15-213

“The course that gives CMU its Zip!”

Concurrent Programming
April 24, 2008

Topics
= Limitations of iterative servers
= Process-based concurrent servers
= Threads-based concurrent servers
= Event-based concurrent servers

class24.ppt

Concurrent Programming Is Hard!

The human mind tends to be sequential
The notion of time is often misleading

Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impos sible

Classical problem classes of concurrent programs:

= Races: outcome depends on arbitrary scheduling deci sions
elsewhere in the system
= Example: who gets the last seat on the airplane?

= Deadlock: improper resource allocation prevents for ward progress
= Example: traffic gridlock

= Livelock / Starvation / Fairness: external events a nd/or system
scheduling decisions can prevent sub-task progress
= Example: people always jump in front of you in line

Many aspects of concurrent programming are beyond t he scope of
15-213

? 15-213, S'08

Echo Server Operation

open_clientfd

Client /
Server
Session

Client Server
\
socket socket
bind » open_listenfd
listen
_ J
Connection l
connect | fequest accept <
A\ 4 A\ 4
» rio_writen » rio_readlineb <
l l Await connection
: : —— request from
rio_readlineb a ro_writen next client
\4 A\ 4
close p----- EOF ___ » rio_readlineb
A 4
close 15-213, S'08

Iterative Servers

lterative servers process one request at a time.

client 1

call connect
ret connect
call write
ret write

close

server
.""m""m""m""m""mt:h callaccept .o
-- 4------“"'-“--‘
....................... » ret accept
______ read
- close
call accept b,
e
ret accept qanrnsmnmenenmrennetne
read - _ _ _
----- >
close

client 2

call connect

ret connect
call write

ret write

close

15-213, S'08

Fundamental Flaw of Iterative Servers

client 1 server client 2
call accept
Ca” ConneCt
.......... >-
ret connect T
.............................. »| ret accept
call fgets
Server blocks |@Tead | call connect
User goes Waiting for JEEEE
data from :
out to lunch Client 1 Client 2 blocks
_ waiting to complete
Client 1 blocks its connection
waiting for user request until after
to type in data lunch!

Solution: use concurrent servers instead.

= Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time.
5 15-213, S'08

Concurrent Servers:
Multiple Processes

Concurrent servers handle multiple requests concur rently.
client 1 server client 2
call connect [cal accept call connect
........... >
ret connect s o
.............................. »| ret accept
call fgets _
Chlldl/ fork
call read call accept

User gOES .. N ret connect
out to lunch ‘retaccept call fgets
Client 1 fork child 2 write
blocks call read

. | call
waiting for 7 read
user to type
in data write \

close end read
close
v ' M ¥ 15-213, S'08

6

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes
= Kernel automatically interleaves multiple logical f lows.
= Each flow has its own private address space.

2. Threads

= Kernel automatically interleaves multiple logical f lows.
= All flows share the same address space.

3. /0 multiplexing with select()

= Programmer manually interleaves multiple logical fl OWS.
= All flows share the same address space.
= Popular for high-performance server designs.

V4 15-213, S'08

Review: Sequential Server

int main(int argc, char **argv)
{
int listenfd, connfd,;
int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen = sizeof(clientaddr);
listenfd = Open_listenfd(port);
while (1) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clien
echo(connfd);
Close(connfd);

}
exit(0);

tlen);

= Accept a connection request
= Handle echo requests until client terminates

15-213, S'08

Inner Echo Loop

void echo(int connfd)
{
size tn;
char buffMAXLINE];
ro_trio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) ! =0){
printf("server received %d bytes\n", n);
Rio_writen(connfd, buf, n);

= Server reads lines of text
= Echos them right back

9] 15-213, S'08

Echo Server. accept

Client L

clientfd

Connection
request

clientfd

Client L ____________

listenfd(3)

O

Server

listenfd(3)

Server

listenfd(3)

Client L

clientfd

10

L

Cj
‘ Server

connfd(4)

lllustrated

1. Server blocks in
accept (), waiting for
connection request on
listening descriptor

| I st enfd.

