Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5th Lecture, Jan 27, 2015

Instructors:
Seth Copen Goldstein, Franz Franchetti, Greg Kesden



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64



Carnegie Mellon

Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.



Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
= First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33
® First 32 bit Intel processor, referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4F 2004 125M 2800-3800
" First 64-bit Intel processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
® First multi-core Intel processor

m Corei7 2008 731M 1700-3900
® Four cores (our shark machines)

m Haswell 2013 1.4B 1900-3700

" On-chip GPU



Moore’s Law

Goodness

Time



Moore’s Law

Goodness

Time



Moore’s Law

Goodness




Moore’s Law ?

-

Goodness




Carnegie Mellon

More on Moore’s Law
You can buy this for $6 today.

Compare to 1983



Carnegie Mellon

More on Moore’s Law
You can buy this for $6 today.

More than 39,800,000x
improvement in $-cc?

In 1983 dollars, the equivalent
e cost >$125,000.00
 Fitin >1,250 boxes



http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif
http://www.seniorscan.ca/guide/components/floppy2.gif

Carnegie Mellon

Intel x86 Processors, cont.
m Machine Evolution

m Added Features

386

Pentium
Pentium/MMX
PentiumPro
Pentium Il
Pentium 4
Core 2 Duo
Core i/
SandyBridge
Haswell

1985
1993
1997
1995
1999
2001
2006
2008
2011
2013

IntegratedMemory Controller/-3:Ch DDR3:

0.3M
3.1M
4.5M
6.5M
8.2M
42M o]
291M 1L Shared L3 Cache
731M
1.2B
1.4B

Core0 Core 1 Core?2 Core3

" |nstructions to support multimedia operations

" |nstructions to enable more efficient conditional operations
" Transition from 32 bits to 64 bits

More cores

11



Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits
= Developed the APU (CPU+GPU)

12



Carnegie Mellon

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to I1A64

= Totally different architecture (Iltanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

13



Our Coverage

m I1A32

" The traditional x86
= shark> gcc —m32 hello.c

m Xx86-64

" The emerging standard
= shark> gcc hello.c
= shark> gcc —m64 hello.c

m Presentation
= Book presents IA32 in Sections 3.1—3.12
" Covers x86-64 in 3.13
= We will cover both simultaneously
= Some labs will be based on x86-64, others on IA32

14



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64

15



Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA

16



Carnegie Mellon

Assembly Programmer’s View

CPU Memory
Addresses
. >
Registers e Coda
PC — < > Data
Condition Instructions Stack
Codes “

Programmer-Visible State

= PC: Program counter " Memory

= Address of next instruction * Byte addressable array

= Called “EIP” (IA32) or “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about
most recent arithmetic operation

= Used for conditional branching 17



Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc —01 pl.c p2.c -0 p
= Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -95)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (p1.0 p2.0) Static libraries
(-a)

Linker (gcc or 1d)

v

binary Executable program (p)

18



Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, Int y) sum:
{ pushl %ebp
int t = xt+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax
popl %ebp
ret

Obtain with command

/usr/local/bin/gcc —01 -S code.c

Produces file code.s

19



Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

20



Carnegie Mellon

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

21



Carnegie Mellon

Object Code

Code for sum
m Assembler

0x401040 <sum>: )
" Translates .Sinto .0

0x55

0x89 = Binary encoding of each instruction

OxesS = Nearly-complete image of executable code
0x8b = Missing linkages b de in different fil
OXA45 issing linkages between code in different files
Ox0c m Linker

0x03 = Resolves references between files

0x45

0x08 = Combines with static run-time libraries

Ox5d « E.g., code formalloc, printf

0xc3

= Some libraries are dynamically linked

e Total of 11 bytes . ,
Y = Linking occurs when program begins

e Each instruction execution

1, 2, or 3 bytes

e Starts at address
0x401040

22



Carnegie Mellon

Machine Instruction Example

: m C Code
Int t = x+y; = Add two signed integers
m Assembly
= Add two 4-byte integers
addl 8(%ebp) ,%eax

= “Long” words in GCC parlance

Similar to expression: = Same instruction whether signed

X += y or unsigned
More precisely: = Operands:
int eax; X: Register %eax
int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] T: Register %eax
—Return function value in %eax
0x80483ca: 03 45 08 m Object Code

= 3-byte instruction
= Stored at address Ox80483ca

23



Disassembling Object Code

Disassembled

080483c4 <sum>:
80483c4: 55 push %ebp
80483c5: 89 e5 mov %esp ,%ebp
80483c7: 8b 45 Oc mov Oxc (%ebp) , %eax
80483ca: 03 45 08 add Ox8 (%ebp) , %eax
80483cd: b&d pop %ebp
80483ce: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or . 0 file

