
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

 Read throughput (read bandwidth)
▪ Number of bytes read from memory per second (MB/s)

 Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
▪ Compact way to characterize memory system performance.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Mountain Test Function
long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array "data" with stride of "stride“,

* using 4x4 loop unrolling.

*/

int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;

long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;

long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */

for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];

acc1 = acc1 + data[i+stride];

acc2 = acc2 + data[i+sx2];

acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */

for (; i < length; i++) {

acc0 = acc0 + data[i];

}

return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many
combinations of elems
and stride.

For each elems and
stride:

1. Call test() once to
warm up the caches.

2. Call test() again and
measure the read
throughput(MB/s)

mountain/mountain.c

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Mountain

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source
element

▪ N values summed per
destination

▪ but may be able to
hold in register

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

matmult/mm.c

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 32B (big enough for four doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
▪ each row in contiguous memory locations

 Stepping through columns in one row:
▪ for (i = 0; i < N; i++)

sum += a[0][i];

▪ accesses successive elements

▪ if block size (B) > sizeof(aij) bytes, exploit spatial locality

▪ miss rate = sizeof(aij) / B

 Stepping through rows in one column:
▪ for (i = 0; i < n; i++)

sum += a[i][0];

▪ accesses distant elements

▪ no spatial locality!

▪ miss rate = 1 (i.e. 100%)

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 32B (four doubles)

0.25 0.25

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 32B (four doubles)

1.0 1.0

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik (1.25)

jki / kji (2.0)

kij / ikj (0.5)

Cycles per inner loop iteration

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x=

n

x=

8 wide

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ 9n/8 n2 = (9/8) n3

n

x=

8 wide

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)

for (k = 0; k < n; k+=L)

/* L x L mini matrix multiplications */

for (i1 = i; i1 < i+L; i1++)

for (j1 = j; j1 < j+L; j1++)

for (k1 = k; k1 < k+L; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

(omitting matrix c)

▪ Misses per Iteration:

2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration x (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

 No blocking: (9/8) n3 misses

 Blocking: (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache! Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Summary

 Cache memories can have significant performance impact

 You can write your programs to exploit this!
▪ Focus on the inner loops, where bulk of computations and memory

accesses occur.

▪ Try to maximize spatial locality by reading data objects sequentially
with stride 1.

▪ Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

128m

32m
8m

2m
512k

128k
32k

0

4000

8000

12000

16000

20000

24000

28000

32000

s1
s3

s5
s7

s9

s11
Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

The Memory Mountain

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Core i5 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

5000

10000

15000

20000

25000

30000

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Working set size (bytes)

Cache Capacity Effects from
Memory Mountain

Core i7 Haswell
3.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slice through
memory
mountain with
stride=8

L1L2L3
Main

Memory

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B

/s
e

c

Throughput for size = 128K

Measured

Cache Block Size Effects from
Memory Mountain

Core i7 Haswell
2.26 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Miss rate = s/8

Miss rate = 1.0

Stride s

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

5000

10000

15000

20000

25000

30000

35000

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

M
B

/s
e

c

Throughput for size = 128K

Measured

Model

Modeling Block Size Effects
from Memory Mountain

Core i7 Haswell
2.26 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Throughput =
106

8.0s+ 24.3

Stride s

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a
d

 t
h

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

No

prefetching

2008 Memory Mountain
Core 2 Duo
2.4 GHz
32 KB L1 d-cache
6MB L2 cache
64 B block size

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache and Memory Wrap-Up

15-213/18-213/15-513/18-613: Introduction to Computer Systems
16 March 2021

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design and Debugging

15-213/18-213/15-513/18-613: Introduction to Computer Systems
16 March 2021

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

After this lecture

 You will be able to:
▪ Describe the steps to debug complex code failures

▪ Identify ways to manage the complexity when programming

▪ State guidelines for communicating the intention of the code

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects and Infections

1. The programmer creates a defect

2. The defect causes an infection

3. The infection propagates

4. The infection causes a failure

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Curse of Debugging

 Not every defect causes a failure!

