
Concurrent Programming
April 24, 2008

TopicsTopics
� Limitations of iterative servers
� Process-based concurrent servers
� Threads-based concurrent servers
� Event-based concurrent servers

15-213
“The course that gives CMU its Zip!”

class24.ppt

2 15-213, S’08

Concurrent Programming is Hard!
The human mind tends to be sequentialThe human mind tends to be sequential

The notion of time is often misleadingThe notion of time is often misleading

Thinking about all possible sequences of events in a computer Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impos siblesystem is at least error prone and frequently impos sible

Classical problem classes of concurrent programs:Classical problem classes of concurrent programs:
� Races: outcome depends on arbitrary scheduling deci sions

elsewhere in the system
� Example: who gets the last seat on the airplane?

� Deadlock: improper resource allocation prevents for ward progress
� Example: traffic gridlock

� Livelock / Starvation / Fairness: external events a nd/or system
scheduling decisions can prevent sub-task progress
� Example: people always jump in front of you in line

Many aspects of concurrent programming are beyond t he scope of Many aspects of concurrent programming are beyond t he scope of
15-21315-213

3 15-213, S’08

Client /
Server
Session

Echo Server Operation
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

4 15-213, S’08

Iterative Servers

Iterative servers process one request at a time.Iterative servers process one request at a time.

client 1 server client 2

call connect call accept

ret connect
ret accept

call connect

call write
read

ret write
close

close
call accept

ret connect

call write

ret write

close

read

ret accept

close

5 15-213, S’08

Fundamental Flaw of Iterative Servers

Solution: use Solution: use concurrent servers concurrent servers instead.instead.
� Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time.

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

6 15-213, S’08

Concurrent Servers:
Multiple Processes

Concurrent servers handle multiple requests concur rently.Concurrent servers handle multiple requests concur rently.
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call
read

child 2

write

call read

end read

close
close

...

7 15-213, S’08

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes1. Processes
� Kernel automatically interleaves multiple logical f lows.
� Each flow has its own private address space.

2. Threads2. Threads
� Kernel automatically interleaves multiple logical f lows.
� All flows share the same address space.

3. I/O multiplexing with 3. I/O multiplexing with select()select()
� Programmer manually interleaves multiple logical fl ows.
� All flows share the same address space.
� Popular for high-performance server designs.

8 15-213, S’08

Review: Sequential Server

int main(int argc, char **argv)
{
 int listenfd, connfd;
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen = sizeof(clientaddr);
 listenfd = Open_listenfd(port);
 while (1) {

connfd = Accept(listenfd, (SA *)&clientaddr, &clien tlen);
echo(connfd);
Close(connfd);

 }
 exit(0);
}

� Accept a connection request
� Handle echo requests until client terminates

9 15-213, S’08

Inner Echo Loop

void echo(int connfd)
{
 size_t n;
 char buf[MAXLINE];
 rio_t rio;

 Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) ! = 0) {

printf("server received %d bytes\n", n);
Rio_writen(connfd, buf, n);

 }
}

� Server reads lines of text
� Echos them right back

10 15-213, S’08

Echo Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in
accept(), waiting for
connection request on
listening descriptor
listenfd.clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling and blocking
in connect().

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server receives connfd from
accept(). Client returns from
connect(). Connection is now
established between clientfd
and connfd.

connfd(4)

11 15-213, S’08

int main(int argc, char **argv)
{
 int listenfd, connfd;
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen=sizeof(clientaddr);

 Signal(SIGCHLD, sigchld_handler);
 listenfd = Open_listenfd(port);
 while (1) {

connfd = Accept(listenfd, (SA *) &clientaddr, &clie ntlen);
if (Fork() == 0) {
 Close(listenfd); /* Child closes its listening socket */
 echo(connfd); /* Child services client */
 Close(connfd); /* Child closes connection wit h client */
 exit(0); /* Child exits */
}
Close(connfd); /* Parent closes connected socket (i mportant!) */

 }
}

Process-Based Concurrent Server

Fork separate process for each
client

Does not allow any
communication between
different client handlers

12 15-213, S’08

Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)
{
 while (waitpid(-1, 0, WNOHANG) > 0)

;
 return;
}

� Reap all zombie children

13 15-213, S’08

Process Execution Model

� Each client handled by independent process
� No shared state between them
� When child created, each has copies of listenfd and connfd

� Parent must close connfd , child must close listenfd

Client 1
Server

Client 2
Server

Listening
Server

Connection Requests

Client 1 data Client 2 data

14 15-213, S’08

Implementation Issues With
Process-Based Designs

Server must reap zombie childrenServer must reap zombie children
� to avoid fatal memory leak.