24



Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push  %ebp
oxe5 0x080483c5 <sum+1>: mov %esp , %ebp
0x8b 0x080483c7 <sum+3>: mov Oxc(%ebp) , %eax
0x45 0x080483ca <sum+6>: add 0x8 (%ebp) , %eax
0x0cC 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3 gdb p

disassemble sum

" Disassemble procedure
X/11xb sum

= Examine the 11 bytes starting at sum

25



Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD . EXE: file format pei1-1386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push  %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: 6a ff push  $OXFFFFFFfT

30001005: 68 90 10 00 30 push  $0x30001090
3000100a: 68 91 dc 4c 30 push  $0x304cdc91l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

26



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64

27



Carnegie Mellon

Integer Registers (I1A32) Origin

(mostly obsolete)

] Y%eax Yhax %ah %al accumulate
° %ecx %CX %ch %c counter
2
§ Y%edx %dx %dh %d 1 data
Q.
E‘i< %ebx %bx %bh %b 1 base
S .
%esi %S| Souree
%edi %d destination
Hesp ioher
Hebp potnter
\ )
Y

16-bit virtual registers

(backwards compatibility) 28



Moving Data: IA32 Yheax

. 0
m Moving Data hecCX
mov 1 Source, Dest: %edx

0
m Operand Types hebx
" Immediate: Constant integer data hesi
= Example: $0x400, $-533 %edi
= Like C constant, but prefixed with “$ %esp

= Encoded with 1, 2, or 4 bytes

%ebp

= Register: One of 8 integer registers
= Example: %eax, %edx
= But %esp and %ebp reserved for special use

= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
= Various other “address modes”

29



Moving Data: IA32 Yheax

. 0
m Moving Data hecCX
mov 1 Source, Dest: %edx

0
m Operand Types hebx
& Immediate: Constant integer data hesi
= Example: $0x400, $-533 %edi
= Like C constant, but prefixed with “$ %esp

= Encoded with 1, 2, or 4 bytes

%ebp

= Register: One of 8 integer registers
= Example: %eax, %edx
= But %esp and %ebp reserved for special use

= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%leax)
= Various other “address modes”

30



Carnegie Mellon

moVv 1 Operand Combinations

Source Dest Src,Dest C Analog
4 | Reg movl $0x4,%eax temp = 0x4;
mm
Mem movl $-147,(%eax) *p = -147;

0 0 _ i
novl < Reg {Reg movl %eax,%edx temp2 = templ;

Mem movl %eax, (%edx) *p = temp;

L Mem Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

31



Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movl (%ecx) ,%eax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset
= Dis an arbitrary integer constrained to fit in 1-4 bytes

movl 8(%ebp) ,%edx

32



Using Simple Addressing Modes

swap:
i i _ pushl %ebp A
void swap(int *xp, int *yp) movl %esp,%ebp . Set
{ int €0 = *xp: pushl %ebx J Up
int t1 = *yp; A
*xp = tl: movl 8(%ebp), %edx
*yp = 10; movl 12(%ebp), %ecx
1 movl (%edx), %ebx
movl (%ecx), %eax " Body
movl %eax, (%edx)
movl %ebx, (%ecx)

popl %ebx
popl  %ebp Finish
ret

33



Using Simple Addressing Modes

swap:
_ i i pushl %ebp h
20|d swap(int *xp, int *yp) movl  Y%esp,Y%ebp L Set
int 10 = *xp: pushl %ebx J Up
int tl = *yp;
*xp = tl: movl 8(%ebp), %edx
*yp = 10; movl 12(%ebp), %ecx
1 movl (%edx), %ebx
movl (%ecx), %eax " Body
movl %eax, (%edx)
movl %ebx, (%ecx) y

popl %ebx
popl  %ebp Finish

ret

34



Understanding Swap

void swap(int *xp, int *yp) . Stack

{ : i
int t0 = *xp; Offset ) (m memory)
int tl = *yp;
*yp = t0; 8 Xp

} 4 | Rtn adr

O |Old %ebpjf—— %ebp

-4 |Old %ebx[—— %esp

Register Value

%edx Xp

0

Q:;ﬁ ig movl 8(%ebp), %edx # edx = xp

: movl 12(%ebp), %ecx # ecx = yp

heax tl movl (%edx), %ebx  # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

35



Carnegie Mellon

Understanding Swap
Y%eax
Yhedx Offset
%ecx yp 12
8
%ebx *P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

36



Carnegie Mellon

Understanding Swap
Y%eax
%edx| O0x124 Offset
%ecx 48 12
X 8
%ebx P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

