Carnegie Mellon

4

VELCOME "‘ ’ |5;ﬁ3" —
. et

T ————

<« AN g s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
2" Lecture, Feb. 4, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Linux Boot Camp: Feb. 4 (today), 7-9pm US/Eastern

® Details on Piazza

m Office Hours: slots are available Sunday through Friday
= Details on the course page
= Bring your own Zoom meeting ID or link

m Written Assignments
" First one will be handed out Wed Feb 10, 11:59 pm ET

m Lab Ois available on Autolab.
" Due Thu Feb 11, 11:59:59pm ET
= No grace days

= No late submissions
= Just doit!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

https://autolab.andrew.cmu.edu/courses/15213-s21

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Before digital there was analog...

108
107
106

106

—_
o
S

—_
o
w

Numeric Value

102

101

100

99
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Voltage

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

(c. 100 BCE) Antikythera Mechanism

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

(1969) Simulators Inc. model 240

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

(2018) Digital+Analog Al processor

- 24 mm) >

Neuron Array

thermometer
DAC section

W $'Z

Banary-wul ghtod
DAL section

COMPBP o

Filter SRAM

Bankman et al, “An always-on 3.8uJ/86% CIFAR-10 mixed-signal blnary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition CNN processor with all memory on ch|p in 28nm CMOS”

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

— > « >
0 1 — 0=

1.1V —

0.0V — h/\’\/\\
0.2V —/_W/ —
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10# as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002t0 11111111>
® Decimal: 010 to 25510

= Hexadecimal 0016 to FFis

= Base 16 number representation

'faYs 'faYs { ’ ir’ 1000

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 1001
= Write FA1D37B1sin C as

1011

— OxFA1D37B 1100

— Oxfald37b 1101

= EO QWP oo dou|d|WIN RO
RRRR R
Gl ool o] ©|®| N o v wiNk| o
|_l
o
|_l
o

15213: 0011 1011 0110 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 010 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A"B = 1 when either A=1 or B=1, but not both
~ S
IR 0o[o0 1

110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Bit-Level Operations in C

N
>
u 66\6\\006
m Operations &, |, ~, M Availablein C §‘ g 0%00
= Apply to any “integral” data type 1|1 0001
_ | , 2 [2 | 0010
long, int, short, char, unsigned 3 [3 | 0011
= View arguments as bit vectors 4 14 |0100
= Arguments applied bit-wise Y.
g pp 6 | 6 | 0110
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
= ~OxA1 S 9 | 9 | 1001
A |10 1010
B (11| 1011
= ~0X00 S C [12]1100
D (13
E [14
F |15

= 0x69 & 0x55 -

= 0x69 | 0x55 >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Bit-Level Operations in C

+
. . . < < \
m Operations &, |, ~, " Available in C R 0¥ O
= Apply to any “integral” data type
= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 - OxBE
= ~0100 00012 - 1011 11102
= ~0x00 - OxFF
= ~0000 00002 - 11111111,
= 0x69 & 0x55 - 0x41
= 01101001, & 0101 01012 - 0100 00012
= 0x69 | Ox55 - 0x7D
= 01101001, | 0101 0101, - 0111 1101,

H|E|O|Q|w|>|o|o|dlou;|a|w|d ko
RRRRR| R
olel el ol©|e o v w|N| = o
=
o
=
o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1
= Early termination

m Examples (char data type)
= 10x41 -> 0x00

10x00 - 0x01

= 110x41-> 0x01

Watch out for && vs. & (and | | vs. |)...
Super common C programming pitfall!

" 0Ox69 && 0x55 - 0x01
= 0x69 || Ox55 - 0x01

" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Shift Operations
m Left Shift: x << y Argument x| 01100010
= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

- Throw away extra bits on right Argument x| 10100010

" |ogical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith. >> 2| 11101000

m Undefined Behavior

" Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
= Representation: unsigned and signed
o
o
o
o
n
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1) w=2 .
BUX) = Y x;-2 BT(X) = —x, 2"+ x -2
i=0 i=0
short int x = 15213; \\\\\\\\

short int y = -15213; Sign Bit

m Cdoes not mandate using two’s complement

" But, most machines do, and we will assume so

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Two-complement: Simple Example

-16 8 4 2 1

Il
o
=
o
=
o

10 8+2 10

-16 8 4 2 1
-10 =1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Numeric Ranges

m Unsigned Values

Carnegie Mellon

m Two’s Complement Values

[| 1 -
UMin 0 = TMin _ _yw-1
000..0 100...0
m - w_
UMax 2v-1 = TMax = 2%1-1
111..1 011..1
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 000OOOOOO
-1 -1| FF FF| 11111111 11111111
0 0| 00 00| 00000000 0O0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

27

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations

m CProgramming

= |TMin| = TMax+1
= Asymmetric range
"= UMax = 2*TMax+1

= Question: abs(TMin)?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

= #include <limits.h>

= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

28

Carnegie Mellon

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 —7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 &
1110 14 -2
1111 15 -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

29

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/20895

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

https://canvas.cmu.edu/courses/20895

Carnegie Mellon

Today: Bits, Bytes, and Integers

u
u
m Integers
o
= Conversion, casting
o
o
o
u

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Mapping Between Sighed & Unsigned

Unsigned

) 4
Two’s Complement 12U

X > T2B > B2U > UX
X

Maintain Same Bit Pattern

Two’s Complement

Unsigned u2T
Ux »| U2B |—{ B2T > X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —JT2ul— 5
0110 6 6
0111 7 —1U2T}- 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 - 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Relation between Signhed & Unsigned

Two’s Complement - Unsigned

X > T2B > B2U > UX
X

Maintain Same Bit Pattern

w—1 0
o I Y O o

x [EEE e T+[+[*

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned

= Ordering Inversion UMax

" Negative — Big Positive UMax -1

/ TMax +1 | unsigned

»

- TMax © ® T\Max Range

2’s Complement
Range

&Q

_ TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed
= Unsigned if have “U” as suffix, or if too big to be signed
0OU, 2147483648

= Watch out! A leading minus sign is not part of the constant!
-2147483648 == 2147483648 on 32-bit machines (why?)

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

" |mplicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;
uy = ty; uy = fun(tx) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Casting Surprises

m Expression Evaluation

= |f there is @ mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation

0 ouU == unsigned

-1 0 < signed

-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned

-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
= intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
o
= Expanding, truncating
o
o
m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

® X = Xy seer Xpye1 s Xpye1 s Xy 1000 X

k copies of MSB < w >
o 00
X’ () o000

<€ k >€ . >

Bryant and O’Hallaron, Computer Systems: A Programmer’s | ctive, Third Edition 42

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = 0 1 0 1 0 -10 = 0 1 1 0
-3 16 8 4 2 1 -3 16 8 4 2 1
10 = % 1 0 1 0 -10 = 1 { 0 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Larger Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
Yy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Truncation

m Task:

= Given k+w-bit signed or unsigned integer X

= Convert it to w-bit integer X’ with same value for “small enough” X
m Rule:

= Drop top k bits:

= X = X1 Xpyg s X

<€ k >€ . >
X eo0 0 o0 0
X! o0 0

<€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Truncation: Simple Example

No sigh change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small (in magnitude) numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

