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Unix I/O Key Characteristics

Classic Unix/Linux I/O:

I/O operates on linear streams
of Bytes

m Can reposition insertion
point and extend file at end

I/O tends to be synchronous

m Read or write operation
block until data has been
transferred

Fine grained I/O
m One key-stroke at a time

m Each I/O event is handled by
the kernel and an
appropriate process

Mainframe |/O:

I/O operates on structured
records

m Functions to locate, insert,
remove, update records

I/O tends to be asynchronous

m Overlap I/O and computation
within a process

Coarse grained I/O

m Process writes “channel
programs” to be executed
by the I/O hardware

m Many I/O operations are
performed autonomously
with one interrupt at
completion
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Unix Files

A Unix file is a sequence of m bytes:
mB,B,...,B, ..., B

m-1

All I/0O devices are represented as files:

m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:

m /dev/kmem (kernel memory image)
m /proc (kernel data structures)
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Unix File Types

Reqgular file
m Binary or text file.

m Unix does not know the difference!
® But some library functions only work for text files

Directory file
m A file that contains the names and locations of other files.

Character special and block special files
m Terminals (character special) and disks ( block special)

FIFO (named pipe)

m A file type used for interprocess communication

Socket

m A file type used for network communication between

a4 Processes 15-213, S'08



Unix I/O

Key Features

m Elegant mapping of files to devices allows kernel to export
simple interface called Unix 1/O.

m Important idea: All input and output is handled in a
consistent and uniform way.

Typical File Model B, | B eee B, 4B, Bk+J
m E.g., reading disk files 1
m Have read k bytes Current File Position = k

Basic Unix I/O operations (system calls):

m Opening and closing files
® open()and close()

m Changing the current file position (seek)
® Iseek (not discussed)

m Reading and writing a file
_5_ [ read() and Write() 15-213, S'08



Opening Files

Opening a file informs the kernel that you are getting
ready to access that file.

int fd; /* Tile descriptor */

iIf ((fd = open("'/etc/hosts™™, O RDONLY)) < 0) {
perror(‘‘open');
exit(l);

+

Returns a small identifying integer file descriptor
m fd == -1indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:

m O0: standard input
m 1: standard output

m 2: standard error

-6 - 15-213, S’08



Closing Files

Closing a file informs the kernel that you are finished

accessing that file.

int fd; /* Tile descriptor */
int retval; /* return value */

iIT ((retval = close(fd)) < 0) {
perror(*‘close™);
exi1t(l);

ks

Closing an already closed file is arecipe for disaster in

threaded programs (more on this later)

Moral: Always check return codes, even for seemingly

benign functions such as close()

15-213, S’08



Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

IT ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(“read");
exit(l);

+

Returns number of bytes read from file fd into buf
m Return type ssize_ tis signed integer
m nbytes < Oindicates that an error occurred.

m short counts (nbytes < sizeof(buf) ) are possible and
_g_ arenoterrors! 15-213. S'08



Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
iIT ((hbytes = write(fd, buf, sizeof(buf)) < 0) {
perror('write');
exit(l);

}

Returns number of bytes written from buf to file fd.
m nbytes < Oindicates that an error occurred.

Transfers up to 512 bytes from address buf to file fd
m As with reads, short counts are possible and are not errors!
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Unix I/O Example

Copying standard input to standard output one byte at a

time.
m This is extremely inefficient!

#include '"'csapp-.h"

int main(void)

{

char c;

while(Read(STDIN_FILENO, &c, 1) I= 0)
Write(STDOUT_FILENO, &c, 1);
exi1t(0);

Note the use of error handling wrappers for read and

~10 -

write (Appendix B).
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Dealing with Short Counts

Short counts can occur in these situations:
m Encountering EOF (end-of-file) on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust 1/0) package from your textbook’s
csapp-c file (Appendix B).

® To be discussed
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The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in
applications such as network programs that are subject to short

counts.

RIO provides two different kinds of functions

m Unbuffered input and output of binary data
® rio _readnand rio_writen

m Buffered input of binary data and text lines
® rio _readlineb and rio_readnb
e Buffered RIO routines are thread-safe and can be interleaved on the same
descriptor.

