Carnegie Mellon

Bits, Bytes, and Integers (1-2)
15-213/18-243: Introduction to Computer Systems
2" Lecture, 13 January 2011

Instructors:
Gregory Kesden and Anthony Rowe

Carnegie Mellon

Last Time: Course Overview

m Course Theme:

Abstraction Is Good But Don’t Forget Reality

m 5 Great Realities
" |nts are not Integers, Floats are not Reals
" You've Got to Know Assembly
" Memory Matters
" There’s more to performance than asymptotic complexity
"= Computers do more than execute programs

m Administrative / Logistics details

Today: Bits, Bytes, and Integers (1-2)

m Representing information as bits

Carnegie Mellon

Binary Representations

3.3V
2.8V

0.5V
0.0V

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002 t0 11111111>
= Decimal: 010 to 25510

" Hexadecimal 0016 to FFi6

%
S,

W@y 01| |w N = o | @
Q

o

o

|_\

o

= Base 16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F
= Write FA1D37B16 in C as

— OxFA1D37B

— Oxfald37b

e Y (!
w N = (o
|_\
|_\

o
)

[
IR
—
=
—
(@)

HIE O [lolo|ludloy o s jw o - o

|_\
@)
|_\
|_\
|_\
|_\

Carnegie Mellon

Literary Hex

m Common 8-byte hex fillers:
= Oxdeadbeef
= OxcOffeeee
= Can you think of other 8-byte fillers?

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
= Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others

m Compiler + Run-Time System Control Allocation

= Where different program objects should be stored
= All allocation within single virtual address space

Carnegie Mellon

Machine Words

m Machine Has “Word Size”

®" Nominal size of integer-valued data

= Including addresses
" Most current machines use 32 bits (4 bytes) words

= Limits addresses to 4GB

= Becoming too small for memory-intensive applications
" High-end systems use 64 bits (8 bytes) words

= Potential address space = 1.8 X 10%° bytes

= x86-64 machines support 48-bit addresses: 256 Terabytes
" Machines support multiple data formats

= Fractions or multiples of word size

= Always integral number of bytes

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words 7
Locations 0000
]) Addr

= Address of first byte in word = 0001
. . 0000 0002

" Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Carnegie Mellon

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

Carnegie Mellon

Byte Ordering

m How should bytes within a multi-byte word be ordered in
memory?

m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address

Carnegie Mellon

Byte Ordering Example

m Big Endian

= Least significant byte has highest address
m Little Endian

= |east significant byte has lowest address
m Example

= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103

01 23 45 6’/

Little Endian 0x100 0x101 0x102 0x103

6’/ 45 23 01

Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop sebx

8048366: 81l c¢c3 ab 12 00 00 add $0x12ab, $ebx
804836c: 83 bb 28 00 ®0O 00 00 cmpl SOx0, 0x28 ($ebx)

m Deciphering Numbers

= Value: Ox12ab
" Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

volid show_bytes(pointer start, int len){
int 1;
for (1 =0; 1 < len; 1++)
printf(P%p\tox%.2x\n",start+1, start[i]);
printf("\n");

}

Printf directives:
%p: Print pointer
%X : Print Hexadecimal

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 Oxo6d
Ox11ffffcb9 0x3b
Ox11lffffcba 0x00
Ox11ffffcbb 0x00

Carnegie Mellon

Decimal: 15213

Representing Integers [Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
IA32, x86-64 Sun
IA32 x86-64 Sun
6D
3B
00
00

int B = -15213;
IA32, x86-64 Sun

Two’s complement representation
(Covered later)

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun I1A32 x86-64
EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
/F
00
00

Different compilers & machines assign different locations to objects

Carnegie Mellon

Representing Strings

char S[6] = "18243";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha Sun
= Standard 7-bit encoding of character set 31 | J 31
= Character “0” has code 0x30 38 |+ | 38
— Digit i has code 0x30+i 32 | {37
= String should be null-terminated !’ 32
= Final character =0 33 |k 33
m Compatibility 00 {00

= Byte ordering not an issue

Carnegie Mellon

Today: Bits, Bytes, and Integers

|
m Bit-level manipulations

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0(0 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
m “A=1when A=0 s AAB =1 when either A=1 or B=1, but not both
~| A0 1
O] O(0 1
110 111 0

Carnegie Mellon

Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as 0

A&~B
Connection when

o—< >—0 A&~B | ~A&B

~A&B = AAB

Carnegie Mellon

Boolean Algebra = Integer Ring

!

= Commutativity

A|B =BJ|A A+B =B+A

A&B =B&A A*B =B*A
= Associativity

(Al B) |C =A|(B]|C) (A+B)+C = A+(B+C)

(A&B)&C = A&(B&C() (A*B)*C = A*(B*C(C)
" Product distributes over sum

A&(B|C)=(A&B)|(A&C) A*B+C)=A*B+B*C
" Sum and product identities

A|lO0O=A A+0 =A

A&1 =A A*1 =A
m Zero is product annihilator

A&0 =0 A*0 =0

= Cancellation of negation
~(~A)= A —(—A) = A

Carnegie Mellon

Boolean Algebra # Integer Ring
= Boolean: Sum distributes over product
A|(B&C)=(A|B)&(A]|C) A+(B*C) = (A+B)*(A+C)
= Boolean: Idempotency
A|lA=A A+A=A
= “Ais true” or “Ais true” = “A is true”
A&A = A A*A=A
= Boolean: Absorption
A|l(A&B) = A A+(A*B)=A
= “Ais true” or “Ais true and B is true” = “A is true”
A&(A|B) =A A*(A+B)=A
" Boolean: Laws of Complements
A|l~A =1 A+-A=1