Server must Server must closeclose its copy of its copy of connfdconnfd ..
� Kernel keeps reference count for each socket/open f ile.
� After fork, refcnt(connfd) = 2 .
� Connection will not be closed until refcnt(connfd)==0 .

15 15-213, S’08

Pros and Cons of Process-Based
Designs

+ Handles multiple connections concurrently+ Handles multiple connections concurrently

+ Clean sharing model+ Clean sharing model
� descriptors (no)
� file tables (yes)
� global variables (no)

+ Simple and straightforward.+ Simple and straightforward.

- Additional overhead for process control.- Additional overhead for process control.

- Nontrivial to share data between processes.- Nontrivial to share data between processes.
� Requires IPC (interprocess communication) mechanism s

FIFO’s (named pipes), System V shared memory and s emaphores

16 15-213, S’08

Traditional View of a Process

Process = process context + code, data, and stackProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)
Kernel context:
 VM structures
 Descriptor table
 brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

17 15-213, S’08

Alternate View of a Process

Process = thread + code, data, and kernel contextProcess = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

18 15-213, S’08

A Process With Multiple Threads
Multiple threads can be associated with a processMultiple threads can be associated with a process

� Each thread has its own logical control flow
� Each thread shares the same code, data, and kernel context

� Share common virtual address space
� Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

 Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

19 15-213, S’08

Logical View of Threads

Threads associated with process form a pool of peer s.Threads associated with process form a pool of peer s.
� Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

20 15-213, S’08

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if th eir Two threads run concurrently (are concurrent) if th eir
logical flows overlap in time.logical flows overlap in time.

Otherwise, they are sequential. Otherwise, they are sequential.

Examples:Examples:
� Concurrent: A & B, A&C
� Sequential: B & C

Time

Thread A Thread B Thread C

21 15-213, S’08

Threads vs. Processes

How threads and processes are similarHow threads and processes are similar
� Each has its own logical control flow.
� Each can run concurrently.
� Each is context switched.

How threads and processes are differentHow threads and processes are different
� Threads share code and data, processes (typically) do not.
� Threads are somewhat less expensive than processes.

� Process control (creating and reaping) is twice as expensive as
thread control.

� Linux/Pentium III numbers:
� ~20K cycles to create and reap a process.
� ~10K cycles to create and reap a thread.

22 15-213, S’08

Posix Threads (Pthreads)
Interface

Pthreads:Pthreads: Standard interface for ~60 functions that Standard interface for ~60 functions that
manipulate threads from C programs.manipulate threads from C programs.
� Creating and reaping threads.

� pthread_create()
� pthread_join()

� Determining your thread ID
� pthread_self()

� Terminating threads
� pthread_cancel()
� pthread_exit()
� exit() [terminates all threads] , RET [terminates current thread]

� Synchronizing access to shared variables
� pthread_mutex_init
� pthread_mutex_[un]lock
� pthread_cond_init
� pthread_cond_[timed]wait

23 15-213, S’08

The Pthreads "Hello, world" Program

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

24 15-213, S’08

Execution of Threaded“hello, world”

main thread

peer thread

return NULL;main thread waits for
peer thread to terminate

exit()
terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

25 15-213, S’08

Thread-Based Concurrent Echo
Server
int main(int argc, char **argv)
{
 int port = atoi(argv[1]);
 struct sockaddr_in clientaddr;
 int clientlen=sizeof(clientaddr);
 pthread_t tid;

 int listenfd = Open_listenfd(port);
 while (1) {

int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &cl ientlen);
Pthread_create(&tid, NULL, echo_thread, connfdp);

 }
}

� Spawn new thread for each client
� Pass it copy of connection file descriptor
� Note use of Malloc()!

� Without corresponding Free()

26 15-213, S’08

Thread-Based Concurrent Server
(cont)

/* thread routine */
void *echo_thread(void *vargp)
{
 int connfd = *((int *)vargp);
 Pthread_detach(pthread_self());
 Free(vargp);
 echo(connfd);
 Close(connfd);
 return NULL;
}

� Run thread in “detached” mode
� Runs independently of other threads
� Reaped when it terminates

� Free storage allocated to hold clientfd
� “Producer-Consumer” model

28 15-213, S’08

Potential Form of Unintended
Sharing

main thread

peer 1

 while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, & clientlen);
Pthread_create(&tid, NULL, echo_thread, (void *) &c onnfd);

 }
}

connfd

Main thread stack

vargp
Peer1 stack

vargp

Peer2 stack
peer 2

connfd = connfd 1

 connfd = *vargpconnfd = connfd 2

 connfd = *vargp

Race!

