
Andrew login ID:

Full Name:

Recitation Section:

CS 15-213, Spring 2009
Exam 1

Tues., February 24, 2009

Instructions:

• Make sure that your exam is not missing any sheets, then writeyour full name, Andrew login ID, and
recitation section (A–J) on the front.

• Write your answers in the space provided for the problem. If you make a mess, clearly indicate your
final answer.

• The exam has a maximum score of 100 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like.No calculators or other
electronic devices are allowed.

• Good luck!

1 (16):

2 (22):

3 (13):

4 (13):

5 (22):

6 (14):

TOTAL (100):

Page 1 of 17

Problem 1. (16 points):
Consider a new floating point format that follows the IEEE spec you should be familiar, except with 3
exponent bits and 2 fraction bits (and 1 sign bit). Fill in allblank cells in the table below.If, in the process
of converting a decimal number to a float, you have to round, write the rounded value next to the original
decimal as well.

Description Decimal Binary Representation

Bias -----

Smallest positive number

Lowest finite

Smallest positive normalized

----- −
6

16

----- 6

4

----- 1 010 10

----- 11

Page 2 of 17

Problem 2. (22 points):
Consider the C code written below and compiled on a 32-bit Linux system using GCC.

struct s1
{

int y;
short x;

};

struct s2
{

struct s1 a;
struct s1 * b;
int x;
char c;
int y;
char e[5];
int z;

};

short fun1(struct s2 * s)
{

return s->a.x;
}

void * fun2(struct s2 * s)
{

return &s->z;
}

int fun3(struct s2 * s)
{

return s->z;
}

short fun4(struct s2 * s)
{

return s->b->x;
}

Page 3 of 17

a) What is the size ofstruct s2 ?

b) How many bytes are wasted for padding?

You may use the rest of the space on this page for scratch spaceto help with the rest of this problem.
Nothing written below this line will be graded.

Page 4 of 17

c) Which of the following correspond to functionsfun1 , fun2 , fun3 , andfun4 ?

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
movswl 0x4(%eax),%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
mov 0x8(%eax),%eax
movswl 0x4(%eax),%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
mov 0x20(%eax),%eax
pop %ebp
ret

ANSWER: ________

push %ebp
mov %esp,%ebp
mov 0x8(%ebp),%eax
add $0x20,%eax
pop %ebp
ret

ANSWER: ________

Page 5 of 17

d) Assume a variable is declared asstruct s2 myS2; and the storage for this variable begins at ad-
dress0xbfbdc300 .

(gdb) x/20w &myS2
0xbfbdc300: 0x000000d5 0x0000000f 0xbfbdc338 0x00000000
0xbfbdc310: 0x000000ff 0x0000012c 0x01020501 0xb7f0a603
0xbfbdc320: 0x0000000c 0x080496a0 0xbfbdc338 0x0804828d
0xbfbdc330: 0xb7ed9fd5 0xb7fc1ff4 0x000000f3 0x08040012
0xbfbdc340: 0xb7eda0b9 0xb7fc1ff4 0xbfbdc3a8 0xb7ec6dce

Fill in all the blanks below.

HINTS: Label the fields. Not all 20 words are used. Remember endianness!

What would be returned by:

fun1(&myS2) = 0x___________

fun2(&myS2) = 0x___________

fun3(&myS2) = 0x___________

fun4(&myS2) = 0x___________

What is the value of:

myS2.b->y = 0x___________

myS2.a.y = 0x___________

myS2.z = 0x___________

myS2.e[1] = 0x___________

Page 6 of 17

Problem 3. (13 points):
This problem concerns assembly code generated by GCC for a function containing a switch statement on
an x86-64 machine.

Below is the entire assembly dump of the function selector, whose C skeleton is given subsequently.

0000000000400470 <selector>:
400470: 8d 46 01 lea 0x1(%rsi),%eax
400473: 83 f8 06 cmp $0x6,%eax
400476: 77 1a ja 400492 <selector+0x22>
400478: 89 c0 mov %eax,%eax
40047a: ff 24 c5 a0 05 40 00 jmpq * 0x4005a0(,%rax,8)
400481: 48 83 c7 04 add $0x4,%rdi
400485: eb 0e jmp 400495 <selector+0x25>
400487: 8b 37 mov (%rdi),%esi
400489: eb 0a jmp 400495 <selector+0x25>
40048b: d1 fe sar %esi
40048d: 83 c6 05 add $0x5,%esi
400490: eb 03 jmp 400495 <selector+0x25>
400492: 8d 34 f6 lea (%rsi,%rsi,8),%esi
400495: 48 63 c6 movslq %esi,%rax
400498: 8b 04 87 mov (%rdi,%rax,4),%eax
40049b: c3 retq