 Testing can only show the presence of errors – not their
absence. (Dijkstra 1972)

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects to Failures

 Code with defects will introduce erroneous or “infected”
state
▪ Correct code may

propagate this state

▪ Eventually an erroneous
state is observed

 Some executions will not
trigger the defect
▪ Others will not propagate

“infected” state

 Debugging sifts through
the code to find the defect

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve
the failure

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Hypothesis

Problem
Description

Code
Failing
Runs

Other
Runs

 Before debugging, you need to construct a hypothesis as
to the defect

▪ Propose a possible defect and why it explains the failure conditions

 Ockham’s Razor – given several hypotheses, pick the
simplest / closest to current work

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Prediction

Experiment

Observation
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?
▪ Refine the hypothesis based on the new inputs

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Conclusion Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix
▪ Otherwise, how do you know that it is fixed?

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code with a Bug

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

int main(..) {

..

for (i = 9; i > 0; i--)

printf(“fib(%d)=%d\n”,

i, fib(i));

$ gcc -o fib fib.c

fib(9)=55

fib(8)=34

...

fib(2)=2

fib(1)=134513905

A defect has caused a failure.

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; f is uninitialized

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prediction

 Propose a new condition or conditions
▪ What will logically happen if your hypothesis is correct?

▪ What data can be

 fib(1) failed // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions
▪ Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis
▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works. Sometimes a prediction can be a fix.

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Observation

 What is the observed result?
▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere.
▪ printf() can interfere

▪ Like quantum physics, sometimes observations are part of the
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to

a specific change

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Diagnosis

 A scientific hypothesis that explains current observations
and makes future predictions becomes a theory
▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect
▪ Avoid “post hoc, ergo propter hoc” fallacy

▪ Latin for: “After this, therefore because of this”

▪ Or correlation does not imply causation

 Understand why the defect and fix relate

Once there was a program that only worked on Wednesday…

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the
failure?
▪ Be systematic

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ Extend checks to detect the fixed failure

 Testing
▪ Every successful set of conditions is added to the test suite

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

 Etc

Common ways in which code is likely to have bugs,
either already or in the future

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

Good Design does:

Complexity Management &

Communication

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity

 There are well known limits to how much complexity a
human can manage easily.

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management

 However, patterns can be very helpful...

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management

Many techniques have been developed to help manage
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Complexity

 Given the many ways to manage complexity
▪ Design code to be testable

▪ Try to reuse testable chunks

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are
▪ Acts of design more than verification

▪ Acts of documentation

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Example

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

L 50, 1
L 50, 1

▪ Write a trace to test dirty bytes in cache

S 100, 1

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

When writing code, the author is communicating with:

 The machine

 Other developers of the system

 Code reviewers

 Their future self

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

There are many techniques that have been developed
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid deliberately meaningless names:

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.” - Sam Gardiner

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”,
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Read the code out loud to check that it sounds okay

7. Actually rename things

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear
in a dictionary.
▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc were originally used

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” – Philip Relf

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

int size;

…

};

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line

element

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comments

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Don’t Comments

▪ Don’t say what the code does
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments
▪ it’s messy, and they get out of date

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Awkward Code

 Imagine someone (TA, employer, etc) has to read your
code
▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

Carnegie Mellon

85Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?

Carnegie Mellon

86Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used? Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

unsigned i;

unsigned result = 1;

for(i=0;i<expo;i++){

result+=result;

}

return result;

}

Carnegie Mellon

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse

Carnegie Mellon

88Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and comments

Carnegie Mellon

90Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commit Messages

 Committing code to a source repository is a vital part of
development
▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

Carnegie Mellon

91Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are
communicating with a grader or a future self
▪ Be understandable in your communication

Carnegie Mellon

92Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Acknowledgements

 Some debugging content derived from:
▪ http://www.whyprogramsfail.com/slides.php

 Some code examples for design are based on:
▪ “The Art of Readable Code”. Boswell and Foucher. 2011.

 Lecture originally written by
▪ Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php

