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Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64
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Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.
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Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
= First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33
® First 32 bit Intel processor, referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4F 2004 125M 2800-3800
" First 64-bit Intel processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
® First multi-core Intel processor

m Corei7 2008 731M 1700-3900
® Four cores (our shark machines)

m Haswell 2013 1.4B 1900-3700

" On-chip GPU
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More on Moore’s Law
You can buy this for $6 today.

Compare to 1983
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More on Moore’s Law
You can buy this for $6 today.

More than 39,800,000x
improvement in $-cc?

In 1983 dollars, the equivalent
e cost >$125,000.00
 Fitin >1,250 boxes
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Intel x86 Processors, cont.
m Machine Evolution

m Added Features

386

Pentium
Pentium/MMX
PentiumPro
Pentium Il
Pentium 4
Core 2 Duo
Core i/
SandyBridge
Haswell

1985
1993
1997
1995
1999
2001
2006
2008
2011
2013

IntegratedMemory Controller/-3:Ch DDR3:

0.3M
3.1M
4.5M
6.5M
8.2M
42M o]
291M 1L Shared L3 Cache
731M
1.2B
1.4B

Core0 Core 1 Core?2 Core3

" |nstructions to support multimedia operations

" |nstructions to enable more efficient conditional operations
" Transition from 32 bits to 64 bits

More cores

11
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x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits
= Developed the APU (CPU+GPU)

12
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Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to I1A64

= Totally different architecture (Iltanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

13



Our Coverage

m I1A32

" The traditional x86
= shark> gcc —m32 hello.c

m Xx86-64

" The emerging standard
= shark> gcc hello.c
= shark> gcc —m64 hello.c

m Presentation
= Book presents IA32 in Sections 3.1—3.12
" Covers x86-64 in 3.13
= We will cover both simultaneously
= Some labs will be based on x86-64, others on IA32

14



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64
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Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Example ISAs (Intel): x86, IA

16
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Assembly Programmer’s View

CPU Memory
Addresses
. >
Registers e Coda
PC — < > Data
Condition Instructions Stack
Codes “

Programmer-Visible State

= PC: Program counter " Memory

= Address of next instruction * Byte addressable array

= Called “EIP” (IA32) or “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data
= Condition codes

= Store status information about
most recent arithmetic operation

= Used for conditional branching 17



Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc —01 pl.c p2.c -0 p
= Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -95)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (p1.0 p2.0) Static libraries
(-a)

Linker (gcc or 1d)

v

binary Executable program (p)

18



Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, Int y) sum:
{ pushl %ebp
int t = xt+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax
popl %ebp
ret

Obtain with command

/usr/local/bin/gcc —01 -S code.c

Produces file code.s

19



Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

20
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Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

21
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Object Code

Code for sum
m Assembler

0x401040 <sum>: )
" Translates .Sinto .0

0x55

0x89 = Binary encoding of each instruction

OxesS = Nearly-complete image of executable code
0x8b = Missing linkages b de in different fil
OXA45 issing linkages between code in different files
Ox0c m Linker

0x03 = Resolves references between files

0x45

0x08 = Combines with static run-time libraries

Ox5d « E.g., code formalloc, printf

0xc3

= Some libraries are dynamically linked

e Total of 11 bytes . ,
Y = Linking occurs when program begins

e Each instruction execution

1, 2, or 3 bytes

e Starts at address
0x401040

22
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Machine Instruction Example

: m C Code
Int t = x+y; = Add two signed integers
m Assembly
= Add two 4-byte integers
addl 8(%ebp) ,%eax

= “Long” words in GCC parlance

Similar to expression: = Same instruction whether signed

X += y or unsigned
More precisely: = Operands:
int eax; X: Register %eax
int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] T: Register %eax
—Return function value in %eax
0x80483ca: 03 45 08 m Object Code

= 3-byte instruction
= Stored at address Ox80483ca

23



Disassembling Object Code

Disassembled

080483c4 <sum>:
80483c4: 55 push %ebp
80483c5: 89 e5 mov %esp ,%ebp
80483c7: 8b 45 Oc mov Oxc (%ebp) , %eax
80483ca: 03 45 08 add Ox8 (%ebp) , %eax
80483cd: b&d pop %ebp
80483ce: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or . 0 file

24
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Alternate Disassembly
Disassembled