2. Client makes connection
request by calling and blocking
In connect () .

3. Server receives connf d from
accept (). Client returns from
connect (). Connection is now
established between clientfd
and connf d.

15-213, S'08

Process-Based Concurrent Server

int main(int argc, char **argv)

{
int listenfd, connfd: Fo(rjl; esr?tparate process for each

int port = atoi(argv[1));
struct sockaddr_in clientaddr; Does not aI_Iow_any
communication between

int clientlen=sizeof(clientaddr); different client handlers

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(port);

while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clie ntlen);
if (Fork() ==0) {
Close(listenfd); /* Child closes its listening socket */
echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection wit h client */
exit(0); [* Child exits */
}
Close(connfd); /* Parent closes connected socket (i mportant!) */
}
}

11 15-213, S'08

Process-Based Concurrent Server
(cont)

12

void sigchld_handler(int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)

return;

}

= Reap all zombie children

15-213, S'08

Process Execution Model

Connection Requests

o
»

Listening
Server

Client 1 data | Client 1 Client 2 Client 2 data
> Server Server <

= Each client handled by independent process
= No shared state between them

= When child created, each has copies of listenfd and connfd
= Parent must close connfd , child must close listenfd

13 15-213, S'08

Implementation Issues With
Process-Based Designs

Server must reap zombie children
= to avoid fatal memory leak.

Server must close its copy of connfd .

= Kernel keeps reference count for each socket/open f
= After fork, refcnt(connfd) = 2

= Connection will not be closed until refcnt(connfd)==0

14

le.

15-213, S'08

Pros and Cons of Process-Based
Designs

+ Handles multiple connections concurrently

+ Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

+ Simple and straightforward.
- Additional overhead for process control.

- Nontrivial to share data between processes.

= Requires IPC (interprocess communication) mechanism S
FIFO’s (named pipes), System V shared memory ands emaphores

15 15-213, S'08

Traditional View of a Process

Process = process context + code, data, and stack

16

Process context

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:

VM structures
Descriptor table
brk pointer

SP

brk

Code, data, and stack

stack

shared libraries

run-time heap

read/write data

PC — read-only code/data

15-213, S'08

Alternate View of a Process

Process = thread + code, data, and kernel context

Thread (main thread) Code and Data

shared libraries

SP — brk > :
run-time heap
e read/write data
Condition codes
Stack pointer (SP) 0

Program counter (PC)

Kernel context:

VM structures
Descriptor table
brk pointer

I
I I
I I
I I
I I
I I
I I
: Data registers : PC — read-only code/data
I I
I I
I I
I I
I I
I I

17 15-213, S'08

A Process With Multiple Threads

Multiple threads can be associated with a process

= Each thread has its own logical control flow

= Each thread shares the same code, data, and kernel context
= Share common virtual address space

= Each thread has its own thread id (TID)

Thread 1 (main thread)

Shared code and data

stack 1

shared libraries

Thread 2 (peer thread)

run-time heap

stack 2

Thread 1 context:
Data registers
Condition codes
SP1
PC1

read/write data

read-only code/data

18

Kernel context:

VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

15-213, S'08

Logical View of Threads

Threads associated with process form a pool of peer s.

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

= - _G?""“"_I :

OJOXO,
(oo
19 @

’0
‘e
-

I
I

|

|

|

I

I a | shared code, data
I and kernel context
|

I

|

|

|

I

I

15-213, S'08

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if th elr
logical flows overlap in time.

Otherwise, they are sequential.

Thread A Thread B Thread C
Examples:
= Concurrent: A&B, A&C | | _______________________________________
= Sequential: B & C I

Time [

20 15-213, S'08

Threads vs. Processes

How threads and processes are similar
= Each has its own logical control flow.
= Each can run concurrently.
= Each is context switched.

How threads and processes are different
= Threads share code and data, processes (typically) do not.

= Threads are somewhat less expensive than processes.

