Carnegie Mellon

Machine-Level Programming V:

Advanced Topics
15-213/18-243, Spring 2011
oth Lecture, Feb. 8t"

Instructors:
Gregory Kesden & Anthony Rowe

Carnegie Mellon

Today

m Structures
= Alignment

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

Carnegie Mellon

Structures & Alignment

m Unaligned Data struct S1 {
: : char c;
c| i[O0] i[1] e int i[2];
p p+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data

" Primitive data type requires K bytes
= Address must be multiple of K

o] i[0] i[1] v
p+0 pt+4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Carnegie Mellon

Alignment Principles

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on IA32
= treated differently by IA32 Linux, x86-64 Linux, and Windows!

m Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)

= |nefficient to load or store datum that spans quad word
boundaries

= Virtual memory very tricky when datum spans 2 pages

m Compiler

" |nserts gaps in structure to ensure correct alignment of fields

Specific Cases of Alignment (I1A32)

m 1byte: char, ..
" no restrictions on address
m 2 bytes: short, ...
= |owest 1 bit of address must be 02
m 4 bytes: int, float, char *,..

= |owest 2 bits of address must be 00>

m 8 bytes: double, ...
= Windows (and most other OS’s & instruction sets):
= |owest 3 bits of address must be 000>
" Linux:
= |owest 2 bits of address must be 00;
= j.e., treated the same as a 4-byte primitive data type

m 12 bytes: long double
= Windows, Linux:

= |owest 2 bits of address must be 002
= j.e., treated the same as a 4-byte primitive data type

Carnegie Mellon

Specific Cases of Alignment (x86-64)

m 1byte: char, ..
" no restrictions on address
m 2 bytes: short, ...
= |owest 1 bit of address must be 02
m 4 bytes: int, float, ..
= Jowest 2 bits of address must be 002
m 8 bytes: double, char *, ..

= Windows & Linux:

» |[owest 3 bits of address must be 000>

m 16 bytes: long double
" Linux:
= |owest 3 bits of address must be 000>
= j.e., treated the same as a 8-byte primitive data type

Carnegie Mellon

Satisfying Alignment with Structures

m Within structure:

struct S1 {

® Must satisfy each element’s alignment requirement char c:
m Overall structure placement S E{1s))
double v;
® Each structure has alignment requirement K } *p;
= K =Largest alignment of any element
" |nitial address & structure length must be multiples of K
m Example (under Windows or x86-64):
" K=8, due to double element
o) i[0] i[l] v
p+0 pt+4 p+8 p+16 pt+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

Carnegie Mellon

Different Alignment Conventions

struct S1 {

m x86-64 or IA32 Windows: char c;
= K=38,duetodouble element cllzzb]l_izi
} *p;
c i[0] i[1l] v
p+0 pt4 p+8 pt+16 pt+24

m |IA32 Linux
" K=4; double treated like a 4-byte data type

c i[O0] i[1] v
pt0 pt4 p+8 pt+1l2 p+20

Carnegie Mellon

Meeting Overall Alighment Requirement

m For largest alighment requirement K struct S2 {
. 1 ;
m Overall structure must be multiple of K double v
int i[2];
char c;
} *p
v i[0] i[l] C

p+0 pt+8 pt+16 pt24

Carnegie Mellon

Arrays of Structures

struct S2 {
m Overall structure length double v;
multiple of K e () 5
char c;
m Satisfy alignment requirement } a[10];

for every element

a[0] a[l] a[2] o o o
a+0 a+24 a+48 a+72

v i[0] i[1] C
a+24 a+32 a+40 a+48

Carnegie Mellon

Accessing Array Elements struct S3 {
short 1i;
float v;
m Compute array offset 12i short j;
" sizeof (S3), including alignment spacers b a[l0];
m Element j is at offset 8 within structure
m Assembler gives offset a+8
= Resolved during linking
alo] e il 3 N e
a+0 a+12 a+l2i1i
i v]
a+l2i a+l1l2i+8

short get j(int idx) # %eax = idx
{ (]

t L dx] 4 leal (%eax,%eax,2),%eax # 3*idx
) return alidx].3; movswl a+8(,%eax,4),%eax