37



Carnegie Mellon

Understanding Swap
Y%eax
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
%ebx P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*Xp = tl
*yp = t0

38



Carnegie Mellon

Understanding Swap
Y%eax
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx 1
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

39



Carnegie Mellon

Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax 1
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

40



Carnegie Mellon

Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) 1
movl %ebx, (%ecx) #

Address
456 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xXp = tl
*yp = t0

41



Carnegie Mellon

Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) 1

Address
456 0Ox124
123 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

42



Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers

Ri:  Index register: Any, except for %esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg|[Ri]]

43



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

|
|
|
m Intro to x86-64

44



Carnegie Mellon

Data Representations: IA32 + x86-64

m Sizes of C Objects (in Bytes)

C Data Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 10/16
= char * 4 4 8

45



x86-64 Integer Registers

%rax Yheax
%rbx %ebx
%rcx Y%hecx
%rdx Y%edx
%rsi Y%esi
%rdi %edi
%rsp %esp
%rbp %ebp

Wr8 %r8d

Wro %rod

%rio %r10d
%ril %rild
%ril2 %ri2d
%ril3 %r13d
%rild %ri4d
%ril5s %ri15d

= Extend existing registers. Add 8 new ones.

= Make %ebp/%rbp general purpose

Carnegie Mellon

46



Carnegie Mellon

Instructions

m Long word I (4 Bytes) <> Quad word ( (8 Bytes)

m New instructions:
= movl = movq
= addl = addq
= sall = salq
= etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to O
= Example: addl

47



Carnegie Mellon

32-bit code for swap
swap:
- — — pushl %ebp B
\EOId swap(int *xp, Int *yp) movl  %esp.,Y%ebp | Set
int t0 = *xp: pushl %ebx J Up
int tl = *yp;
*xXp = ti; movl 8(%ebp), %edx
*yp = t0; movl 12(%ebp), %ecx
} movl (%edx), %ebx >
movl (%ecx), %eax Body
movl %eax, (%edx)
movl %ebx, (%ecx) _

popl %ebx
popl  %ebp Finish

ret

48



Carnegie Mellon

64-bit code for swap
swap:

void swap(int *xp, Int *yp) fjept
¢ int t0 = *xp; movl  (%rdr), %edx ~

int tl = *yp; movl (%rsi), %eax

*Xp = ti; movl %eax, (%rdi) o Body

*yp = t0; movl  %edx, (%rsi)
}

ret } Finish

m Operands passed in registers (why useful?)
= First (Xp) in %rdi, second (yp) in %rsi
" 64-bit pointers

m No stack operations required

m 32-bit data
= Data held in registers %eax and %edx
= movl operation "



Carnegie Mellon

64-bit code for long int swap

swap_ 1I:
void swap(long *xp, long *yp) ffpt
¢ long t0 = *xp; movdq (%rdi), %rdx ~
long t1 = *yp; mov(q (%rsi), %rax
*Xp = tl; movq  %rax, (%rdi) - Body
*yp = t0; mov(q %rdx, (%rsi) )
}
ret } Finish
m 64-bit data

= Data held in registers %rax and %rdx
" mov(q operation

o,

= “q” stands for quad-word

50



Carnegie Mellon

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in 1A32

51



	Machine-Level Programming I: Basics��15-213/18-213: Introduction to Computer Systems �5th Lecture, Jan 27, 2015
	Today: Machine Programming I: Basics
	Intel x86 Processors
	Intel x86 Evolution: Milestones
	Moore’s Law
	Moore’s Law
	Moore’s Law
	Moore’s Law
	More on Moore’s Law
	More on Moore’s Law
	Intel x86 Processors, cont.
	x86 Clones: Advanced Micro Devices (AMD)
	Intel’s 64-Bit
	Our Coverage
	Today: Machine Programming I: Basics
	Definitions
	Assembly Programmer’s View
	Turning C into Object Code
	Compiling Into Assembly
	Assembly Characteristics: Data Types
	Assembly Characteristics: Operations
	Object Code
	Machine Instruction Example
	Disassembling Object Code
	Alternate Disassembly
	What Can be Disassembled?
	Today: Machine Programming I: Basics
	Integer Registers (IA32)
	Moving Data: IA32
	Moving Data: IA32
	movl Operand Combinations
	Simple Memory Addressing Modes
	Using Simple Addressing Modes
	Using Simple Addressing Modes
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Understanding Swap
	Complete Memory Addressing Modes
	Today: Machine Programming I: Basics
	Data Representations: IA32 + x86-64
	x86-64 Integer Registers
	Instructions
	32-bit code for swap
	64-bit code for swap
	64-bit code for long int swap
	Machine Programming I: Summary