= Process control (creating and reaping) is twice as expensive as
thread control.

= Linux/Pentium Ill numbers:
= ~20K cycles to create and reap a process.
= ~10K cycles to create and reap a thread.

21 15-213, S'08

Posix Threads (Pthreads)

Interface
Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs.

= Creating and reaping threads.
= pthread_create()
= pthread_join()

= Determining your thread ID
= pthread_self()

= Terminating threads
= pthread_cancel()
= pthread_exit()

= exit() [terminates all threads], RET [terminates current thread]

= Synchronizing access to shared variables
= pthread_mutex_init
= pthread_mutex_[un]lock
= pthread_cond_init
= pthread_cond_[timed]wait
22 15-213, S'08

The Pthreads "Hello, world" Program

23

/*

* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h"

void *thread(void *vargp);

int main() {

pthread_t tid,; /

Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);

exit(0);
) \

[* thread routine */

void *thread(void *vargp) {
printf("Hello, world'\n");
return NULL;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

15-213, S'08

Execution of Threaded“hello, world”

main thread

call Pthread_create()

oivead remtd o | peer thread
Call Pthread_ioin() =
printf()
main thread waits for return NULL;
peer thread to terminate (peer thread

.......................... te rminates)

Pthread_join() returns |«

exit()
terminates
main thread and
any peer threads

24 15-213, S'08

Thread-Based Concurrent Echo
Server

int main(int argc, char **argv)
{
int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);
pthread t tid;

int listenfd = Open_listenfd(port);

while (1) {
int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &cl ientlen);
Pthread_create(&tid, NULL, echo thread, connfdp);

= Spawn new thread for each client
= Pass it copy of connection file descriptor

= Note use of Malloc()!

25 = Without corresponding Free() 15-213. S08

Thread-Based Concurrent Server
(cont)

[* thread routine */
void *echo_thread(void *vargp)
{
int connfd = *((int *)vargp);
Pthread_detach(pthread_self());
Free(vargp);
echo(connfd);
Close(connfd);
return NULL;

= Run thread in “detached” mode
= Runs independently of other threads
= Reaped when it terminates

= Free storage allocated to hold clientfd
= “Producer-Consumer” model

20 15-213, S'08

80.S ‘cte-GI

LC

(10w Ajjensn ‘sjdwexa siyj ui) si0idisosap 914 =
WaY} Udaamlaq ajels awos -
ss9920.4d ajbuis uiyum speaay) aidinpy -

" J19AI8S
elep g 1ual|d
¢ 1U3l|D

SEYWETS
Buiualsi

-

19A19S
L 1USI|D

r 3

plep | Jual|D

‘mﬁwo:com uoI}o3uUuU0)

[9POIN UOIIN29Xg SS920.d-papeay]

Potential Form of Unintended

Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, & clientlen);
Pthread_create(&tid, NULL, echo_thread, (void *) &c onnfd);
}
}
main thread

connfd = connfd |

oy
nay
"
wa,
LRl
LIS
ay,
"y
"y
LTS
"
LIS
ay
"y
LIS
ay
"a
",
e
",

ay
an

“n

“n
“a
L]
a
Ly
L
“n
"
......
a
a
L]
",
"
"a
Lr]
“a
"a
a
o

Main thread stack

connfd

"y,
“n
"w
......
a
LS
Ly]

LIy
"y
an,
LTS
"y
LIS
"ay
Ll]
o

Peer, stack

Narg-p

Peer, stack

ﬁ/argp

28 ! Why would both copies of vargp point to same location? 15.213 s'08

Issues With Thread-Based Servers

Must run “detached” to avoid memory leak.
= At any point in time, a thread is either joinable or detached.

= Joinable thread can be reaped and killed by other threads.
= must be reaped (with pthread join) to free memory resources.

= Detached thread cannot be reaped or killed by other threads.
= resources are automatically reaped on termination.

= Default state is joinable.
= use pthread detach(pthread_self()) to make detached.

Must be careful to avoid unintended sharing.