Saving Space

m Put large data types first

struct S4 {
char c;
int 1i;
char d;

} *p;

m Effect (K=4)

=

struct S5 {
int i;
char c;
char d;

} *ps

Carnegie Mellon

Carnegie Mellon

Today

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

Carnegie Mellon

Union Allocation

m Allocate according to largest element
m Can only use one field at a time

union Ul {
char c;
int i[2]; c
double v; i[0] i[1]

} *up;

struct S1 { up+0 up+4 up+8
char c;
int i[2];
double v;
} *sp;

c i[O0] i[1] v

sp+0 sp+4 sp+8 sp+16 sp+24

Carnegie Mellon

Using Union to Access Bit Patterns

typedef union ({
float £;
unsigned u;

} bit float t; 0 4

float bit2float (unsigned u) unsigned float2bit(float f£f)
{ {

bit float t arg; bit float t arg;
arg.u = u; arg.f = £;
return arg.f; return arg.u;

} }

Same as (float) u? Same as (unsigned) f£?

Carnegie Mellon

Byte Ordering Revisited

mldea
= Short/long/quad words stored in memory as 2/4/8 consecutive bytes
= Which is most (least) significant?
= Can cause problems when exchanging binary data between machines
m Big Endian
" Most significant byte has lowest address
" Sparc
m Little Endian
= |Least significant byte has lowest address
" |ntel x86

Carnegie Mellon

Byte Ordering Example

union {
unsigned char c[8];
unsigned short s[4];
unsigned int i[2];
unsigned long 1[1];
} dw;

32-bit | €[0] | c[1] | c[2] | c[3] | c[4] | c[5] |c[6] |c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]

64-bit | c[0] | c[1] | c[2] | c[3] | c[4] | c[5] | c[6] | c[7]
s[0] s[1] s[2] s[3]
i[O0] i[l]

1[0]

Byte Ordering Example (Cont).

int j;
for (j = 0; j < 8; j++)
dw.c[j] = 0x£f0 + j;
printf ("Characters 0-7 == [0x%x,0x%x,0x%x,0x%x,

Ox%x,0x%x,0x%x,0x%x]\n",
dw.c[0], dw.c[1l], dw.c[2], dw.c[3],
dw.c[4], dw.c[5], dw.c[6], dw.c[7]);

printf ("Shorts 0-3 == [0x%x,0x%x,0x%x,0x%x]\n",
dw.s[0], dw.s[1l], dw.s[2], dw.s[3])

printf ("Ints 0-1 == [0x%x,0x%x]\n",
dw.i[0], dw.i[1]);

printf ("Long 0 == [0x%1x]\n",
dw.1[O0]) ;

Byte Ordering on IA32

Little Endian
£f0 f1l £2 £3 f4 £5 fo6 £7
c[0] | c[1l] | c[2] | c[3] | c[4] | c[B5] [c[6] |c[7]
s[0] s[1] s[2] s[3]
i[O0] i[1]
1[0]
LSB MSB LSB MSB
Print
Output:
Characters 0-7 == [0xf0,0xfl,0xf2,0x£f3,0xf4,0x£f5,0x£f6,0x£f7]
Shorts 0-3 == [0xf1f0,0x£f3f2,0x£f5f4,0x£f7£6]
Ints 0-1 == [0x£f3f2f1f0,0xf7£f6£5£4]
Long 0 == [0x£3£f2f1£0]

Byte Ordering on Sun

Big Endian

Carnegie Mellon

£0 £l £2 £3 £4 £5 £6 £7
c[0] | c[1] | c[2] | c[3] | c[4] | c[5] |c[6] |c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]
MSB LSB

LSB MSB

Output on Sun:

Characters

Shorts
Ints
Long

0-7
0-3
0-1
0

Print

[0x£f0,0xfl,0x£f2,0x£f3,0x£f4,0x£f5,0x£f6,0x£7]
[Ox£f0f1,0x£f2£f3,0x£f4£f5,0x£f6£7]
[Ox£f0£f1£2£3,0x£f4£5£f6£7]
[Ox£f0£f1£2£3]

Byte Ordering on x86-64

Carnegie Mellon

Little Endian
£0 f1l £2 £3 f4 £5 f6 £7
c[0] | c[1l] | c[2] | c[3] | c[4] | c[B5] [c[6] |c[7]
s[0] s[1] s[2] s[3]
i[0] i[1]
1[0]

LSB

Output on x86-64.

