Carnegie Mellon

4

VELCOME "‘ ’ |5;ﬁ3" —
. et

T ————

<« AN g s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Cache Memories

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
11t Lecture, October 6, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Lab 3 (attacklab) due TODAY
® Thursday March 11, 11:59pm ET

m Lab 4 (cachelab) out at midnight
® Due Tuesday March 23, 11:59pm ET

m Cbootcamp Friday March 12, 7-9pm ET

= Cache lab involves lots of C programming

m Midterm review Monday March 14, 7-9pm ET

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Midterm format

m Short answers, like the written assignments
= But more challenging

m Covers material up to and including Mar 4 lecture

= Bits and Bytes, Floats, Assembly, Stack, Structs, Arrays
" No cache

m Worth 10% of your grade

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Midterm logistics

m Take home

= Will be posted on gradescope 11:59pm ET Tuesday March 16
= Can be downloaded any time within the next 45 hours
= Expected to take you 2 hours

" Must upload answers within 3 hours after you download it
(enforced by gradescope)

= Extra time is in case of technical difficulties
= Also in case you need a snack break
= Accommodations will be respected

m Open book

= You may refer to lecture slides, your own notes, course webpage,
textbook and its webpage, references mentioned in the syllabus,
and any material from Autolab or Canvas

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) QLS
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text «— rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Recap: stack operations

m push %rax =

more stuff

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=

rax

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

m ret=
rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

. jmp func \. < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= > 4
= sub %rsp, 8
" mov %rip, (%rsp) rax
= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Recap: stack operations

m push %rax = i)
= sub %rsp, 8 more stuff
" mov %rax, (%rsp)
m call func=) < P

= sub %rsp, 8
" mov %rip, (%rsp)
= jmp func

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =
" mov (%rsp), %rax
= add %rsp, 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Today

m Cache memory organization and operation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Recall: Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Recall: Memory

Hierarchy 10/ ens
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte] L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl Q’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Recall: General Cache Concepts

Cache

Memory

Smaller, faster, more expensive

4 9 14 3 memory caches a subset of
the blocks
Data is copied in block-sized
transfer units
Larger, slower, cheaper memory
0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0000000000 0O0OCOOGOOS

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 7 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Recall: General Caching Concepts:

3 Types of Cache Misses

m Cold (compulsory) miss
" Cold misses occur because the cache starts empty and this is the first
reference to the block.
m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—> |:> ALU
memory <1':|
l E System bus Memory bus
Bus interface < > I./O <:> ain
bridge memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

What it Really Looks Like

CPU chip

Memory Controller

Register file
Cache <—> |:> ALU
memory (]

| :;VSAhér'ed L3 Cécﬁé: :’f ; Bus interface

Core i7- 3960X :

Queue, Uncore B
& I/0

Rl U e S £

BRI

CEITIEOINCTIDOJCCEINNICIISEENENE

Shared &

s Gachie

ROWHE "%
BT

Memory Controller

HyperTransport™ Ph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edltlon 24

Carnegie Mellon

What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3-20MB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set

AL
'd N\

4 «—
eooe —
eooe

S=ZSSEtS< eoceoe

o000
\.

Cache size
=S x E x B data bytes

v tag 01112 ¢cccee B-1

T N— 7

- v

valid bit B = 2* bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o0 00

Address of word:
t bits s bits | b bits
= 25 WM
S = 25 sets < R tag set block
index offset

data begins at this offset

Vv tag 01112 cccce- B-1

N— 7

valid bit B = 2b bytes per cache block (the data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 - Tilalalal=1c15 Address of int:
i a8 tbits | 0..01 | 100

\'} ta 0111213415167 -
g find set

S$=25 sets<

v tag 0]1]12)1314]|5]|6]7

'} tag 0j112|3|4]|5]|6]|7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Carnegie Mellon

Address of int:
valid? + match: m = hi
alid atch: assume yes (= hit) thits | 0..01 | 100
v tag 0]1|2|3|4]|5]|6]7
block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0|1]2]|3]14|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] miss (conflict)
v Tag Block

Set0 | 1 0 M[0-1]

Setl1| O

Set2 | O

Set3 | 1 0 M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size B=8 bytes

Address of short int:

2 lines per set t bits 0..01 | 100
A
P
(
vl [tag | [o[2[2[3TalsTe[7|l I[V] [tag | [o]2][2]3]a[5][6]7
vl [tag | [o[2][2[3Tals[e[7 1 |[v] [tag | [o[2][2]3]a[5[6[7]| — find set
< vl [tag | [o[1]23Tals[6[7]|l I[V] [tag | [o[z2[2]3Ta[5[6]7
O 0000000000 0000000000000 00000 OCOOCO®O®O®EOOLOLOEOEOOOOOIOO
vl [tag | [o[1]23Tals[6[7]|l I[V] [tag | [o[z2[2]3Ta[5[6]7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2]|3|4]|5]|6]|7 v tag 0|1|2]|3|4]|5]|6]|7]|| —

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2]|3|4|5]|6]|7 v tag 0|1|2]|3|4]|5]|6]|7]|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto |1 00 | M[O-1]
1 10 | M[8-9]
Set 1 (1) 01 | M[6-7]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

What about writes?

m Multiple copies of data exist: va ‘F tag | 10]1[2] " 5
= |1, L2, L3, Main Memory, Disk L ~ ~ d
y valid bit dirty bit B = 2 bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
" Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bit indexing
4 Address of int:
v | tee | [O]1]2]3]4]5]16]7 tbits | 0..01 | 100
v tag 0]1]12)1314]|5]|6]7 -
find set /
S=2s sets<
v tag 0]1f2]3)4]5]6]7 /Alternative Method: \
High bit indexing
OO0 0000000 OGDEOGEOGOEOOEOONOONOSOOO
Address of int:
'} tag 0|1]2)13|4]|5]|6]7 1...11 t bits 100
\. .
find set

_ J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

lllustration of Indexing 0000xx
Approaches Don
0010xx

m 64-byte memory 001 Lxcx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010 Lscx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

39

Carnegie Mellon

High Bit Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

40

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Example: Core i7 L1 Data Cache

N
>
RS
W&
. . E = 2¢ lines per set \e\d‘. 000 %\0
32 kB 8-way set associative o A N 0 [0 [0000
64 bytes/block I | Jeeee [é é 88%
47 bit address range | I |+« - [2 2 82(1)(1)
S=2sets< | I Jeeee] 5[5 0101
B= 6 | 6 | 0110
_ s_ LB B B O B B B B B B NN BB AN I BN BN N NN N W] '7 l7 0111
= N 8 | 8 | 1000
= ,e=s - | J | 9 |9 1001
A [10] 1010
C= Cache size: B |11 1011
" — 1. C =S x E x B data bytes C |12] 1100
I T Y EV Y D [13 | 1101
I_Jb_t — E |14 [1110
valanl F [15] 1111
Address of word:
| thits | sbits | b bits |
e
tag set block
. . 7
index offset Stack Address: BIocEk offset: 0x?"
0x00007£7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Example: Core i7 L1 Data Cache

>
&
E = 2¢ lines per set \e\d‘. 000\6\0@
32 kB 8-way set associative o ~ 0 T0 10000
64 bytes/block | | X I > loan
47 bit address range | I |+« - [2 2 82(1)(1)
_ S=2sets | | o oo | 5 |5 | 0101
B =64 6 | 6 | 0110
§5=64,5=6 | zeeeeeeeee cesescescsescens 77 ToLiT
8 | 8 | 1000
E=8,e=3 9 J G — 9 [9 [1001
10 [1010
C=64x64x8=32,768 Cache size: 1T
I—‘T—' [we | [o]1]2] —]51] C =S x E x B data bytes C [12| 1100
| D [13[1101
valid bit H/_/ E 1411110
F |15 1111
Address of word:
| thits | sbits | b bits |
e
=L i:de:x ::fsilfc Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/17808

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

https://canvas.cmu.edu/courses/17808

Carnegie Mellon

Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array '"data" with stride of "stride", Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acel = 0, ace2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {

1. Call test() onceto

el = feal 4 debafiad - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO0 + accl) + (acc2 + acc3));

} mountain/mountain.c

50

Carnegie Mellon

Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggress{ve 8 MB L3 cache
prefetching 64 B block size
16000 ’ ‘;

— 14000

S 12000 -

2 10000 ‘ B

g 8000 t\ k Rldges

o Wi [—" of temporal

§ . - locality

-
2000 %

Slopes P T

of spatial =~ ° e
sl

locality s3 128k

sb5

512k

7 2m

Stride (x8 bytes)

®
s9

8m Size (bytes)
32m
sl
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];
c[i][J] = sum;

matmult/mm.c

53

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0] [i];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!

= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *
sum = 0.0; E;;; - Qﬂ
for (k=0; k<n; k++) (%)
A B

C

Inner loop:

sum += a[i][k] * b[k][7j];

c[i] [§] = sum; ‘ ‘ ‘
}

} matmult/mm. c

Row-wise Column- Fixed
wise

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.k) E(k'*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][3J] += r * Db[k][]]’ ‘ |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,j)
for (k=0; k<n; k++) { (k,j)

r = b[k][j]; ” n [

for (i=0; i<n; i++) A B C

c[i][j] += alil[k] * r; | ‘
e . Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j];
c[i][]J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[il[3] += r * b[k][]];
}
}

for (3=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]J]~
for (i=0; i<n; i++)
c[i]l[3] += a[i]l[k] * r;

ijk (& jik):
e 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
* avg misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* avg misses/iter = 2.0

59

Carnegie Mellon

Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100
jki/kji (2.0)

ki
—-kji
——ijk
—7ik
——kij
ik

ijk/jik (1.25)

10

kij/ikj (0.5)

1 | || || || || || || || || || || || || ||

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Today

= Using blocking to improve temporal locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r ~N
" n/8+n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) . S

Il
X

8 wide
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
= 9n/8 n*=(9/8) n3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=L)

for (J = 0; j < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (il = i; il < i+L; il++)
for (31 = j; jl1 < Jj+L; Jjl++)
for (k1 = k; k1l < k+L; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c

jl
C a b C
= X +
] il EE
1
Block size L x L 65

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective

Carnegie Mellon

Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

m First (block) iteration: ~ Z/kL bk::ks
= Misses per block: L2/8 L] HEEEERE B
= Blocks per Iteration: 2n/L — X =
(omitting matrix c)]
= Misses per lteration: T

2/Q —
2n/Lx L?/8 =nL/4 Block size L x L

= Afterwards in cache
(schematic)

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

. . n/L blocks
m Second (block) iteration: A

' N\
" Same misses as L] BEREE

first iteration
= 2n/Lx L2%/8 =nlL/4

Block size L x L
m Total misses:

" nlL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) n3® misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L2< C

" Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Supplemental slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

The Memory Mountain

Carnegie Mellon

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size
32000
28000 — | 4 .,
g 24000 A N
S
= 20000 k
S 16000 \ ’ Ridges
£ 12000 of temporal
g _ / locality
£ 8000 y-
4000 % -
Slopes / i
: 32k
of spatial 128Kk
locality s5 512k

So8m

_ s7
Stride (x8 bytes) s9 Size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

71

Cache Capacity Effects from Core i7 Haswell

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size

25000 -
0
gzoooo -
g 15000 Main L3 L2 1
=) | | my 4
o Memory Slice through
s memory
©
§ 10000 mountain with

stride=8
5000
0 .

Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Cache Block Size Effects from Core 7 Haswell
1 32 KB L1 d-cache
Memory Mountain ke L
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000
30000 N\ /\
\Miss rate = s/8
25000 \/\
g 20000 \ Miss rate = 1.0
N
g 15000 | =o=Measured
/I \
<
10000
5000
0

s1 s2 s3 s4& s5 s6 s7 s8 s9 s10 s11 s12 Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000

30000

\ Throughput

25000

10°

8.0s+24.3

20000

MB/sec

15000

=@=|\easured

10000

==Model

5000

sl s2 s3 s4 s5 s6 s/ s8 s9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

s10

s11 <12 Strides

74

Carnegie Mellon

Core 2 Duo

2008 Memory Mountain 2.4 Gh:z

32 KB L1 d-cache

No 6MB L2 cache
20000 prefetching

\ 64 B block size
\
18000 —
@ 16000 ’—
[a1]
S 14000
2 12000
e
(@]
S 10000 —
£ 8000 ’
©
o
£ 6000
4000
2000
0
1 32k
g 128k
2m
s7
Stride (x8 bytes i
(x8 bytes) 3om Size (bytes)
s11
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 75

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; E;;;‘ Qﬂ
HEE
for (k=0; k<n; k++) (i,%)
A B

sum += a[i] [k] * b[k][]]’ C

c[i][§] = sum | | |
}

Inner loop:

matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B c
0.25 1.0 0.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 76

Carnegie Mellon

Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) Ii(k’*)gl
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]; ‘ | |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 77

Carnegie Mellon

Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *J
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

A . A B C
c[i][j] += a[i]l[k] * r; | ‘ |
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 78