= For example, what happens if we pass the address of connfd
to the thread routine?
= Pthread create(&tid, NULL, thread, (void *)&connfd)

All functions called by a thread mustbe thread-safe
= (next lecture)

29 15-213, S'08

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
= e.g., logging information, file cache.

+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and
hard-to-reproduce errors!

= The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads.

= (next lecture)

30 15-213, S'08

Event-Based Concurrent Servers
Using I/O Multiplexing

Maintain a pool of connected descriptors.

Repeat the following forever:

= Use the Unix select() f unction to block until:

(a) New connection request arrives on the listening descriptor.
(b) New data arrives on an existing connected descr iptor.

= If (a), add the new connection to the pool of conne ctions.

= If (b), read any available data from the connection
= Close connection on EOF and remove it from the pool

31 15-213, S'08

The select() Function

select() sleeps until one or more file descriptors in the set readset
ready for reading.

#include <sys/select.h>

int select(int maxfdpl, fd_set *readset, NULL, NULL , NULL);

readset
» Opaque bit vector (max FD_SETSIZE bits) that indicates

membership in a descriptor set.
o |If bit kis 1, then descriptor k is a member of the descriptor set.

maxfdpl

* Maximum descriptor in descriptor set plus 1.
» Tests descriptors 0, 1, 2, ..., maxfdpl - 1 for set membership.

select() returns the number of ready descriptors and sets each bit of
readset to indicate the ready status of its corresponding descriptor.

32 15-213, S'08

Macros for Manipulating Set
Descriptors

void FD_ZERO(fd_set *fdset);
= Turn off all bits in fdset

void FD_SET(int fd, fd_set *fdset);
= Turnon bit fd in fdset

void FD_CLR(int fd, fd_set *fdset);
= Turn off bit fd in fdset

int FD_ISSET(int fd, *fdset);
» |s bit fd In fdset turned on?

33 15-213, S'08

Overall Structure

listenfd
clientfd
ol 10 |
1 7 > Active
2
L4 .
3 -1
_— > |nactive
4 -1
| T
o 12 _
= > Active
6 5
v % 3
8 1
9 1 > Never Used

34

Manage Pool of Connections

= listenfd: Listen for requests
from new clients

= Active clients: Ones with a valid
connection

Use select to detect activity
= New request on listenfd
= Request by active client

Required Activities
= Adding new clients
= Removing terminated clients
= Echoing

15-213, S'08

Representing Pool of Clients

/*

* echoservers.c - A concurrent echo server based o
=

#include "csapp.h"

typedef struct { /* represents a pool of connected
int maxfd; /* largest descriptor in read
fd_setread_set; /* set of all active descript
fd_set ready_set; /* subset of descriptors read
int nready; [* number of ready descriptor

int maxi; I* highwater index into clien
int clientfd[FD_SETSIZE]; /* set of active d
rio_t clientrio[FD_SETSIZE]; /* set of active r

} pool;

int byte_cnt = 0; /* counts total bytes received by

n select

descriptors */
_set */

ors */

y for reading */
s from select */

t array */

escriptors */
ead buffers */

server */

35

15-213, S'08

Pool Example

© 0o N oo oo b W N B+ O

36

listenfd = 3

clientfd

o \,

= maxfd = 12
=maxi =6
read set={3,4,5,7,10, 12}

> Active

> Inactive

> Active

> Never Used

15-213, S'08

Main Loop

int main(int argc, char **argv)
{
int listenfd, connfd, clientlen = sizeof(struct
struct sockaddr_in clientaddr;
static pool pool;

listenfd = Open_listenfd(argv[1]);
init_pool(listenfd, &pool);

while (1) {
pool.ready set = pool.read_set;
pool.nready = Select(pool.maxfd+1, &pool.re
NULL, NULL, NULL);

if (FD_ISSET (listenfd, &pool.ready_set)) {
connfd = Accept(listenfd, (SA *)&client
add_client(connfd, &pool);
}
check_clients(&pool);
}
}

sockaddr_in);

ady_set,

addr,&clientlen);