The code at line 40047a uses an indirect jump to index into a jump table:

40047a: ff 24 c5 a0 05 40 00 jmpq * 0x4005a0(,%rax,8)

In GDB, we examine the memory dump at address0x4005a0 which produces the following output:

(gdb) x /8g 0x4005a0
0x4005a0: 0x0000000000400487 0x0000000000400481
0x4005b0: 0x0000000000400492 0x000000000040048d
0x4005c0: 0x000000000040048b 0x0000000000400492
0x4005d0: 0x0000000000400481 0x0000002c3b031b01

Page 7 of 17

Fill in the blank portions of C code below to reproduce the function corresponding to this object code.

int selector (int * x, int y) {

switch (y) {

case ____:

case ____:

____________;

break;

case ____:

y = ________;

break;

case ____:

y = ________;

case ____:

y = ________;

break;

default:

y = ________;
}

return ________;

}

Page 8 of 17

Problem 4. (13 points):
The function below is hand-written assembly code for a sorting algorithm. Fill in the blanks on the next
page by converting this assembly to C code.

.globl mystery_sort # exports the symbol so other .c files
can call the function

mystery_sort:
dec %rsi

xor %rdx, %rdx
inc %rdx
jmp loop1_check

loop1:
xor %rdx, %rdx
mov %rsi, %rcx
jmp loop2_check

loop2:
dec %rcx
mov 8(%rdi, %rcx, 8), %r8
mov (%rdi, %rcx, 8), %r9
cmp %r8, %r9
jle loop2_check
mov %r8, (%rdi, %rcx, 8)
mov %r9, 8(%rdi, %rcx, 8)
inc %rdx

loop2_check:
test %rcx, %rcx
jnz loop2

loop1_check:
test %rdx, %rdx
jnz loop1

ret

Page 9 of 17

void mystery_sort (long * array, long len)
{

long a, b, tmp;

do
{

a = _____;

for (b = _____; b > _____; b--)
{

if (array[_____] > array{_____])
{

tmp = array[_____];

array[_____] = array[_____];

array[_____] = tmp;

a++;

}

}

} while (a > _____);

}

Page 10 of 17

Problem 5. (22 points):
Circle the correct answer.

1. What register is the return value from a function stored in? (Assume 32 bit return value)

(a) eip

(b) ebp

(c) eax

(d) esp

2. The pushl instruction does what to the stack pointer?

(a) decrements the stack pointer by 4 bytes

(b) decrements the stack pointer by 1 byte

(c) increments the stack pointer by 4 bytes

(d) increments the stack pointer by 1 byte

3. What does the test instruction do before setting condition flags?

(a) bitwise and

(b) subtraction

(c) bitwise xor

(d) bitwise bang

4. On the x8664 fish machines, what is the size of an int?

(a) 1 byte

(b) 32 bytes

(c) 4 bytes

(d) 8 bytes

5. Which of the following represents the order of the registers that store the first four arguments to a
function in x8664?

(a) rdi, rsi, rcx, rdx

(b) rax, rbx, rsi, rdi

(c) rsi, rdi, rdx, rbx

(d) rdi, rsi, rdx, rcx

Page 11 of 17

6. The˜ operator performs what operation on a value?

(a) bitwise complement

(b) logical complement

(c) reverses the order of the bits

(d) determines if the number is zero

7. What byte ordering system do the fish machines use?

(a) Little endian

(b) Big endian

(c) Intel x86 64

(d) at&t syntax

8. In the Intel IA32 architecture, function arguments are passed

(a) on the stack

(b) in registers

(c) on the hard drive

(d) on the heap

9. Placing a breakpoint on an instruction with GDB halts program execution

(a) before the specified instruction is executed

(b) immediatly after the specified instruction is executed

(c) while the specified instruction is executed

(d) GDB cannot place breakpoints

10. 32-bit systems can support 64-bit assembly code

(a) TRUE

(b) FALSE

11. Assuming the register %rbx contains the value 0xf123f234f345f456, which instruction would cause
the register %rdi to contain the value 0xfffffffff345f456?