Object
0x401040:
0x55 Dump of assembler code for function sum:
0x89 0x080483c4 <sum+0>: push  %ebp
oxe5 0x080483c5 <sum+1>: mov %esp , %ebp
0x8b 0x080483c7 <sum+3>: mov Oxc(%ebp) , %eax
0x45 0x080483ca <sum+6>: add 0x8 (%ebp) , %eax
0x0cC 0x080483cd <sum+9>: pop %ebp
0x03 0x080483ce <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3 gdb p

disassemble sum

" Disassemble procedure
X/11xb sum

= Examine the 11 bytes starting at sum

25
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What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD . EXE: file format pei1-1386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push  %ebp
30001001: 8b ec mov %esp ,%ebp
30001003: 6a ff push  $OXFFFFFFfT

30001005: 68 90 10 00 30 push  $0x30001090
3000100a: 68 91 dc 4c 30 push  $0x304cdc91l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

26



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

O
O
O
m Intro to x86-64
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Integer Registers (I1A32) Origin

(mostly obsolete)

] Y%eax Yhax %ah %al accumulate
° %ecx %CX %ch %c counter
2
§ Y%edx %dx %dh %d 1 data
Q.
E‘i< %ebx %bx %bh %b 1 base
S .
%esi %S| Souree
%edi %d destination
Hesp ioher
Hebp potnter
\ )
Y

16-bit virtual registers

(backwards compatibility) 28



Moving Data: IA32 Yheax

. 0
m Moving Data hecCX
mov 1 Source, Dest: %edx

0
m Operand Types hebx
" Immediate: Constant integer data hesi
= Example: $0x400, $-533 %edi
= Like C constant, but prefixed with “$ %esp

= Encoded with 1, 2, or 4 bytes

%ebp

= Register: One of 8 integer registers
= Example: %eax, %edx
= But %esp and %ebp reserved for special use

= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
= Various other “address modes”

29



Moving Data: IA32 Yheax

. 0
m Moving Data hecCX
mov 1 Source, Dest: %edx

0
m Operand Types hebx
& Immediate: Constant integer data hesi
= Example: $0x400, $-533 %edi
= Like C constant, but prefixed with “$ %esp

= Encoded with 1, 2, or 4 bytes

%ebp

= Register: One of 8 integer registers
= Example: %eax, %edx
= But %esp and %ebp reserved for special use

= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%leax)
= Various other “address modes”

30
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moVv 1 Operand Combinations

Source Dest Src,Dest C Analog
4 | Reg movl $0x4,%eax temp = 0x4;
mm
Mem movl $-147,(%eax) *p = -147;

0 0 _ i
novl < Reg {Reg movl %eax,%edx temp2 = templ;

Mem movl %eax, (%edx) *p = temp;

L Mem Reg movl (%eax),%edx temp = *p;

Cannot do memory-memory transfer with a single instruction

31
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Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movl (%ecx) ,%eax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset
= Dis an arbitrary integer constrained to fit in 1-4 bytes

movl 8(%ebp) ,%edx

32



Using Simple Addressing Modes

swap:
i i _ pushl %ebp A
void swap(int *xp, int *yp) movl %esp,%ebp . Set
{ int €0 = *xp: pushl %ebx J Up
int t1 = *yp; A
*xp = tl: movl 8(%ebp), %edx
*yp = 10; movl 12(%ebp), %ecx
1 movl (%edx), %ebx
movl (%ecx), %eax " Body
movl %eax, (%edx)
movl %ebx, (%ecx)

popl %ebx
popl  %ebp Finish
ret

33



Using Simple Addressing Modes

swap:
_ i i pushl %ebp h
20|d swap(int *xp, int *yp) movl  Y%esp,Y%ebp L Set
int 10 = *xp: pushl %ebx J Up
int tl = *yp;
*xp = tl: movl 8(%ebp), %edx
*yp = 10; movl 12(%ebp), %ecx
1 movl (%edx), %ebx
movl (%ecx), %eax " Body
movl %eax, (%edx)
movl %ebx, (%ecx) y

popl %ebx
popl  %ebp Finish

ret

34



Understanding Swap

void swap(int *xp, int *yp) . Stack

{ : i
int t0 = *xp; Offset ) (m memory)
int tl = *yp;
*yp = t0; 8 Xp

} 4 | Rtn adr

O |Old %ebpjf—— %ebp

-4 |Old %ebx[—— %esp

Register Value

%edx Xp

0

Q:;ﬁ ig movl 8(%ebp), %edx # edx = xp

: movl 12(%ebp), %ecx # ecx = yp

heax tl movl (%edx), %ebx  # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0

