Multi-Core Architectures

15-213/18-243: Introduction to Computer Systems 27th (and last) Lecture, 28 April 2011

Instructors:

Anthony Rowe and Gregory Kesden

Today

- Final Exam
- Multi-core
- Parallelism on multi-core

Final Exam (Tuesday May 3rd, 1-4pm)

- Lecture 1: PH 100 & PH 125C
- Lecture 2: MI Mellon Auditorium
- Everything from lecture, the book and labs is fair game...
- Closed-Book, Close-Notes
- We will provide Exam 1 and Exam 2 Note Sheets
- Exam Review Session: WEH 7500 Sunday 6-8pm
 - Email Questions to 15213review@gmail.com

Final Topics (from Exam 1)

- Assembly Code
 - Assembly to C translation
 - Stack management
- Structure Alignment
- Ints, Floats, Boats
- Cache

Final Topics (from Exam 2)

- Process Control
- Signals
- File I/O
- Memory Layout
- Dynamic Memory

Final Topics (New)

- Concurrency + Thread Safety
 - Reader / Writer Locks, mutex, semaphore
 - Starvation, deadlock
 - What makes a function thread-safe vs unsafe?
- Networking
 - Understand notion of sockets and ports

Today

- Multi-core
- Parallelism on multi-core

Why Multi-Core?

- Traditionally, single core performance is improved by increasing the clock frequency...
- ...and making deeply pipelined circuits...
- Which leads to...
 - Heat problems
 - Speed of light problems
 - Difficult design and verification
 - Large design teams
 - Big fans, heat sinks
 - Expensive air-conditioning on server farms
- Increasing clock frequency no longer the way to go forward

Single Core Computer

Single Core CPU Chip

Multi-Core Architecture

- Somewhat recent trend in computer architecture
- Replicate many cores on a single die

Multi-core Chip

Within each core, threads are time-sliced (just like on a uniprocessor)

Interaction With the Operating System

- OS perceives each core as a separate processor
- OS scheduler maps threads/processes to different cores
- Most major OS support multi-core today:
 - Mac OS X, Linux, Windows, ...

Today

- Multi-core
- Parallelism on multi-core

Instruction-Level Parallelism

- Parallelism at the machine-instruction level
- Achieved in the processor with
 - Pipeline
 - Re-ordered instructions
 - Split into micro-instructions
 - Aggressive branch prediction
 - Speculative execution
- ILP enabled rapid increases in processor performance
 - Has since plateaued

Thread-level Parallelism

- Parallelism on a coarser scale
- Server can serve each client in a separate thread
 - Web server, database server
- Computer game can do AI, graphics, physics, UI in four different threads
- Single-core superscalar processors cannot fully exploit TLP
 - Thread instructions are interleaved on a coarse level with other threads
- Multi-core architectures are the next step in processor evolution: explicitly exploiting TLP

Simultaneous Multithreading (SMT)

- Complimentary technique to multi-core
- Addresses the stalled pipeline problem
 - Pipeline is stalled waiting for the result of a long operation (float?)
 - ... or waiting for data to arrive from memory (long latency)
- Other execution units are idle

SMT

- Permits multiple independent threads to execute SIMULTANEOUSLY on the SAME core
- Weaving together multiple "threads"
- Example: if one thread is waiting for a floating point operation to complete, another thread can use the integer units

Without SMT, only a single thread can run at any given time

SMT processor: both threads can run concurrently

But: Can't simultaneously use the same functional unit

SMT is not a "true" parallel processor

- Enables better threading (e.g. up to 30%)
- OS and applications perceive each simultaneous thread as a separate "virtual processor"
- The chip has only a single copy of each resource
- Compare to multi-core:
 - Each core has its own copy of resources

Multi-core: Threads run on separate cores

Multi-core: Threads run on separate cores

Combining Multi-core and SMT

- Cores can be SMT-enabled (or not)
- The different combinations:
 - Single-core, non-SMT: standard uniprocessor
 - Single-core, with SMT
 - Multi-core, non-SMT
 - Multi-core, with SMT: our fish machines
- The number of SMT threads is determined by hardware design
 - 2, 4 or sometimes 8 simultaneous threads
- Intel calls them "Hyper-threads"

SMT Dual-core: all four threads can run concurrently

SMT/Multi-Core and the Memory Hierarchy

- SMT is a sharing of pipeline resources
 - Thus all caches are shared
- Multi-core chips:
 - L1 caches are private (i.e. each core has its own L1)
 - L2 cache private in some architectures, shared in others
 - Main memory is always shared
- Example: Fish machines
 - Dual-core Intel Xeon processors
 - Each core is hyper-threaded
 - Private L1, shared L2 caches

Designs with Private L2 Caches

Examples: AMD Opteron, AMD Athlon, Intel Pentium D

Example: Intel Itanium 2

Quad Core 2 Duo shares L2 in pairs of cores

Private vs Shared Cache

- Advantages of Private Cache
 - Closer to the core, so faster access
 - No contention for core access -- no waiting while another core accesses
- Advantages of Shared Cache
 - Threads on different cores can share same cache data
 - More cache space is available if a single (or a few) high-performance threads run
- Cache Coherence Problem
 - The same memory value can be stored in multiple private caches
 - Need to keep the data consistent across the caches
 - Many solutions exist
 - Invalidation protocol with bus snooping, ...

1 MILLION cores!

Can this really scale?

Network On A Chip (NOC)

Inside a Tile

Summary

- Multi-Core Architectures
- Simultaneous Multithreading
- Exam Review Session: WEH 7500 Sunday 6-8pm
 - Email Questions to 15213review@gmail.com

- Next Time:
 - There is no next time 😊