
15-213/18-213/15-513, Spring 2015

Data Lab: Manipulating Bits

Assigned: Thu, Jan 15, Due: Thu, Jan 29, 11:59PM

Last Possible Time to Turn in: Sun, Feb 1, 11:59PM

For the fastest response, please contact the staff via the mailing list (15-213-staff@cs.cmu.edu) for

questions about the assignment.

1 Introduction

The purpose of this assignment is to become more familiar with bit-level representations of common pat-

terns, integers, and floating-point numbers. You’ll do this by solving a series of programming “puzzles.”

Many of these puzzles are quite artificial, but you’ll find yourself thinking much more about bits in working

your way through them.

2 Logistics

• This is an individual project. All handins are electronic using the Autolab service.

• You should do all of your work in an Andrew directory, using either the shark machines or a Linux

Andrew machine.

3 Logging in to Autolab

All 15-213 labs are being offered this term through a Web service developed by CMU students and faculty

called Autolab. Before you can download your lab materials, you will need to update your Autolab account.

Point your browser at the Autolab front page

https://autolab.cs.cmu.edu

You will be asked to authenticate via Shibboleth. After you authenticate this first time, Autolab will prompt

you to update your account information with a nickname. Your nickname is the external name that identifies

1



you on the public scoreboards that Autolab maintains for each assignment, so pick something interesting!

You can change your nickname as often as you like. Once you have updated your account information, click

on “Save Changes” button, and then select the “Home” link to proceed to the main Autolab page.

If you added the class late, you might not be included in Autolab’s list of valid students. In this case, you

won’t see the 15-213/18-213 course listed on your Autolab home page. If this happens, contact the staff and

ask for an account.

4 Handout Instructions

Your lab materials are contained in a Unix tar file called datalab-handout.tar, which you can down-

load from Autolab. After logging in to Autolab at

https://autolab.cs.cmu.edu

you can retrieve the datalab-handout.tar file by selecting “Data Lab->Download handout”. Start

by copying datalab-handout.tar to the Linux Andrew directory where you plan to do your work.

Then give the command

linux> tar xvf datalab-handout.tar

This will create a directory called datalab-handout that contains a number of files. The only file you

will be modifying and handing in is bits.c.

The bits.c file contains a skeleton for each of the 13 programming puzzles. Your assignment is to

complete each function skeleton following a strict set of coding rules: You may use only straightline code

for the integer puzzles (i.e., no loops or conditionals) and a limited number of C arithmetic and logical

operators. Specifically, you are only allowed to use the following eight operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8

bits. See the comments in bits.c for detailed rules and a discussion of the coding rules for each functions.

WARNING: Do not let the Windows WinZip program open up your .tar file (many Web browsers are set

to do this automatically). Instead, save the file to your AFS directory and use the Linux tar program to

extract the files. In general, for this class you should NEVER use any platform other than Linux to modify

your files, doing so can cause loss of data (and important work!).

5 The Puzzles

This section describes the puzzles that you will be solving in bits.c.

2



5.1 Bit Manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the

difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number

of operators you are allowed to use to implement each function. See the comments in bits.c for more

details on the desired behavior of the functions. You may also refer to the test functions in tests.c. These

are used as reference functions to express the correct behavior of your functions, although they don’t satisfy

the coding rules for your functions.

Name Description Rating Max Ops

bitAnd(x,y) x & y using only | and ˜ 1 8

allEvenBits(x) return 1 if all even-numbered bits in word are set to 1 2 12

conditional(x, y, z) return x ? y : z \verb 3 16

logicalShift(x, n) Shift x to right by n, using a logical shift 3 20

bitCount(x) returns count of number of 1’s in word x 4 40

greatestBitPos(x) return a mask that marks the position of the most significant 1 bit. 4 70

Table 1: Bit-Level Manipulation Functions.

5.2 Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers. Again,

refer to the comments in bits.c and the reference versions in tests.c for more information.

