

_19- 15-213, S'08

RIO Example

Copying the lines of a text file from standard input to

standard output.

#include '"‘csapp-h"

int main(int argc, char **argv)

.
int n;
rio_t rio;
char buf[MAXLINE];
Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) I!= 0)

Rio writen(STDOUT_FILENO, buf, n);

ex1t(0);

+

— 20—

15-213, S’08

File Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat
and fstat functions.

struct stat {

dev_t

ino t

mode_t
nlink_t

uid_t

gid t

dev_t

off t
unsigned long
unsigned long
time_t
time_t
time_t

st _dev;
st _1no;
st_mode;
st _nlink;
st _uid;
st gid;
st _rdev;
st_size;

st blksize;

st _blocks;
st _atime;
st _mtime;
st _ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* Metadata returned by the stat and fstat functions */

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if i1node device) */
total size, iIn bytes */
blocksize for filesystem 1/0 */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */

#include '"'csapp-h"

int main (int argc, char **argv)

{

struct stat stat;
char *type, *readok;

Stat(argv|[1l], &stat);

IT (S_ISREG(stat.st _mode))
type = "regular';

else 1T (S_ISDIR(stat.st _mode))
type = "directory'';

else
type = "other";

IT ((stat.st_mode & S _IRUSR)) /* OK to read?*/

readok = ''yes";
else
readok = '"no"';

printf('type: %s, read: %s\n', type, readok);

ex1t(0);

unix>
type:
unix>
unix>
type:
unix>
type:
unix>

type:

./statcheck statcheck.c
regular, read: yes
chmod 000 statcheck.c
./statcheck statcheck.c
regular, read: no
./statcheck ..
directory, read: yes
./statcheck /dev/kmem
other, read: yes

— 22 —

15-213, S’08

Accessing Directories

The only recommended operation on directories is to

read its entries

m dirent structure contains information about directory

m DIR structure contains information about directory while

stepping through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

}

éiésedir(directory);

- 23 - 3}

i%-(!(directory = opendir(dir_name)))
error(""Failed to open directory');

whi le (0 '= (de = readdir(directory))) {
printf(""Found file: %s\n",

de->d _name);

15-213, S’08

How the Unix Kernel Represents
Open Files

Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

Descriptor table
[one table per process]

stdin
stdout
stderr

_ 24—

fd O
fd 1
fd 2
fd 3
fd 4

Open file table
[shared by all processes]

File A (terminal)

—

File pos

refcnt=1

_File B(is)

File pos
refcnt=1

v-node table

File access

File size

File type

File access

File size

File type

[shared by all processes]

\

Info in
» stat

struct

15-213, S’08

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries

m E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
~ File A
_/> H
fd 0 / = File access
]:3 ; File pos File size
fd 3 refcnt=1 File type
fd 4 ~ : :
File pos
refcnt=1
_ 95 _ : 15-213, S'08

How Processes Share Files

A child process inherits its parent’s open files. Here Is
the situation immediately after a fork

— 26—

Descriptor Open file table
tables (shared by
all processes)
Parent's table ~ FileA
fd 0 / _
fd 1 0 :
fd 2 File pos
fd 3 refcnt=2
fd 4 ~
Child's table File B
fd 0 ,
/ .
fd1 File pos
fd 2
fd 3 refcnt=2
fd 4

__— File access

v-node table

(shared by

all processes)

»

File access

File size

File type

File size

File type

15-213, S’08

/O Redirection

Question: How does a shell implement I/O redirection?
unix> Is > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
m Copies (per-process) descriptor table entry oldfd to entry

newfd
Descriptor table Descriptor table
before dup2(4,1) after dup2(4,1)
fd 0 fd 0
fd 1 a fd 1 b
fd 2 > fd 2
fd 3 fd 3
fd 4 b fd 4 b

