Carnegie Mellon

Multi-Core Architectures

15-213/18-243: Introduction to Computer Systems
27t (and last) Lecture, 28 April 2011

Instructors:
Anthony Rowe and Gregory Kesden

Carnegie Mellon

Today

m Final Exam
m Multi-core
m Parallelism on multi-core

Final Exam (Tuesday May 3, 1-4pm)

m Lecture 1: PH 100 & PH 125C
m Lecture 2: Ml Mellon Auditorium

m Everything from lecture, the book and labs is fair game...
m Closed-Book, Close-Notes
m We will provide Exam 1 and Exam 2 Note Sheets

m Exam Review Session: WEH 7500 Sunday 6-8pm

= Email Questions to 15213review@gmail.com

Final Topics (from Exam 1)

m Assembly Code
= Assembly to C translation

= Stack management
m Structure Alignment
m Ints, Floats, Boats
m Cache

Final Topics (from Exam 2)

Process Control
Signals
File 1I/O
Memory Layout

Dynamic Memory

Final Topics (New)

m Concurrency + Thread Safety
= Reader / Writer Locks, mutex, semaphore
= Starvation, deadlock
= What makes a function thread-safe vs unsafe?

m Networking

= Understand notion of sockets and ports

Carnegie Mellon

Today

m Multi-core
m Parallelism on multi-core

Why Multi-Core?

m Traditionally, single core performance is improved by increasing
the clock frequency...

m ...and making deeply pipelined circuits...
m Which leads to...

Heat problems

Speed of light problems

Difficult design and verification

" Large design teams

= Big fans, heat sinks

® Expensive air-conditioning on server farms

m Increasing clock frequency no longer the way to go forward

Carnegie Mellon

Single Core Computer

CPU chip

register file

<::> ALU

ﬁ }stem bus mem(Iry bus
1/O main
Bus Interface |< > bridge <:> memory

ﬁ? Expansion sl_ots>

L1y

USB graphics disk network
controller adapter controller adapter

T 1 i 1

Y

mouse keyboard monitor
[network]

<

Single Core CPU Chip

CPU chip

Carnegie Mellon

register file

Bus Interface

The single core

e

system bus

-

)

Carnegie Mellon

Multi-Core Architecture

m Somewhat recent trend in computer architecture
m Replicate many cores on a single die

register file register file register file
(— (| eee (—
Bus Interface < >
Core 1l Core 2 Coren

Multi-core Chip

Within each core, threads are time-sliced

(just like on a uniprocessor)

several several several several
threads threads threads threads
c c c c
o) o) o) o)
r r r r
e e e e

Interaction With the Operating System

m OS perceives each core as a separate processor
m OS scheduler maps threads/processes to different cores

m Most major OS support multi-core today:
® Mac OS X, Linux, Windows, ...

Carnegie Mellon

Today

m Parallelism on multi-core

Carnegie Mellon

Instruction-Level Parallelism

m Parallelism at the machine-instruction level

m Achieved in the processor with
" Pipeline
= Re-ordered instructions
= Split into micro-instructions
= Aggressive branch prediction
= Speculative execution

m ILP enabled rapid increases in processor performance

" Has since plateaued

Carnegie Mellon

Thread-level Parallelism

m Parallelism on a coarser scale
m Server can serve each client in a separate thread

= Web server, database server

m Computer game can do Al, graphics, physics, Ul in four different
threads

m Single-core superscalar processors cannot fully exploit TLP
® Thread instructions are interleaved on a coarse level with other threads

m Multi-core architectures are the next step in processor
evolution: explicitly exploiting TLP

Carnegie Mellon

Simultaneous Multithreading (SMT)

m Complimentary technique to L1 S-Cache D-TLB

multi-core
m Addresses the stalled pipeline ‘ Integer H Floating POlnt\

[e)
roblem €
P 8 Schedulers
= Pipeline is stalled waiting for the T I
result of a long operation (float?) o Uop queues
= ... or waiting for data to arrive from § I Rename/_lAIIoc
memory (long latency) g
m Other execution units are idle 518 Trace “ache | heoce
Decoder |
3 —'—I
m BTB and I-TLB

