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Carnegie Mellon

Cache Memories

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
11t Lecture, October 6, 2020
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Announcements

m Lab 3 (attacklab) due TODAY
® Thursday March 11, 11:59pm ET

m Lab 4 (cachelab) out at midnight
® Due Tuesday March 23, 11:59pm ET

m Cbootcamp Friday March 12, 7-9pm ET

= Cache lab involves lots of C programming

m Midterm review Monday March 14, 7-9pm ET

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Carnegie Mellon

Midterm format

m Short answers, like the written assignments
= But more challenging

m Covers material up to and including Mar 4 lecture

= Bits and Bytes, Floats, Assembly, Stack, Structs, Arrays
" No cache

m Worth 10% of your grade
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Midterm logistics

m Take home

= Will be posted on gradescope 11:59pm ET Tuesday March 16
= Can be downloaded any time within the next 45 hours
= Expected to take you 2 hours

" Must upload answers within 3 hours after you download it
(enforced by gradescope)

= Extra time is in case of technical difficulties
= Also in case you need a snack break
= Accommodations will be respected

m Open book

= You may refer to lecture slides, your own notes, course webpage,
textbook and its webpage, references mentioned in the syllabus,
and any material from Autolab or Canvas
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Recap: Stack and instruction pointers

Shared
m The stack pointer (%rsp) QLS
points to the top of the stack Stack — rsp
m The instruction pointer (%rip)
points to the next instruction
to be executed
m They are independent
= But linked by call and ret
instructions
Heap
Data
Text «— rip
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Recap: stack operations

m push %rax =

more stuff

\ < rsp
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Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

rax

\ < rsp
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Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=

rax

\ < rsp
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Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

rip

\ < rsp
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Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

= jmp func

e
AL

m ret=
rip

\ < rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11



Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

v
AL

m call func=
= sub %rsp, 8
" mov %rip, (%rsp)

rax

. jmp func \. < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8
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Recap: stack operations

m push %rax =

= sub %rsp, 8 more stuff

" mov %rax, (%rsp)

m call func= > 4
= sub %rsp, 8
" mov %rip, (%rsp) rax
= jmp func \ < rsp

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =
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Recap: stack operations

m push %rax = i )
= sub %rsp, 8 more stuff
" mov %rax, (%rsp)
m call func= ) < P

= sub %rsp, 8
" mov %rip, (%rsp)
= jmp func

m ret=
" mov (%rsp), %rip
= add %rsp, 8

m pop %rax =
" mov (%rsp), %rax
= add %rsp, 8
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Today

m Cache memory organization and operation
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Recall: Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time
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Recall: Memory

Hierarchy 10/ ens
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte] L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |g. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., Web servers)
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Recall: General Cache Concepts

Cache

Memory

Smaller, faster, more expensive

4 9 14 3 memory caches a subset of
the blocks
Data is copied in block-sized
transfer units
Larger, slower, cheaper memory
0 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0000000000 0O0OCOOGOOS
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General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 7 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 O0COCOGEOOO
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General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cach 2 5 12 3 Block b is not in cache:
ache Miss!
Block b is fetched from
12 Request: 12
memory
Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
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Recall: General Caching Concepts:

3 Types of Cache Misses

m Cold (compulsory) miss
" Cold misses occur because the cache starts empty and this is the first
reference to the block.
m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
m Conflict miss

= Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware
= Hold frequently accessed blocks of main memory

m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—> |:> ALU
memory <1':|
l E System bus  Memory bus
Bus interface < > I./O <:> ain
bridge memory
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What it Really Looks Like

CPU chip

Memory Controller

Register file
Cache <—> |:> ALU
memory (]

| :;VSAhér'ed L3 Cécﬁé: :’f ; Bus interface

Core i7- 3960X :

Queue, Uncore B
& I/0

Rl U e S £

BRI

CEITIEOINCTIDOJCCEINNICIISEENENE

Shared &

s Gachie

ROWHE "%
BT

Memory Controller

HyperTransport™ Ph
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What it Really Looks Like (Cont.)

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3-20MB
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General Cache Organization (S, E, B)

E = 2¢ lines per set

AL
'd N\

4 «—
eooe —
eooe

S=ZSSEtS< eoceoe

o000
\.

