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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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The Memory Mountain

 Read throughput (read bandwidth)
▪ Number of bytes read from memory per second (MB/s)

 Memory mountain: Measured read throughput as a 
function of spatial and temporal locality.
▪ Compact way to characterize memory system performance. 
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Memory Mountain Test Function
long data[MAXELEMS];  /* Global array to traverse */

/* test - Iterate over first "elems" elements of

*        array "data" with stride of "stride“, 

*        using 4x4 loop unrolling.                                                     

*/

int test(int elems, int stride) {

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;

long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;

long length = elems, limit = length - sx4;

/* Combine 4 elements at a time */

for (i = 0; i < limit; i += sx4) {

acc0 = acc0 + data[i];

acc1 = acc1 + data[i+stride];

acc2 = acc2 + data[i+sx2];

acc3 = acc3 + data[i+sx3];

}

/* Finish any remaining elements */

for (; i < length; i++) {

acc0 = acc0 + data[i];

}

return ((acc0 + acc1) + (acc2 + acc3));

}

Call test() with many 
combinations of elems
and stride.

For each elems and 
stride:

1. Call test() once to 
warm up the caches.

2. Call test() again and 
measure the read 
throughput(MB/s)

mountain/mountain.c
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The Memory Mountain
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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are 
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source 
element

▪ N values summed per 
destination

▪ but may be able to 
hold in register

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 32B (big enough for four doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
▪ each row in contiguous memory locations

 Stepping through columns in one row:
▪ for (i = 0; i < N; i++)

sum += a[0][i];

▪ accesses successive elements

▪ if block size (B) > sizeof(aij) bytes, exploit spatial locality

▪ miss rate = sizeof(aij) / B

 Stepping through rows in one column:
▪ for (i = 0; i < n; i++)

sum += a[i][0];

▪ accesses distant elements

▪ no spatial locality!

▪ miss rate = 1 (i.e. 100%)
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Miss rate for inner loop iterations:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 32B (four doubles)

0.25 0.25
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 32B (four doubles)

1.0 1.0
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];   

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}
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Core i7 Matrix Multiply Performance
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Today

 Cache organization and operation

 Performance impact of caches
▪ The memory mountain

▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality
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Example: Matrix Multiplication

a b

i

j

x
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];

}
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Cache Miss Analysis
 Assume: 

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration:
▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x=

n

x=

8 wide
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Cache Miss Analysis
 Assume: 

▪ Matrix elements are doubles

▪ Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ 9n/8 n2 = (9/8) n3

n

x=

8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)

for (k = 0; k < n; k+=L)

/* L x L mini matrix multiplications */

for (i1 = i; i1 < i+L; i1++)

for (j1 = j; j1 < j+L; j1++)

for (k1 = k; k1 < k+L; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

(omitting matrix c)

▪ Misses per Iteration:

2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration  x  (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks
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Blocking Summary

 No blocking: (9/8) n3 misses

 Blocking:  (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache!  Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly
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Cache Summary

 Cache memories can have significant performance impact

 You can write your programs to exploit this!
▪ Focus on the inner loops, where bulk of computations and memory 

accesses occur. 

▪ Try to maximize spatial locality by reading data objects sequentially 
with stride 1.

▪ Try to maximize temporal locality by using a data object as often as 
possible once it’s read from memory. 
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Supplemental slides
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Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

for (i=0; i<n; i++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

matmult/mm.c

Block size = 32B (four doubles)
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Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

for (j=0; j<n; j++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

matmult/mm.c

Block size = 32B (four doubles)
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Cache and Memory Wrap-Up

15-213/18-213/15-513/18-613: Introduction to Computer Systems
16 March 2021
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Design and Debugging

15-213/18-213/15-513/18-613: Introduction to Computer Systems
16 March 2021
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After this lecture

 You will be able to:
▪ Describe the steps to debug complex code failures

▪ Identify ways to manage the complexity when programming

▪ State guidelines for communicating the intention of the code
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Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Defects and Infections

1. The programmer creates a defect 

2. The defect causes an infection 

3. The infection propagates 

4. The infection causes a failure
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Curse of Debugging

 Not every defect causes a failure! 

