
Carnegie Mellon

1

Dynamic Memory Allocation:
Basic Concepts

15-213 / 18-213: Introduction to Computer Systems
18th Lecture, March 24, 2015

Instructors:
Seth Copen Goldstein, Franz Franchetti, Greg Kesden

Carnegie Mellon

2

Today
 Basic concepts
 Implicit free lists

Carnegie Mellon

3

Dynamic Memory Allocation
 Programmers use

dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
 For data structures whose

size is only known at
runtime.

 Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator

Heap

Carnegie Mellon

4

Dynamic Memory Allocation

 Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free

 Types of allocators
 Explicit allocator: application allocates and frees space

 E.g., malloc and free in C
 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)
 Successful:

 Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 If size == 0, returns NULL
 Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
 Returns the block pointed at by p to pool of available memory
 p must come from a previous call to malloc or realloc

Other functions
 calloc: Version of malloc that initializes allocated block to zero.
 realloc: Changes the size of a previously allocated block.
 sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

6

malloc Example

void foo(int n, int m) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return p to the heap */
 free(p);
}

Carnegie Mellon

7

Assumptions Made in This Lecture
 Memory is word addressed (each word can hold a

pointer)

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

Carnegie Mellon

8

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

9

Constraints
 Applications
 Can issue arbitrary sequence of malloc and free requests
 free request must be to a malloc’d block

 Allocators
 Can’t control number or size of allocated blocks
 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests
 Must allocate blocks from free memory

 i.e., can only place allocated blocks in free memory
 Must align blocks so they satisfy all alignment requirements

 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
 Can manipulate and modify only free memory
 Can’t move the allocated blocks once they are malloc’d

 i.e., compaction is not allowed

Carnegie Mellon

10

Performance Goal: Throughput
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time
 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds
 Throughput is 1,000 operations/second

Carnegie Mellon

11

Performance Goal: Peak Memory Utilization
 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk
 malloc(p) results in a block with a payload of p bytes
 After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated payloads

 Def: Current heap size Hk
 Assume Hk is monotonically nondecreasing

 i.e., heap only grows when allocator uses sbrk

 Def: Peak memory utilization after k+1 requests
 Uk = (maxi<=k Pi) / Hk

Carnegie Mellon

12

Fragmentation
 Poor memory utilization caused by fragmentation
 internal fragmentation
 external fragmentation

Carnegie Mellon

13

Internal Fragmentation
 For a given block, internal fragmentation occurs if payload is

smaller than block size

 Caused by
 Overhead of maintaining heap data structures
 Padding for alignment purposes
 Explicit policy decisions

(e.g., to return a big block to satisfy a small request)

 Depends only on the pattern of previous requests
 Thus, easy to measure

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

14

External Fragmentation
 Occurs when there is enough aggregate heap memory,

but no single free block is large enough

 Depends on the pattern of future requests
 Thus, difficult to measure

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

15

Implementation Issues
 How do we know how much memory to free given just a

pointer?

 How do we keep track of the free blocks?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we pick a block to use for allocation -- many
might fit?

 How do we reinsert freed block?

Carnegie Mellon

16

Knowing How Much to Free
 Standard method
 Keep the length of a block in the word preceding the block.

 This word is often called the header field or header
 Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size payload

6

Carnegie Mellon

17

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 2 6

5 4 2 6

Carnegie Mellon

18

Today
 Basic concepts
 Implicit free lists

Carnegie Mellon

19

Method 1: Implicit List
 For each block we need both size and allocation status
 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned, some low-order address bits are always 0
 Instead of storing an always-0 bit, use it as a allocated/free flag
 When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

20

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/1 32/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Carnegie Mellon

21

Implicit List: Finding a Free Block
 First fit:

 Search list from beginning, choose first free block that fits:

 Can take linear time in total number of blocks (allocated and free)
 In practice it can cause “splinters” at beginning of list

 Next fit:
 Like first fit, but search list starting where previous search finished
 Should often be faster than first fit: avoids re-scanning unhelpful blocks
 Some research suggests that fragmentation is worse

 Best fit:
 Search the list, choose the best free block: fits, with fewest bytes left over
 Keeps fragments small—usually improves memory utilization
 Will typically run slower than first fit

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

Carnegie Mellon

22

First Fit code, Style (1)
typedef uint32_t word;
typedef int bool;

// Return true if the block is not after end. Assume block > start
static inline bool isBeforeEnd(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(block >= mem_heap);
 return (block < mem_brk);
}

// Return true if the block pts to a valid address in the heap
static inline bool isInHeap(const word* block) {
 return ((block >= mem_heap)&&(block < mem_brk));
}

Carnegie Mellon

23

First Fit code, Style (1)
typedef uint32_t word;
typedef int bool;

// Return true if the block is not after end. Assume block > start
static inline bool isBeforeEnd(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(block >= mem_heap);
 return (block < mem_brk);
}

// Return true if the block pts to a valid address in the heap
static inline bool isInHeap(const word* block) {
 return ((block >= mem_heap)&&(block < mem_brk));
}

REQUIRES is a macro which states a pre-condition.
I highly recommend using it!

REQUIRES is a macro which states a pre-condition.

I highly recommend using it!