Name Description Rating Max Ops

tmin() Return smallest two’s complement integer 1 4

negate(x) -x without negation 2 5

isNegative(x) x < 0? 2 6

fitsBits(x, n) return 1 if x can be represented as an n-bit, two’s complement integer 2 15

isGreater(x,y) x > y? 3 24

isPower2(x) Is x a power of two? 4 20

Table 2: Arithmetic Functions

5.3 Floating-Point Operations

For this part of the assignment, you will implement some common single-precision floating-point opera-

tions. In this section, you are allowed to use standard control structures (conditionals, loops), and you may

use both int and unsigned data types, including arbitrary unsigned and integer constants. You may

not use any unions, structs, or arrays. Most significantly, you may not use any floating point data types,

operations, or constants. Instead, any floating-point operand will be passed to the function as having type

3



unsigned, and any returned floating-point value will be of type unsigned. Your code should perform

the bit manipulations that implement the specified floating point operations.

Table 3 describes a set of functions that operate on the bit-level representations of floating-point numbers.

Refer to the comments in bits.c and the reference versions in tests.c for more information.

Name Description Rating Max Ops

float_i2f(x) Compute (float) x 4 30

float_abs(f) Compute abs(f) 2 10

Table 3: Floating-Point Functions. Value f is the floating-point number having the same bit representation

as the unsigned integer uf.

The included program fshow helps you understand the structure of floating point numbers. To compile
fshow, switch to the handout directory and type:

linux> make

You can use fshow to see what an arbitrary pattern represents as a floating-point number:

linux> ./fshow 2080374784

Floating point value 2.658455992e+36

Bit Representation 0x7c000000, sign = 0, exponent = f8, fraction = 000000

Normalized. 1.0000000000 X 2ˆ(121)

You can also give fshow hexadecimal and floating point values, and it will decipher their bit structure.

linux> ./fshow 0x15213

Floating point value 1.212781782e-40

Bit Representation 0x00015213, sign = 0, exponent = 0x00, fraction = 0x015213

Denormalized. +0.0103172064 X 2ˆ(-126)

linux> ./fshow 15.213

Floating point value 15.2130003

Bit Representation 0x41736873, sign = 0, exponent = 0x82, fraction = 0x736873

Normalized. +1.9016250372 X 2ˆ(3)

6 Evaluation

Your score will be computed out of a maximum of 63 points based on the following distribution:

37 Correctness of code.

26 Performance of code, based on number of operators used in each function.

4



Correctness points. The 14 puzzles you must solve have been given a difficulty rating between 1 and 4,

such that their weighted sum totals to 37. We will use the the dlc compiler to check that your function

follows the coding rules. We will use the BDD checker to verify that your function is correct. You will get

full credit for a puzzle only if it follows all of the coding rules and it passes all of the tests performed by the

BDD checker, and no credit otherwise.

Performance points. Our main concern at this point in the course is that you can get the right answer.

However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,

some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each

function we’ve established a maximum number of operators that you are allowed to use for each function.

This limit is very generous and is designed only to catch egregiously inefficient solutions. We will use the

dlc compiler to verify that you’ve satisfied the operator limit. You will receive two points for each correct

function that satisfies the operator limit.

7 Autograding your work

We have included some handy autograding tools in the handout directory—btest, dlc, BDD checker,

and driver.pl—to help you check the correctness of your work.

• btest: This program checks the functional correctness of the functions in bits.c by calling
them many times with many different argument values. To build and use it, type the following two
commands:

linux> make

linux> ./btest

Notice that you must rebuild btest each time you modify your bits.c file.

You’ll find it very helpful to use btest to work through the functions one at a time, testing each one
as you go. You can use the -f flag to instruct btest to test only a single function:

linux> ./btest -f bitOr

This will call the bitOr function many times with many different input values. You can feed btest

specific function arguments using the option flags -1, -2, and -3:

linux> ./btest -f bitOr -1 7 -2 0xf

This will call bitOr exactly once, using the arguments x=7 and y=15. Use this feature if you want

to debug your solution by inserting printf statements; otherwise, you’ll get too much output.

• dlc: This is a modified version of an ANSI C compiler from the MIT CILK group that you can use

to check for compliance with the coding rules for each puzzle. The typical usage is:

linux> ./dlc bits.c

5



The program runs silently unless it detects a problem, such as an illegal operator, too many operators,
or non-straightline code in the integer puzzles. Running with the -e switch:

linux> ./dlc -e bits.c

causes dlc to print counts of the number of operators used by each function. Type ./dlc -help

for a list of command line options.

• BDD checker: The code in BTEST simply tests your functions for a number of different cases.