 Testing can only show the presence of errors – not their 
absence. (Dijkstra 1972)
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Defects to Failures

 Code with defects will introduce erroneous or “infected” 
state
▪ Correct code may 

propagate this state

▪ Eventually an erroneous 
state is observed

 Some executions will not
trigger the defect
▪ Others will not propagate

“infected” state

 Debugging sifts through
the code to find the defect
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Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve 
the failure
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Scientific Debugging

Hypothesis

Problem 
Description

Code
Failing 
Runs

Other 
Runs

 Before debugging, you need to construct a hypothesis as 
to the defect

▪ Propose a possible defect and why it explains the failure conditions

 Ockham’s Razor – given several hypotheses, pick the 
simplest / closest to current work
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Scientific Debugging

Prediction

Experiment

Observation 
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?
▪ Refine the hypothesis based on the new inputs
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Scientific Debugging

Conclusion Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix
▪ Otherwise, how do you know that it is fixed?
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Code with a Bug

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

int main(..) {

..

for (i = 9; i > 0; i--)

printf(“fib(%d)=%d\n”,

i, fib(i));

$ gcc -o fib fib.c

fib(9)=55 

fib(8)=34 

... 

fib(2)=2 

fib(1)=134513905

A defect has caused a failure.
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Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; f is uninitialized
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Prediction

 Propose a new condition or conditions
▪ What will logically happen if your hypothesis is correct?

▪ What data can be 

 fib(1) failed // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;
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Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions
▪ Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis
▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works.  Sometimes a prediction can be a fix.
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Observation

 What is the observed result?
▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere.
▪ printf() can interfere

▪ Like quantum physics, sometimes observations are part of the 
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to 

a specific change
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Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds
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Diagnosis

 A scientific hypothesis that explains current observations 
and makes future predictions becomes a theory
▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect
▪ Avoid “post hoc, ergo propter hoc” fallacy

▪ Latin for: “After this, therefore because of this”

▪ Or correlation does not imply causation

 Understand why the defect and fix relate

Once there was a program that only worked on Wednesday…
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Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the 
failure?
▪ Be systematic
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Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ Extend checks to detect the fixed failure

 Testing
▪ Every successful set of conditions is added to the test suite
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Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help
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Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

 Etc

Common ways in which code is likely to have bugs, 
either already or in the future 



Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

https://canvas.cmu.edu/courses/10968
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Outline

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate
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Design

Good Design does: 

Complexity Management & 

Communication
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Complexity

 There are well known limits to how much complexity a 
human can manage easily.
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Complexity Management

 However, patterns can be very helpful...
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Complexity Management

Many techniques have been developed to help manage 
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...
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Managing Complexity

 Given the many ways to manage complexity
▪ Design code to be testable

▪ Try to reuse testable chunks
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Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?
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Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?
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Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are 
▪ Acts of design more than verification

▪ Acts of documentation
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Testing Example

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

L 50, 1
L 50, 1

▪ Write a trace to test dirty bytes in cache

S 100, 1
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Communication

When writing code, the author is communicating with: 

 The machine

 Other developers of the system

 Code reviewers

 Their future self



Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

There are many techniques that have been developed 
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...
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Naming
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Avoid deliberately meaningless names:
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Naming is understanding

“If you don’t know what a thing should be 
called, you cannot know what it is. 

If you don’t know what it is, you cannot sit 
down and write the code.” - Sam Gardiner
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Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”, 
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Read the code out loud to check that it sounds okay

7. Actually rename things
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Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear 
in a dictionary.
▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..
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Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc were originally used
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Limit name character length

“Good naming limits individual name length, and reduces 
the need for specialized vocabulary” – Philip Relf
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Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read 
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes



Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}
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Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

int size;

…

};
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Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line 

element
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Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last
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Comments
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Don’t Comments

▪ Don’t say what the code does 
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments 
▪ it’s messy, and they get out of date
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Awkward Code

 Imagine someone (TA, employer, etc) has to read your 
code
▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;
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Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?
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Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used?  Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

unsigned i;

unsigned result = 1;

for(i=0;i<expo;i++){

result+=result;

}

return result;

}



Carnegie Mellon

87Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse
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How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and comments
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Commit Messages

 Committing code to a source repository is a vital part of 
development
▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”
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Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are 
communicating with a grader or a future self
▪ Be understandable in your communication
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