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Dynamic Memory Allocation:  
Basic Concepts 
 
15-213 / 18-213: Introduction to Computer Systems  
18th Lecture, March 24, 2015 

Instructors:  
Seth Copen Goldstein, Franz Franchetti, Greg Kesden 
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Today 
 Basic concepts 
 Implicit free lists 
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Dynamic Memory Allocation  
 Programmers use 

dynamic memory 
allocators (such as 
malloc) to acquire VM 
at run time.  
 For data structures whose 

size is only known at 
runtime. 

 Dynamic memory 
allocators manage an 
area of process virtual 
memory known as the 
heap.  

Heap (via malloc) 

Program text (.text) 

Initialized data (.data) 

Uninitialized data (.bss) 

User stack 

0 

Top of heap 
 (brk ptr) 

Application 

Dynamic Memory Allocator 

Heap 
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Dynamic Memory Allocation 

 Allocator maintains heap as collection of variable sized 
blocks, which are either allocated or free 

 Types of allocators 
 Explicit allocator:  application allocates and frees space  

 E.g.,  malloc and free in C 
 Implicit allocator: application allocates, but does not free space 

 E.g. garbage collection in Java, ML, and Lisp 

 
 Will discuss simple explicit memory allocation today 
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The malloc Package 
#include <stdlib.h> 

void *malloc(size_t size) 
 Successful: 

 Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary 

 If size == 0, returns NULL 
 Unsuccessful: returns NULL (0) and sets errno 

void free(void *p) 
 Returns the block pointed at by p to pool of available memory 
 p must come from a previous call to malloc or realloc 

Other functions 
 calloc: Version of malloc that initializes allocated block to zero.  
 realloc: Changes the size of a previously allocated block. 
 sbrk: Used internally by allocators to grow or shrink the heap 
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malloc Example 

void foo(int n, int m) { 
    int i, *p; 
   
    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 
   
    /* Initialize allocated block */ 
    for (i=0; i<n; i++)  
        p[i] = i; 
 
   
    /* Return p to the heap */ 
    free(p);  
} 
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Assumptions Made in This Lecture 
 Memory is word addressed (each word can hold a 

pointer) 

Allocated block 
(4 words) 

Free block 
(3 words) Free word 

Allocated word 
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Allocation Example 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 
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Constraints 
 Applications 
 Can issue arbitrary sequence of malloc and free requests 
 free request must be to a malloc’d  block 

 
 Allocators 
 Can’t control number or size of allocated blocks 
 Must respond immediately to malloc requests 

 i.e., can’t reorder or buffer requests 
 Must allocate blocks from free memory 

 i.e., can only place allocated blocks in free memory 
 Must align blocks so they satisfy all alignment requirements 

 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes 
 Can manipulate and modify only free memory 
 Can’t move the allocated blocks once they are malloc’d 

 i.e., compaction is not allowed 
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Performance Goal: Throughput 
 Given some sequence of malloc and free requests: 
  R0, R1, ..., Rk, ... , Rn-1 

 
 Goals: maximize throughput and peak memory utilization 
 These goals are often conflicting 

 
 Throughput: 
 Number of completed requests per unit time 
 Example: 

 5,000  malloc calls and 5,000 free calls in 10 seconds  
 Throughput is 1,000 operations/second 
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Performance Goal: Peak Memory Utilization 
 Given some sequence of malloc and free requests: 
  R0, R1, ..., Rk, ... , Rn-1 

 Def: Aggregate payload Pk  
  malloc(p) results in a block with a payload of p bytes 
 After request Rk has completed, the aggregate payload Pk  is the sum of 

currently allocated payloads 

 Def: Current heap size Hk 
 Assume Hk is monotonically nondecreasing 

 i.e., heap only grows when allocator uses sbrk 

 Def: Peak memory utilization after k+1 requests  
 Uk = ( maxi<=k Pi )  /  Hk 
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Fragmentation 
 Poor memory utilization caused by fragmentation 
 internal fragmentation 
 external fragmentation 
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Internal Fragmentation 
 For a given block, internal fragmentation occurs if payload is 

smaller than block size 
 
 
 
 
 

 
 Caused by  
 Overhead of maintaining heap data structures 
 Padding for alignment purposes 
 Explicit policy decisions  

(e.g., to return a big block to satisfy a small request) 

 Depends only on the pattern of previous requests 
 Thus, easy to measure 

Payload Internal  
fragmentation 

Block 

Internal  
fragmentation 
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External Fragmentation 
 Occurs when there is enough aggregate heap memory, 

but no single free block is large enough 
 
 
 
 
 
 
 
 

 Depends on the pattern of future requests 
 Thus, difficult to measure 

 

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) Oops! (what would happen now?) 
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Implementation Issues 
 How do we know how much memory to free given just a 

pointer? 
 

 How do we keep track of the free blocks? 
 

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in? 
 

 How do we pick a block to use for allocation -- many 
might fit? 
 

