Carnegie Mellon

T —

<« AN it i taniai

R R 521
sesaeite i sinsine.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213/18-213/15-513/18-613: Introduction to Computer Systems
19t Lecture, 6t April, 2021

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Exceptional Control Flow CSAPP 8

m Exceptions CSAPP 8.1

m Processes CSAPP 8.2

m Process Control CSAPP 8.3-8.4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, each CPU core simply reads and executes
(interprets) a sequence of instructions, one at a time *

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
inst,

Time .
inst,

inst,

* Externally, from an architectural
<shutdown>

viewpoint (internally, the CPU
may use parallel out-of-order
execution)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3. Signals
= Implemented by OS software
= 4. Nonlocal jumps: setjmp () and Longjmp ()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event —— | _current v, Exception .
|_next Exception processing

by exception handler
* Return to |_current
* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Exception Tables

Exception
numbers

Exception
VvTable

Code for
exception handler 0

Code for
exception handler 1

0 0//
1 [

2 o

Code for
exception handler 2

n-1 o

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code for
exception handler n-1

Carnegie Mellon

Each type of event has a
unique exception number k

k = index into exception table
(a.k.a. interrupt vector)

Handler k is called each time
exception k occurs

Carnegie Mellon

(partial) Taxonomy
ECF

Asynchronous Synchronous

Interrupts Traps Faults Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= |/Ointerrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional, set program up to “trip the trap” and do something
= Examples: system calls, gdb breakpoints
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

System Call Example: Opening File

m Usercalls: open (filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov S0x2,%eax # open is syscall #2
e5d7e: 0f05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp SOxfffffffffffff001,%rax

e5dfa: c3 retq

User code Kernel code m %rax contains syscall number
m Otherargumentsin $rdi,
Exception $rsi, $rdx, $r10, 3r8, 3r9

<

syscall .

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

| corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

System Call | Aimost like a function call

e Transfer of control

* On return, executes next instruction

* Passes arguments using calling convention
00000000000e5d70<_op © G€ts result in $rax

m Usercalls: open (£
m Calls __open functi

e5d79: b8 02 00 00 00

e5d7e: 0f 05 sysc One Important exception!
eSdfa: 3 etq * Different set of privileges

 And other differences:
* E.g., “address” of “function” is in $rax
e Uses errno

* Etc.
syscally Except

cmp : m Returnvaluein $rax
Open file
Returns m Negative value is an error

! corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

<

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location ‘;‘ain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User code Kernel code

Exception: page fault

»

movl % >
\‘ Copy POQEfrom
Return and disk to memory

reexecute movl

\ 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360

User code Kernel code

l Exception: page fault

movl >

Detect invalid address

A 4

» Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Processes

m Definition: A process is an instance of a running
program.
" One of the most profound ideas in computer science
" Not the same as “program” or “processor”

m Process provides each program with two key

abstractions:)
" |ogical control flow Stack
= Each program seems to have exclusive use of the CPU HDZ?:
= Provided by kernel mechanism called context switching Code
" Private address space
= Each program seems to have exclusive use of main CPU
memory. Registers

= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Memory

Stack

Memory

Heap

Stack

Data

Heap

Code

Data

Code

CPU

Registers

CPU

Registers

Multiprocessing: The lllusion

Memory

Stack

Heap

Data

Code

CPU

Registers

m Computer runs many processes simultaneously

= Applications for one or more users

= Web browsers, email clients, editors, ...

= Background tasks

= Monitoring network & 1/0 devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

20

Carnegie Mellon

Multiprocessing Example

W[Xterm
Proceszes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 114707
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,278 uszer, 5,15% sys, 91.56% idle
SharedLibs: 576K resident, OB data, OB linkedit,
MemFegions: 27358 total. 1127YM resident. 3BM private, 494M shared,
PhysMem: 1039M wired, 1974M active, 10B2M inactive, 407VEM uszed, 18M free,
YH: 280G wsize, 1091H framework vsize, 23079213(1) pageins, 9843367(0) pageouts,
Hetworks: packets: 410462284110 in, BROBE09E/77L out, [
Disks=: 17874391/3496 read, 1284737375940 written, “

FIT COMMAND ACPU TIHE #TH #W0 #PORT #MREG EPREWT RSHRD RSIZE WPEMT WSIZE
33217- Microsoft OF 0,0 0Z328,34 4 1 202 418 Z1M 24H 21H BEM FEAH