Characters

Shorts
Ints
Long

0-7
0-3
0-1
0

Print

MSB

[Ox£f0,0xfl,0x£f2,0x£f3,0x£f4,0x£f5,0x£f6,0x£7]
[Ox£f1£f0,0x£f3£f2,0x£f5£f4,0x£f7£6]
[Ox£3£f2f1£f0,0x£f7£6£5£4]
[Ox£f7£6£5£4£3£2£f1£0]

Carnegie Mellon

Summary

m ArraysinC
® Contiguous allocation of memory
= Aligned to satisfy every element’s alignment requirement
= Pointer to first element
" No bounds checking

m Structures
= Allocate bytes in order declared
= Pad in middle and at end to satisfy alignment

m Unions
® Qverlay declarations
= Way to circumvent type system

Carnegie Mellon

Today

m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

Carnegie Mellon

not drawn to scale

IA32 Linux Memory Layout FF \

Stack

m Stack 1 - 8MB

= Runtime stack (8MB limit) /
= E.g., local variables

m Heap

= Dynamically allocated storage

= When call malloc(), calloc(), new()
m Data

= Statically allocated data
= E.g., arrays & strings declared in code

m Text 4

= Executable machine instructions Heap
Data

Upper 2 hex digits Text

_ 9 h 08
= 8 bits of address 00

= Read-only

Carnegie Mellon

not drawn to scale

Memory Allocation Example =

Stack
char big array[1<<24]; /* 16 MB */ 1
char huge array[1<<28]; /* 256 MB */
int beyond;
char *pl, *p2, *p3, *p4;
int useless() { return 0; }
int main()
{
pl = malloc(l <<28); /* 256 MB */
p2 = malloc(l << 8); /* 256 B */
p3 = malloc(l <<28); /* 256 MB */ N
p4 = malloc(l << 8); /* 256 B */
/* Some print statements ... */ nlEEf
} Data
- Text
Where does everything go? gg

Carnegie Mellon

not drawn to scale

IA32 Example Addresses FF

Stack
address range ~2 1
Sesp OxffffbcdO
p3 0x65586008
pl 0x55585008
p4 0x1904al1l10
p2 0x1904a008
&p2 0x18049760
&beyond 0x08049744
big array 0x18049780 80 t
huge array 0x08049760
main () 0x080483c6 Heap
useless () 0x08049744
final malloc() 0x006bel66

Data
malloc () isdynamically linked Text
address determined at runtime 83

Carnegie Mellon

not drawn to scale

x86-64 Example Addresses oooo7r

Stack
address range ~2 1
Srsp 0x00007£f£f££££8d1£8
p3 0x00002aaabaadd010
pl 0x00002aaaaaadc010
p4 0x0000000011501120
p2 0x0000000011501010
&p2 0x0000000010500a60
&beyond 0x0000000000500a44
big array 0x0000000010500a80 000030 i
huge array 0x0000000000500a50
main () 0x0000000000400510
useless () 0x0000000000400500 Heap
final malloc() 0x000000386ae6al70

Data
malloc () isdynamically linked Text
address determined at runtime

000000

Carnegie Mellon

Today

m Buffer Overflow
= Vulnerability
® Protection

Carnegie Mellon

Internet Worm and IM War

m November, 1988
" |nternet Worm attacks thousands of Internet hosts.
= How did it happen?