Cache size
=S x E x B data bytes

v tag 01112 ¢cccee B-1

T N— 7

- v

valid bit B = 2* bytes per cache block (the data)
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caChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
r A ~ * Locate data starting
4 at offset
o0 00

Address of word:
t bits s bits | b bits
= 25 WM
S = 25 sets < R tag set block
index offset

data begins at this offset

Vv tag 01112 cccce- B-1

N— 7

valid bit B = 2b bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

4 - Tilalalal=1c15 Address of int:
i a8 tbits | 0..01 | 100

\'} ta 0111213415167 -
g find set

S$=25 sets<

v tag 0]1]12)1314]|5]|6]7

'} tag 0j112|3|4]|5]|6]|7
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Carnegie Mellon

Address of int:
valid? + match: m = hi
alid atch: assume yes (= hit) thits | 0..01 | 100
v tag 0]1|2|3|4]|5]|6]7
block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size B=8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes (= hit)

v tag 0|1]2]|3]14|5]|6]7

block offset

int (4 Bytes) is here

If tag doesn’t match (= miss): old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit addresses (address space size M=16 bytes)
X XX X S=4 sets, E=1 Blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss (cold)
1 [0001,], hit
7 [0111,], miss (cold)
8 [1000,], miss (cold)
0 [0000,] miss  (conflict)
v Tag Block

Set0 | 1 0 M[0-1]

Setl1| O

Set2 | O

Set3 | 1 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size B=8 bytes

Address of short int:

2 lines per set t bits 0..01 | 100
A
P
(
vl [tag | [o[2[2[3TalsTe[7|l I[V] [ tag | [o]2][2]3]a[5][6]7
vl [ tag | [o[2][2[3Tals[e[7 1 |[v] [ tag | [o[2][2]3]a[5[6[7]| — find set
< vl [ tag | [o[1]23Tals[6[7]|l I[V] [ tag | [o[z2[2]3Ta[5[6]7
O 0000000000 0000000000000 00000 OCOOCO®O®O®EOOLOLOEOEOOOOOIOO
vl [ tag | [o[1]23Tals[6[7]|l I[V] [ tag | [o[z2[2]3Ta[5[6]7
\.
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2]|3|4]|5]|6]|7 v tag 0|1|2]|3|4]|5]|6]|7]|| —

block offset
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size B=8 bytes
Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes (= hit)

v tag 0|1|2]|3|4|5]|6]|7 v tag 0|1|2]|3|4]|5]|6]|7]|| —

block offset

short int (2 Bytes) is here

No match or not valid (= miss):
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X 4-bit addresses (M=16 bytes)

S=2 sets, E=2 blocks/set, B=2 bytes/block

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto |1 00 | M[O-1]
1 10 | M[8-9]
Set 1 (1) 01 | M[6-7]
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What about writes?

m Multiple copies of data exist: va ‘F tag | 10]1[2] " 5
= |1, L2, L3, Main Memory, Disk L ~ ~ d
y valid bit dirty bit B = 2 bytes

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Each cache line needs a dirty bit (set if data differs from memory)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location will follow
= No-write-allocate (writes straight to memory, does not load into cache)

m Typical
= Write-through + No-write-allocate
" Write-back + Write-allocate
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Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bit indexing
4 Address of int:
v | tee | [O]1]2]3]4]5]16]7 tbits | 0..01 | 100
v tag 0]1]12)1314]|5]|6]7 -
find set /
S=2s sets<
v tag 0]1f2]3)4]5]6]7 /Alternative Method: \
High bit indexing
OO0 0000000 OGDEOGEOGOEOOEOONOONOSOOO
Address of int:
'} tag 0|1]2)13|4]|5]|6]7 1...11 t bits 100
\. .
find set

\_ J
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lllustration of Indexing 0000xx
Approaches Don
0010xx

m 64-byte memory 001 Lxcx
" 6-bit addresses 0100xx

m 16 byte, direct-mapped cache 010 Lscx
m Block size = 4. (Thus, 4 sets; why?) 0110xx
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set0 1010xx

Set 1 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx
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Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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0010xx
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0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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High Bit Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

SetO

Set1

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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0100xx
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0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,
€8s €gs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,
oo Access: 10 cycles
L2 unified cache L2 unified cache L3 unified cache:
8 MB, 16-way,

Access: 40-75 cycles

L3 unified cache _
(shared by all cores) Block size: 64 bytes for
all caches.