37

15-213, S'08

Pool Initialization

/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)

{
* Initially, there are no connected descriptor
int i;
p->maxi = -1;

for (i=0; i< FD_SETSIZE; i++)
p->clientfd[i] = -1;

* Initially, listenfd is only member of select
p->maxfd = listenfd,;

FD ZERO(&p->read_set);
FD_SET(listenfd, &p->read_set);

S */

read set */

38

15-213, S'08

Initial Pool

listenfd = 3

clientfd

© 0o N oo oo b W N B+ O

[]

[]
I g ! ! B! B! @B @Fg! N pg 1
NN R EREE RIS

39

= maxfd = 3
= maxi = -1
read set={3}

> Never Used

15-213, S'08

Adding Client

void add_client(int connfd, pool *p) /* add connfd

Lo
int i;
p->nready--;
for (i=0;i<FD_SETSIZE; i++) /* Find availa
if (p->clientfd[i] < 0) {

p->clientfd[i] = connfd;
Rio_readinitb(&p->clientrio[i], connfd)

FD_SET(connfd, &p->read_set); /* Add de

if (connfd > p->maxfd) /* Update max de
p->maxfd = connfd;

to pool p */

ble slot */

sc to read set */

scriptor num */

if (i > p->maxi) /* Update pool high wa ter mark */
p->maxi = i
break;
}
if (i == FD_SETSIZE) /* Couldn't find an empty slot */
app_error("add_client error: Too many clien ts");
}
40 15-213, S'08

Adding Client with fd 11

41

© 0o N oo oo b W N B+ O

1 1 1

listenfd = 3

clientfd

10

12

o \,

= maxfd = 12
"maxi =6

> Active

> Inactive

> Active

> Never Used

read _set={3,4,5,7,10,11,12}

15-213, S'08

Checking Clients

void check_clients(pool *p) { /* echo line from rea
int i, connfd, n;
char buffMAXLINE];
ro_trio;

for (| =0; (| <= p->maxi) && (p->nready > O)’
connfd = p->clientfd[i];
rio = p->clientriolil;

[* If the descriptor is ready, echo a text
if ((connfd > 0) && (FD_ISSET(connfd, &p->r
p->nready--;
if ((n = Rio_readlineb(&rio, buf, MAXLI
byte cnt += n;
Rio_writen(connfd, buf, n);
}
else {/* EOF detected, remove descripto
Close(connfd);
FD_CLR(connfd, &p->read_set);
p->clientfd[i] = -1;
}
}
}
}

dy descs in pool p */

I++) {

line from it */
eady_set))) {

NE)) = 0) {

r from pool */

42

15-213, S'08

Concurrency Limitations

if ((connfd > 0) && (FD_ISSET(connfd, &p->r eady_set))) {
p->nready--;
if ((n = Rio_readlinely(&rio, buf, MAXLI NE)) I=0){

byte cnt += n;
Rio_writen(connfd, buf, n);
}
}

43

Does not return until
complete line received

= Current design will hang up if partial line transmi tted

= Bad to have network code that can hang up if client does
something weird
= By mistake or maliciously

= Would require more work to implement more robust ve rsion

= Must allow each read to return only part of line,a nd reassemble
lines within server

15-213, S'08

Pro and Cons of Event-Based Designs

+ One logical control flow.
+ Can single-step with a debugger.

+ No process or thread control overhead.

= Design of choice for high-performance Web serversa nd
search engines.

- Significantly more complex to code than process- or
thread-based designs.

- Hard to provide fine-grained concurrency
= E.g., our example will hang up with partial lines.

44 15-213, S'08

Approaches to Concurrency

Processes
= Hard to share resources: Easy to avoid unintended s haring
= High overhead in adding/removing clients

Threads

= Easy to share resources: Perhaps too easy
= Medium overhead
= Not much control over scheduling policies

= Difficult to debug
= Event orderings not repeatable

I/O Multiplexing
= Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrenc vy

45 15-213, S'08