Carnegie Mellon

Internet Worm and IM War

m November, 1988
" |nternet Worm attacks thousands of Internet hosts.
= How did it happen?

m July, 1999

" Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

Carnegie Mellon

Internet Worm and IM War (cont.)

m August 1999
= Mysteriously, Messenger clients can no longer access AIM servers.
" Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes.
= At |least 13 such skirmishes.
" How did it happen?

m The Internet Worm and AOL/Microsoft War were both based
on stack buffer overflow exploits!
= many library functions do not check argument sizes.
= allows target buffers to overflow.

String Library Code

m Implementation of Unix function gets ()

/* Get string from stdin */
char *gets (char *dest)
{
int ¢ = getchar();
char *p = dest;
while (¢ != EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p='\0";
return dest;

}

= No way to specify limit on number of characters to read

m Similar problems with other library functions

= strcpy, strcat: Copy strings of arbitrary length
= scanf, £fscanf, sscanf, when given $s conversion specification

Carnegie Mellon

Vulnerable Buffer Code

/* Echo Line */
void echo()

{

char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

}

void call echo() {
echo () ;

}

unix>. /bufdemo
Type a string:1234567
1234567

unix>. /bufdemo
Type a string:12345678
Segmentation Fault

unix>. /bufdemo
Type a string:123456789ABC
Segmentation Fault

Buffer Overflow Disassembly

echo:
80485c5: 55 push %ebp
80485c6: 89 e5 mov %esp, %sebp
80485c8: 53 push %ebx
80485¢c9: 83 ec 14 sub $0x14,%esp
80485cc: 8d 5d f£8 lea Oxfffffff8 (%ebp) , $ebx
80485cf: 89 1lc 24 mov %ebx, (%esp)
80485d2: e8 9e ff ff ff call 8048575 <gets>
80485d7: 89 1lc 24 mov %ebx, (%esp)
80485da: e8 05 fe ff ff call 80483e4 <puts@plt>
80485df: 83 c4 14 add $0x14, %Sesp
80485e2: 5b pop %ebx
80485e3: 5d pop %ebp
80485e4: c3 ret

call_echo:
80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f0: <9 leave

80485f1: 3 ret

Carnegie Mellon

Buffer Overflow Stack

Before call to gets

Stack Frame
formain
/* Echo Line */
void echo ()
Return Address {
Saved %ebP < %ebp char buf[4]; /* Way too small! */
Saved $ebx gets (buf) ;
puts (buf) ;
[311[2]1][1]][O0]] buf }
Stack Frame
for echo 2
pushl %ebp # Save %ebp on stack
movl S%Sesp, %ebp
pushl %ebx # Save %ebx
subl $20, %esp # Allocate stack space
leal -8 (%ebp) ,h %ebx # Compute buf as %ebp-8
movl %ebx, (%esp) # Push buf on stack
call gets # Call gets

Buffer Overflow
Stack Example

Before call to gets

Stack Frame
formain

Return Address

Saved $ebp

Saved %$ebx

[311[2]1][1]][0]

Stack Frame
for echo

80485eb:
80485f0: 9

buf

e8 d5 ff ff ff

Carnegie Mellon

unix> gdb bufdemo

(gdb) break echo

Breakpoint 1 at 0x80485c9

(gdb) run

Breakpoint 1, 0x80485c9 in echo ()
(gdb) print /x $ebp

$1 = Oxfff£fde78

(gdb) print /x *(unsigned *)S$ebp
$2 = Oxffffde688

(gdb) print /x *((unsigned *)Sebp + 1)
$3 = 0x80485f0

Before call to gets

Stack Frame
formain

Oxffffde88

08

04

85

£0

ff

£ff

dé

88 |Oxff££d678

S

aved

$ebx

XX

XX

XX

XX | buf

Stack Frame
for echo

call
leave

80485c5 <echo>

Carnegie Mellon

Buffer Overflow Example #1

Before call to gets Input 1234567
Stack Frame Oxf£££d688 Stack Frame Oxf£££d688
formain formain
08|04|85]| £f0 08|04|85]| £f0
ff|£f£f]|d6| 88 |0xff£f£d678 ff|£f£f]|d6| 88 |0xff£f£d678
Saved %$ebx 00]37]|36]35
xxX | xx | xx | xx| buf 34|33|32| 31| buf
Stack Frame Stack Frame
for echo for echo