Carnegie Mellon

24

contracts.h

 REQUIRES(condition) a precondition
 ENSURES(condition) a postcondition
 ASSERT(condition) an assertion

 Using these will improve readability
 Using these will reduce debugging time
 Used properly they will NOT decrease performance

Carnegie Mellon

25

First Fit code, Style (1)
typedef uint32_t word;
typedef int bool;

// Return true if the block is not after end. Assume block > start
static inline bool isBeforeEnd(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(block >= mem_heap);
 return (block < mem_brk);
}

// Return true if the block pts to a valid address in the heap
static inline bool isInHeap(const word* block) {
 return ((block >= mem_heap)&&(block < mem_brk));
}

Carnegie Mellon

26

First Fit code, Style (2)

// Return true if the block is allocated, false otherwise
static inline bool isAllocated(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(isInHeap(block));

 return *block&0x01;
}

// return length of this UNallocated block in words
static inline int getLengthOfFreeBlock(const word* block) {
 REQUIRES(!isAllocated(block));
 return *block;
}

Carnegie Mellon

27

First Fit code, Style (3)

// return length of this block in words
static inline int getLengthOfBlock(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(isInHeap(block));
 return (*block & -2);
}

// get ptr to next block
static inline word* nextBlock(const word* block) {
 REQUIRES(block != NULL);
 REQUIRES(isInHeap(block));
 return block+getLengthOfBlock(block);
}

Carnegie Mellon

28

First Fit code, Style (4)

p = start;
while (isBeforeEnd(p) && // not past end AND
 (isAllocated(p) || // (Already allocated OR
 getLengthOfFreeBlock(p) <= len)) // too small)
 p = nextBlock(p); // goto next block

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

Carnegie Mellon

29

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 2 6

4 2 4

p

2 4

addblock(p, 4)

Carnegie Mellon

30

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = getLengthOfBlock(p); // get current size
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 2 6

4 2 4

p

2 4

addblock(p, 4)

Better Style

Carnegie Mellon

31

Implicit List: Allocating in Free Block
 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might want

to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = getLengthOfBlock(p); // get current size
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 2 6

4 2 4

p

2 4

addblock(p, 4)

Should Also

Carnegie Mellon

32

Implicit List: Freeing a Block
 Simplest implementation:
 Need only clear the “allocated” flag

 void free_block(ptr p) { *p = *p & -2 }

 But can lead to “false fragmentation”

4 2 4 2 4

free(p) p

4 4 2 4 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

33

Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free
 Coalescing with next block

 But how do we coalesce with previous block?

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4 2 4 2

free(p) p

4 4 2

4

6 2

logically
gone

Carnegie Mellon

34

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size a Boundary tag
(footer)

4 4 4 4 6 4 6 4

Header

Carnegie Mellon

35

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Carnegie Mellon

36

m1 1

Constant Time Coalescing (Case 1)

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

Carnegie Mellon

37

m1 1

Constant Time Coalescing (Case 2)

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0

Carnegie Mellon

38

m1 0

Constant Time Coalescing (Case 3)

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

Carnegie Mellon

39

m1 0

Constant Time Coalescing (Case 4)

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Carnegie Mellon

40

Disadvantages of Boundary Tags
 Internal fragmentation

 Can it be optimized?
 Which blocks need the footer tag?
 What does that mean?

Carnegie Mellon

41

Summary of Key Allocator Policies
 Placement policy:
 First-fit, next-fit, best-fit, etc.
 Trades off lower throughput for less fragmentation
 Interesting observation: segregated free lists (next lecture)

approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
 When do we go ahead and split free blocks?
 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called
 Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
 Coalesce as you scan the free list for malloc
 Coalesce when the amount of external fragmentation reaches

some threshold

Carnegie Mellon

42

Implicit Lists: Summary
 Implementation: very simple
 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case
 even with coalescing

 Memory usage:
 will depend on placement policy
 First-fit, next-fit or best-fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

	Dynamic Memory Allocation: �Basic Concepts��15-213 / 18-213: Introduction to Computer Systems	�18th Lecture, March 24, 2015
	Today
	Dynamic Memory Allocation	
	Dynamic Memory Allocation
	The malloc Package
	malloc Example
	Assumptions Made in This Lecture
	Allocation Example
	Constraints
	Performance Goal: Throughput
	Performance Goal: Peak Memory Utilization
	Fragmentation
	Internal Fragmentation
	External Fragmentation
	Implementation Issues
	Knowing How Much to Free
	Keeping Track of Free Blocks
	Today
	Method 1: Implicit List
	Detailed Implicit Free List Example
	Implicit List: Finding a Free Block
	First Fit code, Style (1)
	First Fit code, Style (1)
	contracts.h
	First Fit code, Style (1)
	First Fit code, Style (2)
	First Fit code, Style (3)
	First Fit code, Style (4)
	Implicit List: Allocating in Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Freeing a Block
	Implicit List: Coalescing
	Implicit List: Bidirectional Coalescing
	Constant Time Coalescing
	Constant Time Coalescing (Case 1)
	Constant Time Coalescing (Case 2)
	Constant Time Coalescing (Case 3)
	Constant Time Coalescing (Case 4)
	Disadvantages of Boundary Tags
	Summary of Key Allocator Policies
	Implicit Lists: Summary