(a) movl %ebx, %rdi

(b) movslq %ebx, %rdi

(c) movzlq %ebx, %rdi

(d) lea %ebx, %rdi

Page 12 of 17

Problem 6. (14 points):
Throughout this question, remember that it might help you todraw a picture. It helps us see what you’re
thinking when we grade you, and you’ll be more likely to get partial credit if your answers are wrong.

Consider the following C code:

void foo(int a, int b, int c, int d) {
int buf[16];
buf[0] = a;
buf[1] = b;
buf[2] = c;
buf[3] = d;
return;

}

void bar() {
foo(0x15213, 0x18243, 0xdeadbeef, 0xcafebabe)

}

Page 13 of 17

When compiled with default options (32-bit), it gives the following assembly:

00000000 <foo>:
0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 83 ec 40 sub $0x40,%esp

6: 8b 45 08 mov _____(%ebp),%eax //temp = a;
9: 89 45 c0 mov %eax,-0x40(%ebp) //buf[0] = temp;

c: 8b 45 0c mov _____(%ebp),%eax //temp = b;
f: 89 45 c4 mov %eax,-0x3c(%ebp) //buf[1] = temp;

12: 8b 45 10 mov _____(%ebp),%eax //temp = c;
15: 89 45 c8 mov %eax,-0x38(%ebp) //buf[2] = temp;

18: 8b 45 14 mov _____(%ebp),%eax //temp = d;
1b: 89 45 cc mov %eax,-0x34(%ebp) //buf[3] = temp;
1e: c9 leave
1f: c3 ret

00000020 <bar>:
20: 55 push %ebp
21: 89 e5 mov %esp,%ebp
23: 83 ec 10 sub $0x10,%esp
26: c7 44 24 0c be ba fe ca movl $0xcafebabe,0xc(%esp)
2e: c7 44 24 08 ef be ad de movl $0xdeadbeef,0x8(%esp)
36: c7 44 24 04 43 82 01 00 movl $0x18243,0x4(%esp)
3e: c7 04 24 13 52 01 00 movl $0x15213,(%esp)
45: e8 fc ff ff ff call foo
4a: c9 leave
4b: c3 ret

Page 14 of 17

a) Very briefly explain what purpose is served by the first three lines of the disassembly of foo (just repeat-
ing the code in words is not sufficient). No more than one sentence should be necessary here.

b) Note that in foo (C version), each of the four arguments are accessed in turn. The assembly dump of
foo is commented to show where this is done. Recall that the current %ebpvalue points to where the
pushed old base pointer resides, and immediately above thatis the return address from the function call.
Write into the gaps in the disassembly of foo the offsets from%ebpneeded to access each of the four
argumentsa, b, c , andd. (Hint: Look at how they are arranged in bar before the call.)

Page 15 of 17

GCC has a compile option called-fomit-frame-pointer . When given this flag in addition to the
previous flags, the function foo is compiled like this:

00000000 <foo>
83 ec 40 sub $0x40,%esp

8b 44 24 44 mov ____(%esp),%eax //temp = a;
89 04 24 mov %eax,(%esp) //buf[0] = temp;

8b 44 24 48 mov ____(%esp),%eax //temp = b;
89 44 24 04 mov %eax,0x4(%esp) //buf[1] = temp;

8b 44 24 4c mov ____(%esp),%eax //temp = c;
89 44 24 08 mov %eax,0x8(%esp) //buf[2] = temp;

8b 44 24 50 mov ____(%esp),%eax //temp = d;
89 44 24 0c mov %eax,0xc(%esp) //buf[3] = temp;
83 c4 40 add $0x40,%esp
c3 ret

c) What is the difference between the first few lines of foo in thefirst compilation and in this compilation?
What does this mean about what the stack frame looks like? (Consider drawing a before/after picture.)

Page 16 of 17

d) Note what has changed in how the argumentsa, b, c , d and the stack-allocated buffer are accessed:
they are now accessed relative to%esp instead of%ebp. Considering that the arguments are in the
same place when foo starts as last time, and recalling what has changed about the stack this time around
(note: the pushed return address is still there!), fill in theblanks on the previous page to correctly access
the function’s arguments.

e) Consider what the compiler has done:foo is now using its stack frame without dealing with the base
pointer at all... and, in fact, all functions in the program compiled with-fomit-frame-pointer
also do this. What is a benefit of doing this? (0-point bonus question: What is a drawback?)

Page 17 of 17