Overflow buf, and corrupt %ebx,
but no problem

Carnegie Mellon

Buffer Overflow Example #2

Before call to gets Input 12345678
Stack Frame Oxf£££d688 Stack Frame Oxf£££d688
formain formain

08|04|85]| £f0 08|04|85]| £f0

ff|£f£f]|d6| 88 |0xff£f£d678 ff|£f£]|d6| 00 |0Oxff£f£d4d678
Saved %$ebx 38|37]|36]|35

XX | xx | xx | XX | puf 34|33]|32]31| buf

Stack Frame Stack Frame

for echo for echo

Base pointer corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f£0: c9 leave # Set %ebp to corrupted value
80485f1: c3 ret

Carnegie Mellon

Buffer Overflow Example #3

Before call to gets Input 123456789
Stack Frame Oxf£££d688 Stack Frame Oxf£££d688
formain formain

08|04|85]| £f0 08]104|85|00

f£f|££1d6 | 88 |0oxfFFFFfd678 4314241 |39 |0xf£f££fde678
Saved %$ebx 38|37]|36]|35

XX | xx | xx | xx | puf 34]133]|32]| 31| buf

Stack Frame Stack Frame

for echo for echo

Return address corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485f£0: c9 leave # Desired return point

Carnegie Mellon

Malicious Use of Buffer Overflow

Stack after call to gets ()

\
void foo () { foo stack frame
bar () ; return >
. .. <+<——— address
} A (B

int bar () {
char buf[64];
gets (buf) ;

data written< pad
by gets ()

exploit > bar stack frame
code

return ...; B —<

J

m Input string contains byte representation of executable code
m Overwrite return address A with address of buffer B

m Whenbar () executes ret, will jump to exploit code

Carnegie Mellon

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

m Internet worm

= Early versions of the finger server (fingerd) used gets () to read the
argument sent by the client:

» finger droh@cs.cmu.edu
= Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

Carnegie Mellon

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

m IM War

= AOL exploited existing buffer overflow bug in AIM clients

= exploit code: returned 4-byte signature (the bytes at some location in
the AIM client) to server.

= When Microsoft changed code to match signature, AOL changed
signature location.

Carnegie Mellon

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking It was later determined that this
Founder, Bucking Consulting email originated from within
philbucking@yahoo.com .

Microsoft!

Carnegie Mellon

Code Red Exploit Code

m Starts 100 threads running

m Spread self
= Generate random IP addresses & send attack string

= Between 1st & 19th of month
m Attack www.whitehouse.gov
= Send 98,304 packets; sleep for 4-1/2 hours; repeat

= Denial of service attack
JEiIe Edit View Favorites Tools Help |
= Between 21st & 27th of month | -2 - @ AR
EEch FErwaEr Stop Refresh Home Search
[Deface Server’s home page JAerESS I@ H:\Projects\malicious code\Code RedWorm\hackedwej @ Go HLinks;’I

= After waiting 2 hours

Welcome to http://www.worm.com !

Hacked By Chinese!

|&] Done | =My Computer

N\

Carnegie Mellon

Avoiding Overflow Vulnerability

/* Echo Line */
#define MAX STR LEN 4

void echo ()

{
char buf [MAX STR LEN]; /* Way too
small! */
fgets (buf, MAX STR LEN, stdin);
puts (buf) ;

m Use library routines that limit string lengths
= fgetsinstead of gets
= strncpy instead of strcpy
"= Don’t use scanf with $s conversion specification
= Use £gets to read the string

= Oruse $ns where n is a suitable integer

Carnegie Mellon

System-Level Protections

m Randomized stack offsets unix> gdb bufdemo

= At start of program, allocate random amount (gdb) break echo

of space on stack (gdb) run

= Makes it difficult for hacker to predict (gdb) print /x Sebp
beginning of inserted code $1 = Oxffffc638