35



Carnegie Mellon

Understanding Swap
Y%eax
Yhedx Offset
%ecx yp 12
8
%ebx *P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

36
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Understanding Swap
Y%eax
%edx| O0x124 Offset
%ecx 48 12
X 8
%ebx P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

37
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Understanding Swap
Y%eax
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
%ebx P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*Xp = tl
*yp = t0

38
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Understanding Swap
Y%eax
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx 1
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

39
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Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax 1
movl %eax, (%edx) #
movl %ebx, (%ecx) #

Address
123 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

40
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Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) 1
movl %ebx, (%ecx) #

Address
456 0Ox124
456 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xXp = tl
*yp = t0

41
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Understanding Swap
Y%eax 456
%edx| Ox124 Offset
%ecx| 0x120 yp 12
X 8
webx| 123 P
4
Y%esi
%ebp — 0
Y%edi _4
%esp
movl 8(%ebp), %edx #
%ebp| 0x104 movl 12(%ebp), %ecx #
movl (%edx), %ebx #
movl (%ecx), %eax #
movl %eax, (%edx) #
movl %ebx, (%ecx) 1

Address
456 0Ox124
123 0x120
Ox11c
Ox118
Ox114
0x120 0x110
0x124 Ox10c
Rtn adr 0x108
0x104
0x100
edx = xp
ecx = yp
ebx = *xp (t0)
eax = *yp (tl)
*xp = tl
*yp = t0

42



Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers

Ri:  Index register: Any, except for %esp
= Unlikely you’d use %ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg|[Ri]]

43



Today: Machine Programming I: Basics

History of Intel processors and architectures
C, assembly, machine code
Assembly Basics: Registers, operands, move

|
|
|
m Intro to x86-64
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Data Representations: IA32 + x86-64

m Sizes of C Objects (in Bytes)

C Data Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 10/16
= char * 4 4 8

45



x86-64 Integer Registers

%rax Yheax
%rbx %ebx
%rcx Y%hecx
%rdx Y%edx
%rsi Y%esi
%rdi %edi
%rsp %esp
%rbp %ebp

Wr8 %r8d

Wro %rod

%rio %r10d
%ril %rild
%ril2 %ri2d
%ril3 %r13d
%rild %ri4d
%ril5s %ri15d

= Extend existing registers. Add 8 new ones.

= Make %ebp/%rbp general purpose

Carnegie Mellon
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Instructions

m Long word I (4 Bytes) <> Quad word ( (8 Bytes)

m New instructions:
= movl = movq
= addl = addq
= sall = salq
= etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to O
= Example: addl

47
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32-bit code for swap
swap:
- — — pushl %ebp B
\EOId swap(int *xp, Int *yp) movl  %esp.,Y%ebp | Set
int t0 = *xp: pushl %ebx J Up
int tl = *yp;
*xXp = ti; movl 8(%ebp), %edx
*yp = t0; movl 12(%ebp), %ecx
} movl (%edx), %ebx >
movl (%ecx), %eax Body
movl %eax, (%edx)
movl %ebx, (%ecx) _

popl %ebx
popl  %ebp Finish

ret

48
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64-bit code for swap
swap:

void swap(int *xp, Int *yp) fjept
¢ int t0 = *xp; movl  (%rdr), %edx ~

int tl = *yp; movl (%rsi), %eax

*Xp = ti; movl %eax, (%rdi) o Body

*yp = t0; movl  %edx, (%rsi)
}

ret } Finish

m Operands passed in registers (why useful?)
= First (Xp) in %rdi, second (yp) in %rsi
" 64-bit pointers

m No stack operations required

m 32-bit data
= Data held in registers %eax and %edx
= movl operation "
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64-bit code for long int swap

swap_ 1I:
void swap(long *xp, long *yp) ffpt
¢ long t0 = *xp; movdq (%rdi), %rdx ~
long t1 = *yp; mov(q (%rsi), %rax
*Xp = tl; movq  %rax, (%rdi) - Body
*yp = t0; mov(q %rdx, (%rsi) )
}
ret } Finish
m 64-bit data

= Data held in registers %rax and %rdx
" mov(q operation

o,

= “q” stands for quad-word

50
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Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in 1A32

51
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