- 27 — 15-213, S’08

I/O Redirection Example

Before calling dup2(4,1), stdout (descriptor 1) points

to aterminal and descriptor 4 points to an open disk
file.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
____File A
- // .
stdin fd 0 — File access
stdout fd1 — : - -
File siz
stderr fd?2 File pos - €slz€
fd 3 refcnt=1 File type
fd 4 ~ : e
File access
File pos Fllle size
refcnt=1 File type
— 28 — : 15-213, S’08

/O Redirection Example (cont)

After calling dup2(4,1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table

(one table (shared by (shared by
per process) all processes) all processes)
__FileA___ ___ e e ,
fd 0 ! -mmmT T File access,
]:3 ; =1 pos ! . File size i
fd 3 ' refcnt=0 ! . File type
fd 4 ~ L | L |
File access

File pos F.lle size

refcnt=2 File type

—29_ 15-213, S’08

Fun with File Descriptors (1)

#include "‘csapp.h"

int main(int argc, char *argv[])

{
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv[1l];
fdl Open(fname, O RDONLY, 0);
fd2 Open(fname, O RDONLY, 0);
fd3 = Open(fname, O RDONLY, 0);
Dup2(fd2, fd3);
Read(fdl, &cl, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("'cl = %c, c2 = %c, c3 = %c\n', cl, c2, c3);
return O;

}

m Filefdl.c
m What would this program print for file containing “abcde”?

—-30 - 15-213, S’08

Fun with File Descriptors (2)

#include "‘csapp.h"
int main(int argc, char *argv[])

{

int fdi;
iInt s = getpid() & Ox1;
char cl, c2;
char *fname = argv[1l];
fdl = Open(fname, O _RDONLY, 0O);
Read(fdl, &cl, 1);
1T (fork()) {
/* Parent */
sleep(s);
Read(fdl, &c2, 1);
printf(*'"Parent: cl = %c, c2 = %c\n", cl, c2);
} else {
/* Child */
sleep(1-s);
Read(fdl, &c2, 1);
printf("'Chilld: cl1 = %c, c2 = %c\n", cl, c2);
¥

return O;

}
m File fd2.c

-31- m What would this program print for file containing “abcdet® sos

Fun with File Descriptors (3)

#include "csapp.h"
int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv|[1l];

fdl = Open(fname, O _CREAT]JO_TRUNC]O RDWR, S IRUSR|S_IWUSR);
Write(fdl, "pqgrs", 4);

fd3 = Open(fname, O _APPEND|O_WRONLY, 0);

Write(fd3, "jkImn"™, 5);

fd2 = dup(fdl); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return O;

m File fd3.c
m What would be contents of resulting file?

—_32_ 15-213, S’08

Standard I/O Functions

The C standard library (Ii1bc.a) contains a collection of
higher-level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard I/O functions:
m Opening and closing files (fopen and fclose)
m Reading and writing bytes (fread and fwrite)
m Reading and writing text lines (Fgets and fputs)
m Formatted reading and writing (fscant and fprintf)

—~33-— 15-213, S’08

Standard 1/O Streams

Standard I/0O models open files as streams

m Abstraction for a file descriptor and a buffer in memory.
m Similar to buffered RIO

C programs begin life with three open streams (defined

_ 34—

In stdio.h)

m stdin (standard input)
m stdout (standard output)
m stderr (standard error)

#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf(stdout,
+

"Hello, world\n');

/* standard input (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */

15-213, S’08

Buffering in Standard /O

m As with RIO, have memory buffer associated with file
m Copy of portion of file

Reading
Buffer
already read unread
Read position /
« Copy in buffer >
File by
not buffered already read unread unseen

Current File Position /

35 15-213, S'08

Buffering in Standard /O

m Only write to file when:
e Buffer filled

® Newline written (typically)
e Call fflush()

Writing
Buffer
already stored not stored
Write position /
File
already stored already stored

Current File Position /

— 36— 15-213, S’08

Buffering in Standard /O

Standard /O functions use buffered 1/0O

printf('h™);

printf('e");
printf(C'l™);
printf(C'I1™);
printf(*'o™);

but | printf('\n");

h | el l I o | \n

fflush(stdout);

write(l, buf += 6, 6);

_37-—

15-213, S’08

Unix I/O vs. Standard 1/O vs. RIO

Standard I/O and RIO are implemented using low-level

Unix |/O.

fopen fdopen
fread fTwrite
fscant fprintf
sscanft sprintf
fgets fTputs
fflush fseek
fclose

open read
write Iseek
stat close

<4+----

C application program

N Standard 1/0

functions

RIO
functions

---»

Unix I/O functions

(accessed via system calls)

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

Which ones should you use in your programs?