For most functions, the number of possible argument combinations far exceeds what could be tested

exhaustively. To provide complete coverage, we have created a formal verification program, called

cbit, that exhaustively tests your functions for all possible combinations of arguments. It does this

by using a data structure known as Binary Decision Diagrams (BDDs).

You do not invoke cbit directly. Instead, there is a series of Perl scripts that set up and evaluate the
calls to it. Execute

linux> ./bddcheck/check.pl -f fun

to check function fun. Execute

linux> ./bddcheck/check.pl

to check all of your functions. Execute

linux> ./bddcheck/check.pl -g

the check all of your functions and get a compact tabular summary of the results.

• driver.pl: This is a driver program that uses dlc and the BDD checker to compute the correct-
ness and performance points for your solution. This is the same program that Autolab uses when it
autogrades your handin. Execute

linux> ./driver.pl

to check all of your functions and to display the result in a compact tabular format.

8 Handin Instructions

Unlike other courses you may have taken in the past, in this course you may handin your work as often as

you like until the due date of the lab.

To receive credit, you will need to upload your bits.c file using the Autolab option “Handin your work.”

Each time you handin your code, the server will run the driver program on your handin file and produce a

grade report (it also posts the result on the scoreboard). The server archives each of your submissions and

resulting grade reports, which you can view anytime using the “View handin history” option.

Handin Notes:

6



• At any point in time, your most recently uploaded file is your official handin. You may handin as

often as you like.

• Each time you handin, you should use the “View your handin history and scores” option to confirm

that your handin was properly autograded. Manually refresh the page to see the autograded result.

• You must remove any extraneous print statements from your bits.c file before handing in.

9 Advice

• See http://www.cs.cmu.edu/˜213/faq.html for answers to frequently-asked questions.

• You can work on this assignment using one of the class shark machines

linux> ssh -X andrewid@shark.ics.cs.cmu.edu

or one of the Andrew Linux servers

linux> ssh -X andrewid@unix.andrew.cmu.edu

• Test and debug your functions one at a time. Here is the sequence we recommend:

– Step 1. Test and debug one function at a time using btest. To start, use the -1 and -2

arguments in conjunction with -f to call one function with one specific set of input argument(s):

linux> ./btest -f isLess -1 23 -2 0xabcd

Feel free to use printf statements to display the values of intermediate variables. However,

be careful to remove them after you have debugged the function.

– Step 2. Use btest -f to check the correctness of your function against a large number of
different input values:

linux> ./btest -f isLess

If btest detects an error, it will print out the specific input argument(s) that failed. Go back to

Step 1, and debug your function using those arguments

– Step 3. Use dlc to check that you’ve conformed to the coding rules:

linux> ./dlc bits.c

– Step 4. After your function passes all of the tests in btest, use the BDD checker to perform
the definitive correctness test:

linux> ./bddcheck/check.pl -f isLess

– Step 5. Repeat Steps 1–4 for each function. At any point in time, you can compute the total
number of correctness and performance points you’ve earned by running the driver program:

linux> ./driver.pl

• Some hints for dlc:

7



– Don’t include the <stdio.h> header file in your bits.c file, as it confuses dlc and results

in some non-intuitive error messages. You will still be able to use printf in your bits.c file

for debugging without including the <stdio.h> header, although gcc will print a warning

that you can ignore.

– The dlc program enforces a stricter form of declarations than is the case for C++ or Java or even

that is enforced by gcc. In particular, any declaration must appear in a block (what you enclose

in curly braces) before any statement that is not a declaration. For example, it will complain

about the following code:

int foo(int x)

{

int a = x;

a *= 3; /* This statement is not a declaration */

int b = a; /* ERROR: Declaration not allowed here */

}

• Some hints for the BDD checker:

– The BDD checker cannot handle functions that call other functions, including printf. You

should use btest to evaluate code with debugging printf statements. Be sure to remove any

of these debugging statements before handing in your code.

– The BDD checker scripts are a bit picky about the formatting of your code. They expect the

function to open with a line of the form:

int fun (...)

or

unsigned fun (...)

and to end with a single right brace in the leftmost column. That should be the only right brace

in the leftmost column of your function.

If you have any questions about this lab, the Autolab system, or the course in general, please contact the

staff at 15-213-staff@cs.cmu.edu. We respond days and evenings and are very good about getting

back to you fast. Remember: We’re here to help. Good luck!

8