Source: Intel

Carnegie Mellon

SMT

m Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

m Weaving together multiple “threads”

m Example: if one thread is waiting for a floating point operation to
complete, another thread can use the integer units

Carnegie Mellon

Without SMT, only a single thread
can run at any given time

| | Flogting Point
|

1 [remmron]

Thread 1: floating point 0

Carnegie Mellon

SMT processor: both threads can
run concurrently

Integ Flogting Point

Thread 2: Thread 1: floating point
integer operation 21

Carnegie Mellon

But: Can’t simultaneously use the

same functional unit
|

Integer |

1+ [ecomron]

This scenario is
Impossible with SMT
on a single core

Thread 1 Thread 2 | (@SSuming a single
IMPOSSIBLE integer unit) 22

Carnegie Mellon

SMT is not a “true” parallel processor

m Enables better threading (e.g. up to 30%)

m OS and applications perceive each simultaneous thread as a
separate “virtual processor”

m The chip has only a single copy of each resource

m Compare to multi-core:

® Each core has its own copy of resources

Carnegie Mellon

Multi-core: Threads run on separate cores

__!Tnkt&er llim\qger
N N\

\ &\

Al 1

: =
, .

|

Thread' 1 Thread 2

Carnegie Mellon

Multi-core: Threads run on separate cores

Floay/g Point FIoatiyz:)int
/) /
| J
r
]
I
| u n
l
Thread 3 Thread 4

Carnegie Mellon

Combining Multi-core and SMT

m Cores can be SMT-enabled (or not)
m The different combinations:

= Single-core, non-SMT: standard uniprocessor
= Single-core, with SMT

= Multi-core, non-SMT

® Multi-core, with SMT: our fish machines

m The number of SMT threads is determined by hardware design

® 2.4 or sometimes 8 simultaneous threads

m Intel calls them “Hyper-threads”

Carnegie Mellon

SMT Dual-core: all four threads can
run concurrently

Intager || Floayhg Point

Floatig Point

Lk J =
i

Thread 1 Thread 3 Thread 2 Thread 4 27

Carnegie Mellon

SMT/Multi-Core and the Memory Hierarchy

m SMT is a sharing of pipeline
resources hyper-threads

®" Thus all caches are shared
m Multi-core chips:

® L1 caches are private (i.e. each core
has its own L1)

® |2 cache private in some
architectures, shared in others

®" Main memory is always shared

m Example: Fish machines L2 cache
® Dual-core Intel Xeon processors
® Each core is hyper-threaded memory
® Private L1, shared L2 caches

Carnegie Mellon

Designs with Private L2 Caches

memory

memory

Examples: AMD Opteron,
AMD Athlon, Intel Pentium D

Example: Intel Itanium 2

Quad Core 2 Duo shares L2 in pairs of cores

Carnegie Mellon

Private vs Shared Cache

m Advantages of Private Cache
= Closer to the core, so faster access
" No contention for core access -- no waiting while another core accesses

m Advantages of Shared Cache
® Threads on different cores can share same cache data
= More cache space is available if a single (or a few) high-performance
threads run
m Cache Coherence Problem
" The same memory value can be stored in multiple private caches
" Need to keep the data consistent across the caches
" Many solutions exist
= |nvalidation protocol with bus snooping, ...

£ _W 1MILLION cores!

Can this really scale?

Network On A Chip (NOC)

DIMM

DIMM

Inside a Tile

/[Psac
AN T

Tile

Carnegie Mellon

Summary

m Multi-Core Architectures
m Simultaneous Multithreading

m Exam Review Session: WEH 7500 Sunday 6-8pm

= Email Questions to 15213review@gmail.com

m Next Time:

® There is no next time @