Download from
csapp-.cs.cmu.edu/public/ics/code/src/csapp.-c

csapp.-cs.cmu.edu/public/ics/code/include/csapp-h

_1o_ 15-213, S'08



Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network
sockets

#include "‘csapp.h"

ssize_t rio _readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

® rio_readn returns short count only it encounters EOF.
® Only use it when you know how many bytes to read
® rio_writen never returns a short count.

m Callsto rio_readn and rio_writen can be interleaved

_,3_ arbitrarily on the same descriptor. 15213 S'08




Implementation of rio readn

/*

* rio_readn - robustly read n bytes (unbuffered)
*/

ssize_t rio _readn(int fd, void *usrbuf, size t n)

{
size _t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
iIT ((nread = read(fd, bufp, nleft)) < 0) {
iIT (errno == EINTR) /* i1nterrupted by sig
handler return */

nread = 0O; /* and call read() again */
else
return -1; /* errno set by read() */
+
else 1T (nread == 0)
break; /* EOF */
nleft -= nread;
bufp += nread;
+
return (n - nleft); /* return >= 0 */
+
- 14 -
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Buffered 1/O: Motivation

/O Applications Read/Write One Character at a Time
m getc, putc, ungetc
m gets

® Read line of text, stopping at newline

Implementing as Calls to Unix I/O Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read

m Use Unix read to grab block of characters

m User input functions take one character at a time from buffer
_ 15— e Refill buffer when empty 15-213 508



Buffered 1/O: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

Buffer

«—— rio cnt ——

already read

unread

rio buf / _ /
rio_bufptr

Layered on Unix File

P
<

Buffered Portion

\ 4

not in buffer

already read

unread

unseen

—16 —

Current File Position /
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Buffered I/O: Declaration

m All information contained in struct

Buffer

«—— rio cnt ——

already read

unread

rio buf / _ /
rio_bufptr

typedef struct {

int rio_fd;

int rio_cnt;

char *rio_bufptr;

char rio buf[RIO_BUFSIZE];
} rio_t;

/*
/*
/*
/*

descriptor for this internal buf */
unread bytes i1n internal buf */
next unread byte in internal buf */
internal buffer */

17 -
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Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include '"'csapp.h"
void rio_readinitb(rio_t *rp, int fd);

ssize t rio _readlineb(rio_t *rp, void *usrbuf, size t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readlineb reads atext line of up to maxlen bytes from
file ¥d and stores the line in usrbuf.
® Especially useful for reading text lines from network sockets

m Stopping conditions
® maxlen bytes read

® EOF encountered
® Newline (*\n’) encountered

_ 18- 15-213, S'08



Buffered RIO Input Functions (cont)

#include "'csapp.-.h"

void rio_readinitb(rio_t *rp, int fd);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio_readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error
m rio_readnb reads up to n bytes from file fd.

m Stopping conditions
e maxlen bytes read
® EOF encountered

m Callsto rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor.
® Warning: Don’t interleave with calls to rio_readn

_19- 15-213, S'08



RIO Example

Copying the lines of a text file from standard input to

standard output.

#include '"‘csapp-h"

int main(int argc, char **argv)

.
int n;
rio_t rio;
char buf[MAXLINE];
Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) I!= 0)

Rio writen(STDOUT_FILENO, buf, n);

ex1t(0);

+

— 20—
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File Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat
and fstat functions.

struct stat {

dev_t

ino t

mode_t
nlink_t

uid_t

gid t

dev_t

off t
unsigned long
unsigned long
time_t
time_t
time_t

st _dev;
st _1no;
st_mode;
st _nlink;
st _uid;
st gid;
st _rdev;
st_size;

st blksize;

st _blocks;
st _atime;
st _mtime;
st _ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* Metadata returned by the stat and fstat functions */

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if i1node device) */
total size, iIn bytes */
blocksize for filesystem 1/0 */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */




Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */

#include '"'csapp-h"

int main (int argc, char **argv)

{

struct stat stat;
char *type, *readok;

Stat(argv|[1l], &stat);

IT (S_ISREG(stat.st _mode))
type = "regular';

else 1T (S_ISDIR(stat.st _mode))
type = "directory'';

else
type = "other";

IT ((stat.st_mode & S _IRUSR)) /* OK to read?*/

readok = ''yes";
else
readok = '"no"';

printf('type: %s, read: %s\n', type, readok);

ex1t(0);

unix>
type:
unix>
unix>
type:
unix>
type:
unix>

type:

./statcheck statcheck.c
regular, read: yes
chmod 000 statcheck.c
./statcheck statcheck.c
regular, read: no
./statcheck ..
directory, read: yes
./statcheck /dev/kmem
other, read: yes

— 22 —
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Accessing Directories