 How do we reinsert freed block? 
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Knowing How Much to Free 
 Standard method 
 Keep the length of a block in the word preceding the block. 

 This word is often called the header field or header 
 Requires an extra word for every allocated block 

p0 = malloc(4) 

p0 

free(p0) 

block size payload 

6 
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Keeping Track of Free Blocks 
 Method 1: Implicit list using length—links all blocks 

 
 
 

 Method 2: Explicit list among the free blocks using pointers 
 
 

 
 Method 3: Segregated free list 
 Different free lists for different size classes 

 
 Method 4: Blocks sorted by size 
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key 

5 4 2 6 

5 4 2 6 



Carnegie Mellon 

18 

Today 
 Basic concepts 
 Implicit free lists 
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Method 1: Implicit List 
 For each block we need both size and allocation status 
 Could store this information in two words: wasteful! 

 Standard trick 
 If blocks are aligned, some low-order address bits are always 0 
 Instead of storing an always-0 bit, use it as a allocated/free flag 
 When reading size word, must mask out this bit 

Size 

1 word 

Format of 
allocated and 
free blocks 

Payload 

a = 1: Allocated block   
a = 0: Free block 
 
Size: block size 
 
Payload: application data 
(allocated blocks only) 
 

a 

Optional 
padding 
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Detailed Implicit Free List Example 

Start  
of  

heap 

Double-word 
aligned 

8/0 16/1 16/1 32/0 

Unused 

0/1 

Allocated blocks: shaded 
Free blocks: unshaded 
Headers: labeled with size in bytes/allocated bit 
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Implicit List: Finding a Free Block 
 First fit: 

 Search list from beginning, choose first free block that fits: 
 
 
 
 
 
 Can take linear time in total number of blocks (allocated and free) 
 In practice it can cause “splinters” at beginning of list 

 Next fit: 
 Like first fit, but search list starting where previous search finished 
 Should often be faster than first fit: avoids re-scanning unhelpful blocks 
 Some research suggests that fragmentation is worse 

 Best fit: 
 Search the list, choose the best free block: fits, with fewest bytes left over 
 Keeps fragments small—usually improves memory utilization 
 Will typically run slower than first fit 

p = start;  
while ((p < end) &&     \\ not passed end 
       ((*p & 1) ||     \\ already allocated 
       (*p  <= len)))   \\ too small  
  p = p + (*p & -2);    \\ goto next block (word addressed) 
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First Fit code, Style (1) 
typedef uint32_t word; 
typedef int bool; 
  

// Return true if the block is not after end.  Assume block > start  
static inline bool isBeforeEnd(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(block >= mem_heap); 
  return (block < mem_brk); 
} 
  

// Return true if the block pts to a valid address in the heap  
static inline bool isInHeap(const word* block) { 
  return ((block >= mem_heap)&&(block < mem_brk));  
} 
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First Fit code, Style (1) 
typedef uint32_t word; 
typedef int bool; 
  

// Return true if the block is not after end.  Assume block > start  
static inline bool isBeforeEnd(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(block >= mem_heap); 
  return (block < mem_brk); 
} 
  

// Return true if the block pts to a valid address in the heap  
static inline bool isInHeap(const word* block) { 
  return ((block >= mem_heap)&&(block < mem_brk));  
} 
  

REQUIRES is a macro which states a pre-condition. 
I highly recommend using it! 

REQUIRES is a macro which states a pre-condition. 

I highly recommend using it! 
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contracts.h 

 REQUIRES(condition) a precondition 
 ENSURES(condition) a postcondition 
 ASSERT(condition)  an assertion 

 
 Using these will improve readability 
 Using these will reduce debugging time 
 Used properly they will NOT decrease performance 
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First Fit code, Style (1) 
typedef uint32_t word; 
typedef int bool; 
  

// Return true if the block is not after end.  Assume block > start  
static inline bool isBeforeEnd(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(block >= mem_heap); 
  return (block < mem_brk); 
} 
  

// Return true if the block pts to a valid address in the heap  
static inline bool isInHeap(const word* block) { 
  return ((block >= mem_heap)&&(block < mem_brk));  
} 
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First Fit code, Style (2) 

// Return true if the block is allocated, false otherwise  
static inline bool isAllocated(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(isInHeap(block)); 
  
  return *block&0x01; 
} 
  

// return length of this UNallocated block in words  
static inline int getLengthOfFreeBlock(const word* block) { 
  REQUIRES(!isAllocated(block)); 
  return *block; 
} 
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First Fit code, Style (3) 

// return length of this block in words 
static inline int getLengthOfBlock(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(isInHeap(block)); 
  return (*block & -2); 
} 
  