— 38—

15-213, S’08

Pros and Cons of Unix |I/O

Pros

m Unix I/O is the most general and lowest overhead form of 1/O.

® All other I/O packages are implemented using Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard I/O and
RIO packages.

— 39— 15-213, S’08

Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the number of
read and write system calls.

m Short counts are handled automatically.

cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions on streams that
Interact badly with restrictions on sockets

—40 - 15-213, S’08

Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard 1/O functions.

When to use standard 1/0O?
m When working with disk or terminal files.

When to use raw Unix I/O
m When you need to fetch file metadata.
m In rare cases when you need absolute highest performance.

When to use RIO?
m When you are reading and writing network sockets or pipes.
m Never use standard I/O or raw Unix 1/O on sockets or pipes.

- 41 - 15-213, S’08

For Further Information

The Unix bible:

m W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2"d Edition, Addison
Wesley, 2005.

® Updated from Stevens’ 1993 book

Stevens Is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999
m But others have taken up his legacy

—42 — 15-213, S’08

Working with Binary Files

Binary File Examples
m Object code
m Images (JPEG, GIF)
m Arbitrary byte values

Functions you shouldn’t use

m Line-oriented I/O
® fgets, scanf, printf, rio_readlineb
» use rio_readn or rio_readnb instead
® Interprets byte value Ox0A (‘\n’) as special

m String functions
® strlen, strcpy
® Interprets byte value 0 as special

— 43—

15-213, S’08

Java |/O

Standard Java Streams are Unbuffered
m Every read/write call invokes OS
m Preferable to “wrap” stream with buffered stream

Java Distinguishes Characters from Bytes

m Characters: Various encodings to allow more than ASCII
characters

BufferedReader i1n =

new BufferedReader(new FileReader('char-in.txt"));
BufferedWriter out =

new BufferedWriter(new FileWriter('char-out.txt™));

m Bytes: Always 8 bits. Used for binary data

BufferedlnputStream In =

new BufferedlnputStream(new FilelnputStream("binary-in.txt"));
BufferedOutputStream out =

new BufferedOutputStream(new FileOutputStream(“'binary-out.txt'™));

— 44 — 15-213, S’'08

	System-Level I/O�April 1, 2008
	Unix I/O Key Characteristics
	Unix Files
	Unix File Types
	Unix I/O
	Opening Files
	Closing Files
	Reading Files
	Writing Files
	Unix I/O Example
	Dealing with Short Counts
	The RIO Package
	Unbuffered RIO Input and Output
	Implementation of rio_readn
	Buffered I/O: Motivation
	Buffered I/O: Implementation
	Buffered I/O: Declaration
	Buffered RIO Input Functions
	Buffered RIO Input Functions (cont)
	RIO Example
	File Metadata
	Example of Accessing File Metadata
	Accessing Directories
	How the Unix Kernel Represents Open Files
	File Sharing
	How Processes Share Files
	I/O Redirection
	I/O Redirection Example
	I/O Redirection Example (cont)
	Fun with File Descriptors (1)
	Fun with File Descriptors (2)
	Fun with File Descriptors (3)
	Standard I/O Functions
	Standard I/O Streams
	Buffering in Standard I/O
	Buffering in Standard I/O
	Buffering in Standard I/O
	Unix I/O vs. Standard I/O vs. RIO
	Pros and Cons of Unix I/O
	Pros and Cons of Standard I/O
	Choosing I/O Functions
	For Further Information
	Working with Binary Files
	Java I/O

