
Carnegie Mellon

15-213 Recitation: Data Lab

Jack Biggs
26 Jan 2015

Carnegie Mellon

Agenda

■ Introduction
■ Brief course basics
■ Data Lab!

■ Getting Started
■ Bits, Bytes, Ints
■ Floating Point
■ Running your code

Carnegie Mellon

Introduction

■ Welcome to 15-213!
■ Recitations are for 15-213 students only

■ Place to review previous lectures
■ Discuss homework-related problems
■ General problem solving
■ Preview material in future lectures

■ Ask any questions you may have, we will get back to
you if we can’t answer immediately.

Carnegie Mellon

Course Basics

■ Getting help
■ Staff email list: 15-213-staff@cs.cmu.edu
■ Office hours: 5-9PM from Sun-Thu in Wean 5207
■ Course website: http://cs.cmu.edu/~213
■ Course textbook is extremely helpful!
■ Linux Workshop, 2 Feb: Location & Time TBA

■ All homework submissions will be done through Autolab.
■ All homework should be done on the shark clusters.

■ From Linux: ssh andrewid@shark.ics.cs.cmu.edu

mailto:15-213-staff@cs.cmu.edu
http://cs.cmu.edu/~213

Carnegie Mellon

Data Lab: Getting Started

■ Download handout, transfer it to your AFS directory.
■ From shark: cd <folder>, then tar xpvf <tar-filename>
■ If you get Permission denied, try chmod +x <filename>

■ Test your code with btest, bddcheck, driver.pl, and dlc
■ For more information, read the writeup.
■ The writeup is on the same page in Autolab as the handout.
■ Click on view writeup to view the writeup. It’s really that simple.
■ No, really, read the entire writeup. Always. Please. For our sake.

■ driver.pl will tell you your score.
■ To submit, upload your bits.c file to Autolab.

Carnegie Mellon

Data Lab: Bits, Bytes, and Ints

■ Computers represent all of their data in 0s and 1s,
known as “bits.” 8 of these binary digits are a “byte.”

■ Architects perform arithmetic on human-readable
numbers using operations on binary numbers.

■ The goal of this lab is to get you more comfortable
with bit and byte-level representations of data.

Carnegie Mellon

Size of data types on different systems

Carnegie Mellon

Endianness (Byte Order)
■ Little-Endian stores lower bytes of a number first.

e.g., 0xdeadbeef stored at address 0xaaaa:
0xaaaa: 0xef be ad de

■ Big-Endian stores higher bytes of a number first.
e.g., 0xdeadbeef stored at address 0xaaaa:

0xaaaa: 0xde ad be ef
■ This concept is less important in this lab, but will

become more relevant in bomb and buffer lab.
■ The Shark machines are Little-Endian.

Carnegie Mellon

Unsigned Numbers

■ An unsigned int has 32 bits and represents
positive numbers from 0 to 232-1.

■ If we add 1 to 232-1, we overflow back to 0.
■ General formula: With k bits, we can represent 2k

distinct numbers.
■ Highest unsigned int value known as Umax.

data

Carnegie Mellon

Signed Numbers

■ An int has 32 bits: 31 bits for data, and 1 bit for sign
■ Represents [-231, 231-1]

■ Overflow or Underflow in signed arithmetic produces
undefined behavior!

■ General formula: With k bits, we can represent
numbers from [-2k-1, 2k-1-1]

■ Lowest signed int value known as Tmin, highest
signed int value known as Tmax.

datasign

Carnegie Mellon

Operators: Shifting

Shifting modifies the positions of bits in a number:

Shifting right on a signed number will extend the sign:

(If the sign bit is zero, it will fill in with zeroes instead.)

1 0 1 01 0 0 01 1 0 11 0 0 11 = x

0 0 0 01 1 0 11 0 0 11 = x << 41 0 1 1 0 0 0 0

1 0 1 01 0 0 01 1 0 11 0 0 11x =

1 0 1 01 0 0 01 1 0 11x >> 4 = 0 0 1 11 1 11

= x * 24

x / 24 =

Carnegie Mellon

Operators: Bitwise

■ Bitwise operators use bit-representations of numbers.

1 0 0 01 0 0 1

0 0 1 00 1 0 1

1 0 1 01 1 0 1

= x

= y

= x | y (or)

1 0 0 01 0 0 1

0 0 1 00 1 0 1

0 0 0 00 0 0 1

= x

= y

= x & y (and)

1 0 0 01 0 0 1

0 0 1 00 1 0 1

1 0 1 01 1 0 0

= x

= y

= x ^ y (xor)

1 0 0 01 0 0 1

0 1 1 10 1 1 0

= x

= ~x
(logical
negation)

Carnegie Mellon

Operators: Logical

■ In C, the truth value of an int is false if 0, else true.
■ x && y: “x and y”. Ex: 7 && 3 = true = 1.
■ x || y: “x or y”. Ex: 0 || 3 = true = 1.
■ !x: “not x”. Ex: !484 = false = 0.