Main memory
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Example: Core i7 L1 Data Cache

N
>
RS
W&
. . E = 2¢ lines per set \e\d‘. 000 %\0
32 kB 8-way set associative o A N 0 [0 [ 0000
64 bytes/block I | Jeeee [ é é 88%
47 bit address range | I |+« - [ 2 2 82(1)(1)
S=2sets< | I Jeeee ] 5[5 0101
B= 6 | 6 | 0110
_ s_ LB B B O B B B B B B NN BB AN I BN BN N NN N W] '7 l7 0111
= N 8 | 8 | 1000
= ,e=s - | J | 9 |9 1001
A [10] 1010
C= Cache size: B |11 1011
" — 1. C =S x E x B data bytes C |12 ] 1100
I T Y EV Y D [13 | 1101
I_Jb_t — E |14 [ 1110
valanl F [15] 1111
Address of word:
| thits | sbits | b bits |
e
tag set block
. . 7
index offset Stack Address: BIocEk offset: 0x?"
0x00007£7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??
Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42



Carnegie Mellon

Example: Core i7 L1 Data Cache

>
&
E = 2¢ lines per set \e\d‘. 000\6\0@
32 kB 8-way set associative o ~ 0 T0 10000
64 bytes/block | | X I > loan
47 bit address range | I |+« - [ 2 2 82(1)(1)
_ S=2sets | | o oo | 5 |5 | 0101
B =64 6 | 6 | 0110
§5=64,5=6 | zeeeeeeeee cesescescsescens 77 ToLiT
8 | 8 | 1000
E=8,e=3 9 J G — 9 [ 9 [1001
10 [ 1010
C=64x64x8=32,768 Cache size: 1T
I—‘T—' [we | [o]1]2] —]51] C =S x E x B data bytes C [12| 1100
| D [13[ 1101
valid bit H/_/ E 1411110
F |15 1111
Address of word:
| thits | sbits | b bits |
e
=L i:de:x ::fsilfc Stack Address: Block offset: 0x10
0x00007£7262ale010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 0000
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Cache Performance Metrics

m Miss Rate

" Fraction of memory accesses not found in cache (misses / accesses)
=1 - hitrate
= Typical numbers (as %):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a cached block to the processor
= includes time to determine whether line is in cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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How Bad Can a Few Cache Misses Be?

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider this simplified example:
cache hit time of 1 cycle
miss penalty of 100 cycles

=  Average access time:
97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”
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Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/17808
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Today

m Performance impact of caches

= The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49



Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array '"data" with stride of "stride", Call test () with many
* using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO = 0, acel = 0, ace2 = 0, ace3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {

1. Call test() onceto

el = feal 4 debafiad - warm up the caches.
accl = accl + data[i+stride];
acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read

: throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0 = accO0 + datal[i];

}

return ((accO0 + accl) + (acc2 + acc3));

} mountain/mountain.c

50
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Core i7 Haswell

The Memory Mountain 2.1 GHz

32 KB L1 d-cache
256 KB L2 cache

Aggress{ve 8 MB L3 cache
prefetching 64 B block size
16000 ’ ‘;

— 14000

S 12000 -

2 10000 ‘ B

g 8000 t\ k Rldges

o Wi [—" of temporal

§ . - locality

-
2000 %

Slopes P T

of spatial =~ ° e
sl

locality s3 128k

sb5

512k

7 2m

Stride (x8 bytes)

®
s9

8m Size (bytes)
32m
sl
128m
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Today

= Rearranging loops to improve spatial locality
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Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

O(N3) total operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++)
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[]j];
c[i][J] = sum;

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:

= Look at access pattern of inner loop

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0] [i];
" accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i][0];
= accesses distant elements
" no spatial locality!

= miss rate =1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { *
sum = 0.0; E;;; - Qﬂ
for (k=0; k<n; k++) (%)
A B

C

Inner loop:

sum += a[i][k] * b[k][7j];

c[i] [§] = sum; ‘ ‘ ‘
}

} matmult/mm. c

Row-wise Column- Fixed
wise

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

Block size = 32B (four doubles)
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Matrix Multiplication (ki)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i.k) E(k'*)g
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][3J] += r * Db[k][]]’ ‘ |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Miss rate for inner loop iterations:

A B C
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k) (*,j)
for (k=0; k<n; k++) { (k,j)

r = b[k][j]; ” n [

for (i=0; i<n; i++) A B C

c[i][j] += alil[k] * r; | ‘
e . Column- Fixed Column-

wise wise

Miss rate for inner loop iterations:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][]j];
c[i][]J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[il[3] += r * b[k][]];
}
}

for (3=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]J]~
for (i=0; i<n; i++)
c[i]l[3] += a[i]l[k] * r;

ijk (& jik):
e 2 loads, O stores
e avg misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
* avg misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
* avg misses/iter = 2.0
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Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

100
jki/kji (2.0)

ki
—-kji
——ijk
—7ik
——kij
ik

ijk/jik (1.25)

10

kij/ikj (0.5)