// get ptr to next block 
static inline word* nextBlock(const word* block) { 
  REQUIRES(block != NULL); 
  REQUIRES(isInHeap(block)); 
  return block+getLengthOfBlock(block); 
} 
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First Fit code, Style (4) 
  
p = start; 
while (isBeforeEnd(p) &&   // not past end AND 
    (isAllocated(p) ||   // (Already allocated OR 
     getLengthOfFreeBlock(p) <= len)) // too small) 
  p = nextBlock(p);   // goto next block 

p = start;  
while ((p < end) &&     \\ not passed end 
       ((*p & 1) ||     \\ already allocated 
       (*p  <= len)))   \\ too small  
  p = p + (*p & -2);    \\ goto next block (word addressed) 
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Implicit List: Allocating in Free Block 
 Allocating in a free block: splitting 
 Since allocated space might be smaller than free space, we might want 

to split the block 

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block 

4 4 2 6 

4 2 4 

p 

2 4 

addblock(p, 4) 
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Implicit List: Allocating in Free Block 
 Allocating in a free block: splitting 
 Since allocated space might be smaller than free space, we might want 

to split the block 

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = getLengthOfBlock(p);    // get current size 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block 

4 4 2 6 

4 2 4 

p 

2 4 

addblock(p, 4) 

Better Style 
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Implicit List: Allocating in Free Block 
 Allocating in a free block: splitting 
 Since allocated space might be smaller than free space, we might want 

to split the block 

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = getLengthOfBlock(p);    // get current size 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block 

4 4 2 6 

4 2 4 

p 

2 4 

addblock(p, 4) 

Should Also 
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Implicit List: Freeing a Block 
 Simplest implementation: 
 Need only clear the “allocated” flag 

  void free_block(ptr p) { *p = *p & -2 } 

 
 But can lead to “false fragmentation”  
 
 
 
 
 
 
 

4 2 4 2 4 

free(p) p 

4 4 2 4 2 

malloc(5) Oops! 

There is enough free space, but the allocator won’t be able to find it 
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Implicit List: Coalescing 
 Join (coalesce) with next/previous blocks, if they are free 
 Coalescing with next block 

    
 
 
 
 
 

 
 
 
 
 But how do we coalesce with previous block? 

void free_block(ptr p) { 
    *p = *p & -2;          // clear allocated flag 
    next = p + *p;         // find next block 
    if ((*next & 1) == 0) 
      *p = *p + *next;     // add to this block if 
}                          //    not allocated 

4 2 4 2 

free(p) p 

4 4 2 

4 

6 2 

logically 
gone 
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Implicit List: Bidirectional Coalescing  
 Boundary tags [Knuth73] 

 Replicate size/allocated word at “bottom” (end) of free blocks 
 Allows us to traverse the “list” backwards, but requires extra space 
 Important and general technique! 

Size 

Format of 
allocated and 
free blocks 

Payload and 
padding 

a = 1: Allocated block   
a = 0: Free block 
 
Size: Total block size 
 
Payload: Application data 
(allocated blocks only) 
 

a 

Size a Boundary tag 
(footer) 

4 4 4 4 6 4 6 4 

Header 
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Constant Time Coalescing 

Allocated 

Allocated 

Allocated 

Free 

Free 

Allocated 

Free 

Free 

Block being 
freed 

Case 1 Case 2 Case 3 Case 4 
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m1 1 

Constant Time Coalescing (Case 1) 

m1 1 
n 1 

n 1 
m2 1 

m2 1 

m1 1 

m1 1 
n 0 

n 0 
m2 1 

m2 1 



Carnegie Mellon 

37 

m1 1 

Constant Time Coalescing (Case 2) 

m1 1 
n+m2 0 

n+m2 0 

m1 1 

m1 1 
n 1 

n 1 
m2 0 

m2 0 
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m1 0 

Constant Time Coalescing (Case 3) 

m1 0 
n 1 

n 1 
m2 1 

m2 1 

n+m1 0 

n+m1 0 
m2 1 

m2 1 
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m1 0 

Constant Time Coalescing (Case 4) 

m1 0 
n 1 

n 1 
m2 0 

m2 0 

n+m1+m2 0 

n+m1+m2 0 
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Disadvantages of Boundary Tags 
 Internal fragmentation 

 
 Can it be optimized? 
 Which blocks need the footer tag? 
 What does that mean? 
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Summary of Key Allocator Policies 
 Placement policy: 
 First-fit, next-fit, best-fit, etc. 
 Trades off lower throughput for less fragmentation  
 Interesting observation: segregated free lists (next lecture) 

approximate a best fit placement policy without having to search 
entire free list 

 Splitting policy: 
 When do we go ahead and split free blocks? 
 How much internal fragmentation are we willing to tolerate? 

 Coalescing policy: 
 Immediate coalescing: coalesce each time free is called  
 Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. Examples: 
 Coalesce as you scan the free list for malloc 
 Coalesce when the amount of external fragmentation reaches 

some threshold 



Carnegie Mellon 

42 

Implicit Lists: Summary 
 Implementation: very simple 
 Allocate cost:  
 linear time worst case 

 Free cost:  
 constant time worst case 
 even with coalescing 

 Memory usage:  
 will depend on placement policy 
 First-fit, next-fit or best-fit 
 

 Not used in practice for malloc/free because of linear-
time allocation 
 used in many special purpose applications 
 

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators 
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