(gdb) run
(gdb) print /x $ebp
m Nonexecutable code segments $2 = Oxf££fbb08
" |n tr.adltlcinal x86, can mark .reglon of memory (gdb) run
as either “read-only” or “writeable” (gdb) print /x S$ebp

= Can execute anything readable $3 = Oxffffcé6a8

= X86-64 added explicit “execute” permission

Carnegie Mellon

Stack Canaries

m Ildea
= Place special value (“canary”) on stack just beyond buffer
® Check for corruption before exiting function
m GCC Implementation
" -fstack-protector
= -fstack-protector-all

unix>. /bufdemo-protected
Type a string:1234
1234

unix>. /bufdemo-protected
Type a string:12345
*** stack smashing detected ***

Protected Buffer Disassembly echo:

804864d: 55 push %ebp

804864e: 89 e5 mov %esp, $ebp

8048650: 53 push %ebx

8048651: 83 ec 14 sub $0x14,%esp

8048654: 65 al 14 00 00 00 mov %gs:0x14, %Seax
804865a: 89 45 f£8 mov %eax, 0xfffff£ff8 (%$ebp)
804865d: 31 cO Xor %eax, $eax

804865f: 8d 5d f4 lea Oxfffffff4 (%ebp) , $ebx
8048662: 89 1lc 24 mov %ebx, (%esp)

8048665: e8 77 ff ff ff call 80485el <gets>
804866a: 89 1lc 24 mov %ebx, (%esp)

804866d: e8 ca fd ff ff call 804843c <puts@plt>
8048672: 8b 45 f£8 mov Oxffffff£f8 (%ebp) , Seax
8048675: 65 33 05 14 00 00 00 =xor %gs:0x14, $eax
804867c: 74 05 je 8048683 <echo+0x36>
804867e: e8 a9 fd ff ff call 804842c <FAIL>
8048683: 83 c4 14 add $0x14, $esp

8048686: 5b pop %ebx

8048687: 5d pop sebp

8048688: c3 ret

Carnegie Mellon

Setting Up Canary

Before call to gets /* Echo Line */
Stack Frame void echo()
i {
formain char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
Return Address }
Saved %Ebp -— %ebp
Saved %$ebx
Canary
[31][2]1][1]1][0]] buf
Stack Frame .
for echo SEA
movl %gs:20, %eax # Get canary
movl %eax, -8 (%ebp) # Put on stack

xorl eax, %eax # Erase canary

Carnegie Mellon

Checking Canary

Before call to gets /* Echo Line */
Stack Frame void echo()
] {
formain char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
Return Address }
Saved %ebp -— %ebp
Saved $ebx
Canary
[311[2]1][1]1][O0]] buf
Stack Frame "
for echo echo:
movl -8 (%ebp) , %eax # Retrieve from stack
xorl %gs:20, %eax # Compare with Canary
je .L24 # Same: skip ahead
call __stack chk fail # ERROR
.L24:

Carnegie Mellon

Canary Example

Before call to gets Input 1234
Stack Frame Stack Frame
formain formain
Return Address Return Address
Saved $ebp [*— 3ebp Saved sebp [*— 3ebp
Saved %$ebx Saved $ebx
03|e3]|7d]00 03|e3]|7d]|00
[311[2]1][1]1][0]| buf 3433|3231 |puf
Stack Frame Stack Frame
for echo for echo

(gdb) break echo

gi; Z:,ZP' 3 Benign corruption!
1
(gdb) print /x *((unsigned *) S$ebp - 2) (allows programmers to make

$1 = 0x3e37d00 silent off-by-one errors)

Carnegie Mellon

Worms and Viruses

m Worm: A program that
= Canrun by itself
= Can propagate a fully working version of itself to other computers

m Virus: Code that

= Add itself to other programs
= Cannot run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

Carnegie Mellon

Today

m Structures
= Alignment

m Unions
m Memory Layout

m Buffer Overflow
= Vulnerability
® Protection