1 | || || || || || || || || || || || || ||

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)
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Today

= Using blocking to improve temporal locality
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Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X
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Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r ~N
" n/8+n=9n/8 misses

I
X

= Afterwards in cache:
(schematic) . S

Il
X

8 wide
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Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache line = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: :
n/8 + n =9n/8 misses _ X

8 wide

m Total misses:
= 9n/8 n*=(9/8) n3
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {

int i, j, k;

for (1 = 0; i < n; i+=L)

for (J = 0; j < n; j+=L)
for (k = 0; k < n; k+=L)
/* L x L mini matrix multiplications */
for (il = i; il < i+L; il++)
for (31 = j; jl1 < Jj+L; Jjl++)
for (k1 = k; k1l < k+L; kl++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

} matmult/bmm. c

jl
C a b C
= X +
] il EE
1
Block size L x L 65
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Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

m First (block) iteration: ~ Z/kL bk::ks
= Misses per block: L2/8 L] HEEEERE B
= Blocks per Iteration: 2n/L — X =
(omitting matrix c) ]
= Misses per lteration: T

2/Q —
2n/Lx L?/8 =nL/4 Block size L x L

= Afterwards in cache
(schematic)

X
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Cache Miss Analysis

m Assume:
® Cacheline = 8 doubles. Blocking size L> 8

= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3L2< C

. . n/L blocks
m Second (block) iteration: A

' N\
" Same misses as L] BEREE

first iteration
= 2n/Lx L2%/8 =nlL/4

Block size L x L
m Total misses:

" nlL/4 misses per iteration x (n/L)? iterations = n3/(4L) misses
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Blocking Summary

m No blocking: (9/8) n3® misses
m Blocking: (1/(4L)) n® misses

m Use largest block size L, such that L satisfies 3L2< C

" Fit three blocks in cache! Two input, one output.

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects sequentially
with stride 1.

= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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Supplemental slides
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The Memory Mountain

Carnegie Mellon

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size
32000
28000 — | 4 .,
g 24000 A N
S
= 20000 k
S 16000 \ ’ Ridges
£ 12000 of temporal
g _ / locality
£ 8000 y-
4000 % -
Slopes / i
: 32k
of spatial 128Kk
locality s5 512k

So8m

_ s7
Stride (x8 bytes) s9 Size (bytes)
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Cache Capacity Effects from Core i7 Haswell

3.1 GHz

Memory Mountain 32 KB L1 d-cache

256 KB L2 cache
8 MB L3 cache

30000 64 B block size

25000 -
0
gzoooo -
g 15000 Main L3 L2 1
=) | | my 4
o Memory Slice through
s memory
©
§ 10000 mountain with

stride=8
5000
0 .

Working set size (bytes)
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Cache Block Size Effects from Core 7 Haswell
1 32 KB L1 d-cache
Memory Mountain ke L
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000
30000 N\ /\
\Miss rate = s/8
25000 \/\
g 20000 \ Miss rate = 1.0
N
g 15000 | =o=Measured
/I \
<
10000
5000
0

s1 s2 s3 s4& s5 s6 s7 s8 s9 s10 s11 s12 Strides
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Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

35000

30000

\ Throughput

25000

10°

8.0s+24.3

20000

MB/sec

15000

=@=|\easured

10000

==Model

5000

sl s2 s3 s4 s5 s6 s/ s8 s9
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Core 2 Duo

2008 Memory Mountain 2.4 Gh:z

32 KB L1 d-cache

No 6MB L2 cache
20000 prefetching

\ 64 B block size
\
18000 —
@ 16000 ’—
[a1]
S 14000
2 12000
e
(@]
S 10000 —
£ 8000 ’
©
o
£ 6000
4000
2000
0
1 32k
g 128k
2m
s7
Stride (x8 bytes i
(x8 bytes) 3om Size (bytes)
s11
128m
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; E;;;‘ Qﬂ
HEE
for (k=0; k<n; k++) (i,%)
A B

sum += a[i] [k] * b[k][]]’ C

c[i][§] = sum | | |
}

Inner loop:

matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B c
0.25 1.0 0.0

Block size = 32B (four doubles)
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Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) Ii(k’*)gl
r = a[i] [k]; 0 (i,*)
B C

for (j=0; j<n; j++) A
c[i][]J] += r * b[k][]]; ‘ | |

Inner loop:

matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B ¢
0.0 0.25 0.25

Block size = 32B (four doubles)
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *J
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

A . A B C
c[i][j] += a[i]l[k] * r; | ‘ |
matmult/mm.c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

Block size = 32B (four doubles)
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