The only recommended operation on directories is to

read its entries

m dirent structure contains information about directory

m DIR structure contains information about directory while

stepping through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

}

éiésedir(directory);

- 23 - 3}

i%-(!(directory = opendir(dir_name)))
error(""Failed to open directory');

whi le (0 '= (de = readdir(directory))) {
printf(""Found file: %s\n",

de->d _name);

15-213, S’08



How the Unix Kernel Represents
Open Files

Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

Descriptor table
[one table per process]

stdin
stdout
stderr

_ 24—

fd O
fd 1
fd 2
fd 3
fd 4

Open file table
[shared by all processes]

File A (terminal)

—

File pos

refcnt=1

\_File B(is)

File pos
refcnt=1

v-node table

File access

File size

File type

File access

File size

File type

[shared by all processes]

\

Info in
» stat

struct

15-213, S’08



File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries

m E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
~ File A
_/> H
fd 0 / = File access
]:3 ; File pos File size
fd 3 refcnt=1 File type
fd 4 ~ : :
File pos
refcnt=1
_ 95 _ : 15-213, S'08




How Processes Share Files

A child process inherits its parent’s open files. Here Is
the situation immediately after a fork

— 26—

Descriptor Open file table
tables (shared by
all processes)
Parent's table ~ FileA
fd 0 / _
fd 1 0 :
fd 2 File pos
fd 3 refcnt=2
fd 4 ~
Child's table File B
fd 0 ,
/ .
fd1 File pos
fd 2
fd 3 refcnt=2
fd 4

__— File access

v-node table

(shared by

all processes)

»

File access

File size

File type

File size

File type

15-213, S’08



/O Redirection

Question: How does a shell implement I/O redirection?
unix> Is > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
m Copies (per-process) descriptor table entry oldfd to entry

newfd
Descriptor table Descriptor table
before dup2(4,1) after dup2(4,1)
fd 0 fd 0
fd 1 a fd 1 b
fd 2 > fd 2
fd 3 fd 3
fd 4 b fd 4 b

- 27 — 15-213, S’08



I/O Redirection Example

Before calling dup2(4,1), stdout (descriptor 1) points

to aterminal and descriptor 4 points to an open disk
file.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
____File A
- // .
stdin fd 0 — File access
stdout fd1 — : - -
File siz
stderr fd?2 File pos - €slz€
fd 3 refcnt=1 File type
fd 4 ~ : e
File access
File pos Fllle size
refcnt=1 File type
— 28 — : 15-213, S’08




/O Redirection Example (cont)

After calling dup2(4,1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table

(one table (shared by (shared by
per process) all processes) all processes)
__FileA___ ___ e e ,
fd 0 ! -mmmT T File access,
]:3 ; =1 pos ! . File size i
fd 3 ' refcnt=0 ! . File type
fd 4 ~ L | L |
File access

File pos F.lle size

refcnt=2 File type

—29_ 15-213, S’08



Fun with File Descriptors (1)

#include "‘csapp.h"

int main(int argc, char *argv[])

{
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv[1l];
fdl Open(fname, O RDONLY, 0);
fd2 Open(fname, O RDONLY, 0);
fd3 = Open(fname, O RDONLY, 0);
Dup2(fd2, fd3);
Read(fdl, &cl, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("'cl = %c, c2 = %c, c3 = %c\n', cl, c2, c3);
return O;

}

m Filefdl.c
m What would this program print for file containing “abcde”?

—-30 - 15-213, S’08



Fun with File Descriptors (2)

#include "‘csapp.h"
int main(int argc, char *argv[])

{

int fdi;
iInt s = getpid() & Ox1;
char cl, c2;
char *fname = argv[1l];
fdl = Open(fname, O _RDONLY, 0O);
Read(fdl, &cl, 1);
1T (fork()) {
/* Parent */
sleep(s);
Read(fdl, &c2, 1);
printf(*'"Parent: cl = %c, c2 = %c\n", cl, c2);
} else {
/* Child */
sleep(1-s);
Read(fdl, &c2, 1);
printf("'Chilld: cl1 = %c, c2 = %c\n", cl, c2);
¥

return O;

}
m File fd2.c

-31- m What would this program print for file containing “abcdet® sos




Fun with File Descriptors (3)

#include "csapp.h"
int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname = argv|[1l];

fdl = Open(fname, O _CREAT]JO_TRUNC]O RDWR, S IRUSR|S_IWUSR);
Write(fdl, "pqgrs", 4);

fd3 = Open(fname, O _APPEND|O_WRONLY, 0);

Write(fd3, "jkImn"™, 5);

fd2 = dup(fdl); /* Allocates descriptor */

Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

return O;

m File fd3.c
m What would be contents of resulting file?