Why would both copies of vargp point to same location?

29 15-213, S’08

Issues With Thread-Based Servers
Must run “detached” to avoid memory leak.Must run “detached” to avoid memory leak.

� At any point in time, a thread is either joinable or detached.
� Joinable thread can be reaped and killed by other threads.

� must be reaped (with pthread_join) to free memory resources.
� Detached thread cannot be reaped or killed by other threads.

� resources are automatically reaped on termination.
� Default state is joinable.

� use pthread_detach(pthread_self()) to make detached.

Must be careful to avoid unintended sharing.Must be careful to avoid unintended sharing.
� For example, what happens if we pass the address of connfd
to the thread routine?
� Pthread_create(&tid, NULL, thread, (void *)&connfd) ;

All functions called by a thread must be All functions called by a thread must be thread-safethread-safe
� (next lecture)

30 15-213, S’08

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads+ Easy to share data structures between threads
� e.g., logging information, file cache.

+ Threads are more efficient than processes.+ Threads are more efficient than processes.

--- Unintentional sharing can introduce subtle and --- Unintentional sharing can introduce subtle and
hard-to-reproduce errors!hard-to-reproduce errors!
� The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads.

� (next lecture)

31 15-213, S’08

Event-Based Concurrent Servers
Using I/O Multiplexing

Maintain a pool of connected descriptors.Maintain a pool of connected descriptors.

Repeat the following forever:Repeat the following forever:
� Use the Unix select() f unction to block until:

(a) New connection request arrives on the listening descriptor.
(b) New data arrives on an existing connected descr iptor.

� If (a), add the new connection to the pool of conne ctions.
� If (b), read any available data from the connection

� Close connection on EOF and remove it from the pool .

32 15-213, S’08

The select() Function
select()select() sleeps until one or more file descriptors in the set sleeps until one or more file descriptors in the set readset readset

ready for reading. ready for reading.

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL , NULL);

readset
• Opaque bit vector (max FD_SETSIZE bits) that indicates
membership in a descriptor set.
• If bit k is 1, then descriptor k is a member of the descriptor set.

maxfdp1
• Maximum descriptor in descriptor set plus 1.
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select() returns the number of ready descriptors and sets each bit of
readset to indicate the ready status of its corresponding descriptor.

33 15-213, S’08

Macros for Manipulating Set
Descriptors

void FD_ZERO(fd_set *fdset);void FD_ZERO(fd_set *fdset);

� Turn off all bits in fdset .

void FD_SET(int fd, fd_set *fdset);void FD_SET(int fd, fd_set *fdset);

� Turn on bit fd in fdset .

void FD_CLR(int fd, fd_set *fdset);void FD_CLR(int fd, fd_set *fdset);

� Turn off bit fd in fdset .

int FD_ISSET(int fd, *fdset);int FD_ISSET(int fd, *fdset);

� Is bit fd in fdset turned on?

34 15-213, S’08

Overall Structure
listenfd

10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

• • •

Active

Inactive

Active

Never Used

Manage Pool of ConnectionsManage Pool of Connections
� listenfd: Listen for requests
from new clients

� Active clients: Ones with a valid
connection

Use select to detect activityUse select to detect activity
� New request on listenfd
� Request by active client

Required ActivitiesRequired Activities
� Adding new clients
� Removing terminated clients
� Echoing

35 15-213, S’08

Representing Pool of Clients

/*
 * echoservers.c - A concurrent echo server based o n select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read _set */
 fd_set read_set; /* set of all active descript ors */
 fd_set ready_set; /* subset of descriptors read y for reading */
 int nready; /* number of ready descriptor s from select */

 int maxi; /* highwater index into clien t array */
 int clientfd[FD_SETSIZE]; /* set of active d escriptors */
 rio_t clientrio[FD_SETSIZE]; /* set of active r ead buffers */
} pool;

int byte_cnt = 0; /* counts total bytes received by server */

36 15-213, S’08

Pool Example
� maxfd = 12
� maxi = 6
� read_set = { 3, 4, 5, 7, 10, 12 }10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

37 15-213, S’08

Main Loop
int main(int argc, char **argv)
{
 int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
 struct sockaddr_in clientaddr;
 static pool pool;

 listenfd = Open_listenfd(argv[1]);
 init_pool(listenfd, &pool);

 while (1) {
 pool.ready_set = pool.read_set;
 pool.nready = Select(pool.maxfd+1, &pool.re ady_set,
 NULL, NULL, NULL);

 if (FD_ISSET(listenfd, &pool.ready_set)) {
 connfd = Accept(listenfd, (SA *)&client addr,&clientlen);
 add_client(connfd, &pool);
 }
 check_clients(&pool);
 }
}

