Carnegie Mellon

Introduction To Computer
Systems

15-213/18-243, Spring 2011
Recitation 7 (performance)
Monday, February 21



Carnegie Mellon

Agenda

 Performance review
* Program optimization
* Memory hierarchy and caches



Carnegie Mellon

Performance Review

* Program optimization
 Efficient programs result from:

* Good algorithms and data structures
* Code that the compiler can effectively optimize and
turn into efficient executable
* The topic of program optimization relates to the
second



Carnegie Mellon

Performance Review (cont)

* Modern compilers use sophisticated
techniques to optimize programs

* However,
* Their ability to understand code is limited
* They are conservative

 Programmer can greatly influence compiler’s
ability to optimize



Carnegie Mellon

Optimization Blockers

* Procedure calls
 Compiler’s ability to perform inter-procedural
optimization is limited
* Solution: replace call by procedure body

* Can result in much faster programs
* Inlining and macros can help preserve modularity

* Loop invariants
* Expression that do not change in loop body
* Solution: code motion



Carnegie Mellon

Optimization Blockers (cont)

* Memory aliasing

e Accessing memory can have side effects difficult
for the compiler to analyze (e.g., aliasing)
e Solution: scalar replacement

* Copy elements into temporary variables, operate, then
store result back

e Particularly important if memory references are in
innermost loop



Carnegie Mellon

Loop Unrolling

* A technique for reducing loop overhead
* Perform more data operations in single iteration

e Resulting program has fewer iterations, which
translates into fewer condition checks and jumps

* Enables more aggressive scheduling of loops

 However, too much unrolling can be bad
e Results in larger code

* Code may not fit in instruction cache



Carnegie Mellon

Other Techniques

e QOut of order processing
* Branch prediction
e Less crucial in this class



Carnegie Mellon

Caches

* Definition
* Memory with short access time

* Used for storage of frequently or recently used
instructions or data

e Performance metrics
* Hit rate
* Miss rate (commonly used)
* Miss penalty



Carnegie Mellon

Cache Misses

e Types of misses
 Compulsory: due to cold cache (happens at
beginning)

e Conflict: When referenced data maps to the same
block

e Capacity: when working set is larger than cache



Carnegie Mellon

Locality

* Reason why caches work

 Temporal locality

* Programs tend to use the same data and
instructions over and over

e Spatial locality

* Program tend to use data and instructions with
addresses near to those they have recently used



Memory Hierarchy

CPU
Reglister

Temporary
— Storage
Arcas

Physical RAM Virtual Memory

Storage Device Types

= > Permanent

etwor

Removable Bl Storage
Drives Storage Areas

Input Sources

Scanner/
Removable Camers/ Remote Other
Media Mic/ Source Sources
Video

Keyboard

Carnegie Mellon




Carnegie Mellon

Cache Miss Analysis Exercise

struct algae_position {

* Assume: _
Int x;
— Cache blocks are 16-byte inty;
— Only memory accesses i

struct algae_position_grid[16][16];

are to the entries of grid .
int total x=0, total y=0, i, j;

e Determine the cache
performance of the fordi = 07iil<i16;1i 1)
for(j=0;j<16;j++)

following: total_x += grid[i][j].x

for (i=0; i< 16; i++)
for (j=0;j<16; j++)
total_y += grid[i][jl.y



Carnegie Mellon

Techniques for Increasing Locality

e Rearranging loops (increases spatial locality)

e Analyze the cache miss rate for the following:
* Assume 32-byte lines, array elements are doubles

void ijk(A[], B[], C[], n) { void kij(A[], B[], C[], n) {
inti, j, k; double sum; inti, j, k;
for(i=0;i<n;i++) double r;
for(j=0;j<n;j++){ for (k = 0; k< n; k++)
sum = 0.0 for (i=0;i<n;i++) {
for (k =0; k < n; k++) r = Ali][k];
sum += A[i][k]*B[K][j] for(j=0;j<n;j++)
C[i][j] += sum C[i][j] += r*B[K][];
} }



G
Techniques for Increasing Locality

(cont)

* Blocking (increases temporal locality)

e Analyze the cache miss rate for the following:
* Assume 32-byte lines, array elements are doubles

void naive(A[], B[], C[], n) { void blocking (A[], B[], C[], n, b) {
inti, j, k; inti,j, k, i1, j1, ki;
for (i=0;i<n;i++) for(i=0;i<n;i+=Db)
for(j=0;j<n;j++) for(j=0;j<n;j+=b)
for (k =0; k < n; k++) for(k=0; k<n; k+=Db)
C[il[j] += ALK *BIK][j]; for (i1 =i;il< (i +b); i1++)
} for (j1=j;j1 <(j+b); j1++)

for (k1 = k; k1 < (k + b); k1++)
c[i1][j1] += Afi1][k1]*B[k1][j1];



Carnegie Mellon

Questions?

* Program optimization
* Writing friendly cache code
* Cachelab