—_32_ 15-213, S’08



Standard I/O Functions

The C standard library (Ii1bc.a) contains a collection of
higher-level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard I/O functions:
m Opening and closing files (fopen and fclose)
m Reading and writing bytes (fread and fwrite)
m Reading and writing text lines (Fgets and fputs)
m Formatted reading and writing (fscant and fprintf)

—~33-— 15-213, S’08



Standard 1/O Streams

Standard I/0O models open files as streams

m Abstraction for a file descriptor and a buffer in memory.
m Similar to buffered RIO

C programs begin life with three open streams (defined

_ 34—

In stdio.h)

m stdin (standard input)
m stdout (standard output)
m stderr (standard error)

#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

int main() {
fprintf(stdout,
+

"Hello, world\n');

/* standard input (descriptor 0) */
/* standard output (descriptor 1) */
/* standard error (descriptor 2) */

15-213, S’08



Buffering in Standard /O

m As with RIO, have memory buffer associated with file
m Copy of portion of file

Reading
Buffer
already read unread
Read position /
« Copy in buffer >
File by
not buffered already read unread unseen

Current File Position /

_35_ 15-213, S'08




Buffering in Standard /O

m Only write to file when:
e Buffer filled

® Newline written (typically)
e Call fflush()

Writing
Buffer
already stored not stored
Write position /
File
already stored already stored

Current File Position /

— 36— 15-213, S’08




Buffering in Standard /O

Standard /O functions use buffered 1/0O

printf('h™);

printf('e");
printf(C'l™);
printf(C'I1™);
printf(*'o™);

but | printf('\n");

h | el l I o | \n

fflush(stdout);

write(l, buf += 6, 6);

_37-—
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Unix I/O vs. Standard 1/O vs. RIO

Standard I/O and RIO are implemented using low-level

Unix |/O.

fopen fdopen
fread fTwrite
fscant fprintf
sscanft sprintf
fgets fTputs
fflush fseek
fclose

open read
write Iseek
stat close

<4+----

C application program

N Standard 1/0

functions

RIO
functions

---»

Unix I/O functions

(accessed via system calls)

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

Which ones should you use in your programs?

— 38—
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Pros and Cons of Unix |I/O

Pros

m Unix I/O is the most general and lowest overhead form of 1/O.

® All other I/O packages are implemented using Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard I/O and
RIO packages.

— 39— 15-213, S’08



Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the number of
read and write system calls.

m Short counts are handled automatically.

cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions on streams that
Interact badly with restrictions on sockets

—40 - 15-213, S’08



Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard 1/O functions.

When to use standard 1/0O?
m When working with disk or terminal files.

When to use raw Unix I/O
m When you need to fetch file metadata.
m In rare cases when you need absolute highest performance.

When to use RIO?
m When you are reading and writing network sockets or pipes.
m Never use standard I/O or raw Unix 1/O on sockets or pipes.

- 41 - 15-213, S’08



For Further Information

The Unix bible:

m W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2"d Edition, Addison
Wesley, 2005.

® Updated from Stevens’ 1993 book

Stevens Is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999
m But others have taken up his legacy

—42 — 15-213, S’08



Working with Binary Files

Binary File Examples
m Object code
m Images (JPEG, GIF)
m Arbitrary byte values

Functions you shouldn’t use

m Line-oriented I/O
® fgets, scanf, printf, rio_readlineb
» use rio_readn or rio_readnb instead
® Interprets byte value Ox0A (‘\n’) as special

m String functions
® strlen, strcpy
® Interprets byte value 0 as special

— 43—
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Java |/O

Standard Java Streams are Unbuffered
m Every read/write call invokes OS
m Preferable to “wrap” stream with buffered stream

Java Distinguishes Characters from Bytes

m Characters: Various encodings to allow more than ASCII
characters

BufferedReader i1n =

new BufferedReader(new FileReader('char-in.txt"));
BufferedWriter out =

new BufferedWriter(new FileWriter('char-out.txt™));

m Bytes: Always 8 bits. Used for binary data

BufferedlnputStream In =

new BufferedlnputStream(new FilelnputStream("binary-in.txt"));
BufferedOutputStream out =

new BufferedOutputStream(new FileOutputStream(“'binary-out.txt'™));

— 44 — 15-213, S’'08
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