38 15-213, S’08

Pool Initialization

/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{
 /* Initially, there are no connected descriptor s */
 int i;
 p->maxi = -1;
 for (i=0; i< FD_SETSIZE; i++)
 p->clientfd[i] = -1;

 /* Initially, listenfd is only member of select read set */
 p->maxfd = listenfd;
 FD_ZERO(&p->read_set);
 FD_SET(listenfd, &p->read_set);
}

39 15-213, S’08

Initial Pool
� maxfd = 3
� maxi = -1
� read_set = { 3 }-1

clientfd

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

• • •

Never Used

listenfd = 3

40 15-213, S’08

Adding Client
void add_client(int connfd, pool *p) /* add connfd to pool p */
{
 int i;
 p->nready--;

 for (i = 0; i < FD_SETSIZE; i++) /* Find availa ble slot */
 if (p->clientfd[i] < 0) {
 p->clientfd[i] = connfd;
 Rio_readinitb(&p->clientrio[i], connfd) ;

 FD_SET(connfd, &p->read_set); /* Add de sc to read set */

 if (connfd > p->maxfd) /* Update max de scriptor num */
 p->maxfd = connfd;
 if (i > p->maxi) /* Update pool high wa ter mark */
 p->maxi = i;
 break;
 }
 if (i == FD_SETSIZE) /* Couldn't find an empty slot */
 app_error("add_client error: Too many clien ts");
}

41 15-213, S’08

Adding Client with fd 11
� maxfd = 12
� maxi = 6
� read_set = { 3, 4, 5, 7, 10, 11, 12 }10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

• • •

Active

Inactive

Active

Never Used

listenfd = 3

11

� maxfd = 12
� maxi = 6
� read_set = { 3, 4, 5, 7, 10, 12 }

42 15-213, S’08

Checking Clients
void check_clients(pool *p) { /* echo line from rea dy descs in pool p */
 int i, connfd, n;
 char buf[MAXLINE];
 rio_t rio;

 for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
 connfd = p->clientfd[i];
 rio = p->clientrio[i];

 /* If the descriptor is ready, echo a text line from it */
 if ((connfd > 0) && (FD_ISSET(connfd, &p->r eady_set))) {
 p->nready--;
 if ((n = Rio_readlineb(&rio, buf, MAXLI NE)) != 0) {
 byte_cnt += n;
 Rio_writen(connfd, buf, n);
 }
 else {/* EOF detected, remove descripto r from pool */
 Close(connfd);
 FD_CLR(connfd, &p->read_set);
 p->clientfd[i] = -1;
 }
 }
 }
}

43 15-213, S’08

Concurrency Limitations

� Current design will hang up if partial line transmi tted
� Bad to have network code that can hang up if client does
something weird
� By mistake or maliciously

� Would require more work to implement more robust ve rsion
� Must allow each read to return only part of line, a nd reassemble

lines within server

 if ((connfd > 0) && (FD_ISSET(connfd, &p->r eady_set))) {
 p->nready--;
 if ((n = Rio_readlineb(&rio, buf, MAXLI NE)) != 0) {
 byte_cnt += n;
 Rio_writen(connfd, buf, n);
 }
 }

Does not return until
complete line received

44 15-213, S’08

Pro and Cons of Event-Based Designs

+ One logical control flow.+ One logical control flow.

+ Can single-step with a debugger.+ Can single-step with a debugger.

+ No process or thread control overhead.+ No process or thread control overhead.
� Design of choice for high-performance Web servers a nd
search engines.

- Significantly more complex to code than process- or - Significantly more complex to code than process- or
thread-based designs.thread-based designs.

- Hard to provide fine-grained concurrencyHard to provide fine-grained concurrency
� E.g., our example will hang up with partial lines.

45 15-213, S’08

Approaches to Concurrency

ProcessesProcesses
� Hard to share resources: Easy to avoid unintended s haring
� High overhead in adding/removing clients

ThreadsThreads
� Easy to share resources: Perhaps too easy
� Medium overhead
� Not much control over scheduling policies
� Difficult to debug

� Event orderings not repeatable

I/O MultiplexingI/O Multiplexing
� Tedious and low level
� Total control over scheduling
� Very low overhead
� Cannot create as fine grained a level of concurrenc y