■ Ensure you are not mixing bitwise and logical
operators in your code!!!

Carnegie Mellon

Operators: Arithmetic

■ Basic arithmetic also works in C.
■ Beware of overflow!
■ x + y, x - y: addition / subtraction.
■ x * y, x / y: multiplication / division.
■ x % y: modulo. The remainder after integer division.

■ Negating a two’s complement number: ~x + 1

Carnegie Mellon

Floating Point
■ In the IEEE Floating Point specification, we represent

our decimal numbers in binary scientific notation:

■ s - the sign of the number
■ M - the mantissa, a fraction in range [1.0, 2.0)
■ E - the exponent, weighting the value by a power of two

■ s is sign bit s, exp is binary representation of E, and frac is binary
representation of M:

x = (-1)s M 2E

exp fracs

Carnegie Mellon

Floating Point: Different levels of precision

float

double

long double

Carnegie Mellon

Floating Point: Normalized Values

■ Case: exp != 0, exp != 111...11
■ E = exp - bias
■ Bias = 2k-1-1, where k = number of exponent bits
■ Significand (mantissa) encoded with implied leading 1

Example: In the above diagram, exp = 10001100 = 140.
exp - bias = 140 - 127 = 13, so our multiplying factor is 213.
frac has implied leading 1, so M = 1.11011011011012
(-1)0 * 1.11011011011012

 * 213 = 111011011011012 = 15213.010.

0 1 00 0 1 01 0 1 01 1 1 10 1 0 11 0 1 00 0 0 00 0 0 00

exp fracs

Carnegie Mellon

Floating Point: Denormalized Values

■ Case: exp = 0
■ E = -bias + 1
■ Bias = 2k-1-1, where k = number of exponent bits
■ Significand (mantissa) encoded with implied leading 0

Example: Since we have an implied leading 0, M = 0.1101101101101.
Our exponent, E = -bias + 1 = -126
Our sign bit is 1
Our number: (-1)1 * 0.1101101101101 * 2-126 = 1.00746409144571... × 10-38

1 0 00 0 0 00 0 1 01 1 1 10 1 0 11 0 1 00 0 0 00 0 0 00

exp fracs

Carnegie Mellon

Floating Point: Special Values

■ Case: exp = 111...11
■ Frac = 000….000: Represents +/- infinity

■ For overflow of numbers, divergence, etc.
■ Sign not ignored!

■ Frac != 000….000: Represents NaN
■ “Not a Number”
■ For number division by zero, square root of -1, and other non-

representable numbers
■ Sign ignored

0 1 11 1 1 11 1 1 01 1 1 10 1 0 11 0 1 00 0 0 00 0 0 00

exp fracs

Carnegie Mellon

Floating Point: Rounding

■ IEEE uses the round-to-even rounding scheme.
■ Remove bias from long, repeated computations

■ Examples
■ 10.1011: More than ½, round up: 10.11
■ 10.1010: Equal to ½, round down to even: 10.10
■ 10.0101: Less than ½, round down: 10.01
■ 10.0110: Equal to ½, round up to even: 10.10
■ All other cases involve rounding up or down

Carnegie Mellon

Floating Point: Practice

■ Consider a 5-bit floating point representation using
k=3 exponent bits, n=2 fraction bits, and no sign bit.
■ What is the bias?
■ What is the largest possible normalized number?
■ Smallest normalized number?
■ Largest denormalized number?
■ Smallest denormalized number?

Carnegie Mellon

Floating Point: Practice

■ Consider a 5-bit floating point representation using k=3
exponent bits, n=2 fraction bits, and no sign bit.
■ What is the bias? 3
■ Largest normalized value? 110 11 = 1110.0 = 14
■ Smallest normalized val? 001 00 = 0.0100 = ¼
■ Largest denormalized val? 000 11 = 0.0011 = 3/16
■ Smallest denormalized val? 000 01 = 0.0001 = 1/16

■ These sorts of questions will show up on your midterm, by
the way!

Carnegie Mellon

Floating Point: Practice

■ Consider a 5-bit floating point representation using
k=3 exponent bits, n=2 fraction bits, and no sign bit.
Can you fill out the chart below?

Carnegie Mellon

Floating Point: Practice

■ Consider a 5-bit floating point representation using
k=3 exponent bits, n=2 fraction bits, and no sign bit.
Answers:

Carnegie Mellon

Dazed? Lost? Confused? Angry?

Read the textbook, email the staff list, go to office hours,
and, for the love of God, read the writeup!!!!

Carnegie Mellon

Sources

■ Textbook
■ Course website: http://cs.cmu.edu/~213
■ Previous recitation slides
■ Lecture slides

http://cs.cmu.edu/~213