= “Ais true” or “Ais false”
= Ring: Every element has additive inverse
A|~A=0 A+-A=0

Carnegie Mellon

Relations Between Operations

DeMorgan’s Laws

m Express & in terms of |, and vice-versa
e A&B = ~(~A|~B)
» A and B are true if and only if neither A nor B is false
e A|B = ~(~A&~B)
» A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or
e AB = (~A&B)|(A&~B)
» Exactly one of A and B is true
e AB = (A|B)&~A&B)
» Either A is true, or B is true, but not both

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~_ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Carnegie Mellon

Representing & Manipulating Sets
m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

= aj=1ifj] €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Carnegie Mellon

Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
-« long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~Px41 = OxBE
« ~01000001, — 10111110;
= ~Qx00 — OxFF
= ~00000000; - 11111111,
= Px69 & 0Ox55 = 0x41
» 01101001; & 01010101, —» 01000001:
= Ox69 | Ox55 = Ox7D

- 01101001; | 01010101, = 01111101>

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &, |, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1

= Early termination

m Examples (char data type)
= 10x41 - 0x00
= 19x00 - Ox01

110x41 = 0x01

0x09 && Ox55 = 0x01
0xe9 || @x55 = 0x01

p && *p (avoids null pointer access)

Carnegie Mellon

Shift Operations

m LeftShift: X <<y Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with @’s on right
m Right Shift: X >> ¥y
= Shift bit-vector X right y positions
= Throw away extra bits on right Argument x [10100010
= |ogical shift << 3 00010000
= Fill with @’s on left
= Arithmetic shift
= Replicate most significant bit on right

Log. >> 2 | 00011000

Arith. >> 2100011000

Log.>> 2 | 00101000

Arith. >> 2111101000

m Undefined Behavior

= Shift amount < 0 or = word size

Cool Stuff with Xor

= Bitwise Xor is form of void funny(int *x, int *y)
” {
addition kx = *x A ky; Jx #1 %/
= With extra property that ky = *x A *y; /* #2 */
every value is its own *x = *x A *y; /* #3 */
additive inverse }
AMA=0
* 5 *y
Begin |A B
1 A’B B
2 A’B (A’B) "B = A
3 (A”B)“A = B|A
End |[B A

Carnegie Mellon

More Fun with Bitvectors

Bit-board representation of chess position:
unsigned long long blk king, wht king, wht rook mv2,.;

printf (”Yes\n”) ;

8 wht king = 0x0000000000001000ull;
7 blk king = 0x0004000000000000ull;
6 wht rook mv2 = 0x10e£f101010101010ull;
5 /*
* Is black king under attach from

4 * white rook ?
3 */

if (blk_king & wht rook mv2)
2
1

Carnegie Mellon

More Bitvector Magic

m Count the number of 1’s in a word
= Naive Approach

int bitcount (unsigned int n)

{
int count=0;
while(n |=0)
{
count += n & 1;
n >>=1;

}

return count;

Carnegie Mellon

More Bitvector Magic

m Count the number of 1’s in a word
= Divide-and-conquer Approach

int bitcount (unsigned int n)

{

n = (n & 0x55555555) + ((n >> 1) & 0x55555555) ;

n = (n & 0x33333333) + ((n >> 2) & 0x33333333);

n = (n & Ox0£f0£f0£f0£f) + ((n >> 4) & 0x0f0£f0£f0f) ;

n=(n & 0x00££00£f£f) + ((n >> 8) & O0xO00ffO00ff) ;

n = (n & 0x0000£f£f£ff) + ((n >> 16) & OxO0000ffff) ;
return (n & 0x0000003f) ;

Carnegie Mellon

More Bitvector Magic

m Count the number of 1’s in a word
= MIT Hackmem 169:

int bitcount (unsigned int n)

{
unsigned int tmp;

tmp = n - ((n >> 1) & 033333333333)
- ((n >> 2) & 011111111111);
return ((tmp + (tmp >> 3)) & 030707070707) %63;

Carnegie Mellon

More Bitvector Uses

Representation of small sets

Representation of polynomials:
m Important for error correcting codes
m Arithmetic over finite fields, say GF(2/n)

m Example 0x15213 : x16+ x4+ x2+ 2+ x*+x + 1

Representation of graphs
m A ‘1’ represents the presence of an edge

Representation of bitmap images, icons, cursors, ...

m Exclusive-or cursor patent

Representation of Boolean expressions and logic circuits

Today: Bits, Bytes, and Integers (1-2)

= Summary

Carnegie Mellon

Summary
It’s All About Bits & Bytes

® Numbers
® Programs

m Text

Different Machines Follow Different Conventions for
m Word size
m Byte ordering
m Representations

Boolean Algebra is the Mathematical Basis
m Basic form encodes “false” as 0, “true” as 1

m General form like bit-level operations in C
® Good for representing & manipulating sets