33051 usbmuxd 0,0 00:04,10 3 1 47 1 436k 21Bk 430K BOM 2422H
33006 iTunesHelper 0,0 00301,23 2 1 hh P f2ek 3124k 1124k 43H 2423
24286 bash 0.0 00:00,11 1 0 200 24 224k FE2K 484K 17H 2378
24280 xterm 0,0 00:00,583 1 0 a2 73 BSBk 872k BI2K 9728k Z38EM
55933- Microsoft Ex 0,3 21:58,37 10 3 260 354 1BM EaHM 4EH 114K 1057H
54701 =zleep 0,0 000,00 1 0 17 20 32k 212k 3ROk 9E3ZK Z370M
54733 launchdadd 0,0 Q000,00 2 1 A3 iyl 488k 220k 173EK 48H 24091
54737 top B.o 0030253 171 0 A0 29 1416k 21BK 2124k 17H 2378
24713 automountd 0,0 00:00,02 7 1 h3 b4 Be0k 21BK 2184k G3M 2413H
594701 ocspd 0,0 00:00,05 4 1 Bl ot 1268k 2644k 3132k SOM 24 26H
S4EE1 Lrab 0.6 00:02,75 B 3 222+ 289+ 18M+ ZEM+ 40M+ FhM+ Z5DEM+
54E53 cookied 0,0 0030015 2 1 40 Bl 3316k 224k 4083K 42H 2411H
E2HME mdyerlkar N nansnt BT A 1 5o a4 FEAOK T4 1EM A0H 2420

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory

Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code

Saved Saved

registers registers
CPU
Registers

m Single processor executes multiple processes concurrently
= Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (like last week)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data cee Data
Code : Code Code
Saved : Saved Saved
regali/srters : registers registers
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code
Saved Saved
registers registers
CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Multiprocessing: The (Modern) Reality

Memory

Stack : Stack : Stack
Heap : Heap : Heap
Data . Data © e Data
Code - Code : Code

= : Saved

registers
CPU |::| CPU |: & Multicore processors
Registers Registers = Multiple CPUs on single chip

.------------...: .-----------..--: .Share main memor‘y(and SomecaChES)
" Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B & C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
I kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
" Only exception is the handful of functions that return void

m Example:

if ((pid = fork()) < 0) {
fprintf (stderr, "fork error: %s\n", strerror(errno)) ;
exit(-1);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix error(char *msg) /* Unix-style error */
{
fprintf (stderr, "%s: %s\n", msg, strerror(errno))
exit(-1);
]' \
if ((pid = fork()) < 0) Note: csapp.c exits with 0.

unix error ("fork error");

m But, must think about application. Not alway appropriate
to exit when something goes wrong.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens!-style error-handling wrappers:

pid t Fork(void)
{
pid t pid;
if ((pid = fork()) < 0)
unix error ("Fork error");
return pid;
}

pid = Fork()

m NOT what you generally want to do in a real application

le.g., in “UNIX Network Programming: The sockets networking API“ W. Richard Stevens

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Process Lifecycle

m This slide left blank for drawing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

® Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= Calling the exit function

m void exit(int status)
= Terminates with an exit status of status
= Convention: normal return status is 0, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m exitis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Conceptual View of fork

Memory Memory
parent child
Stack Stack Stack
Heap 9 Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU CPU
Registers Registers

m Make complete copy of execution state

= Designate one as parent and one as child
= Resume execution of parent or child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

39

Carnegie Mellon

The £fork Function Revisited

m VM and memory mapping explain how fork provides private
address space for each process.

m To create virtual address for new process:

" Create exact copies of currentmm_struct, vm _area struct, and
page tables.

" Flag each page in both processes as read-only
" Flag each vmn_area_ struct in both processes as private COW

m On return, each process has exact copy of virtual memory.

m Subsequent writes create new pages using COW mechanism.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

fork Example

m Call once, return twice

int main (int argc,

{

char** argv)

m Concurrent execution

= Can’t predict execution
order of parent and child

pid t pid;
int x 1;

pid = Fork (),

if (pid == 0) { /* Child */
printf ("child : x=%d\n", ++x);
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

4

Carnegie Mellon

fork Example

int main(int argc, char** argv)
{

pid t pid;

int x = 1;

pid = Fork (),

if (pid = 0) { /* Child */
printf("child :
return O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return 0;

x=%d\n", ++x);

linux> ./fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x
are independent

m Shared open files

"= stdoutisthe samein
both parent and child

42

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.

= Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Process Graph Example

int main(int argc, char** argv)

{
pid t pid;
int x =1;
child: x=2 .

pid = Fork() ; £?;tf e:;t Child
if (pid == 0) { /* Child */ P

printf ("child : x=%d\n", ++x); x== parent: x=0

® »® >® »® Parent
return 0; main fork printf exit

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

} fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Interpreting Process Graphs

m Original graph:

child: x=2

— »®
printf exit
X== parent: x=0
o— —-@ »®
main for printf exit

k

Feasible total ordering:
m Relabled graph:

l g "¢
>@

b c

ne
Qe

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

fork Example: Two consecutive forks

void fork2 ()
{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("Bye\n") ;
} forks.c

L1l

Bye
®
printf

Bye
>@®

»®
printf

LO L1l
@

fark printf

Bye
.0
printf

Bye
>®

>@ >®
printf fork printf

Feasible output:
LO

Ll

Bye

Bye

L1l

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork printf

Infeasible output:
LO

Bye

Ll

Bye

L1l

Bye

Bye

46

Carnegie Mellon

fork Example: Nested forks in parent

{

void fork4 ()

printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() '= 0) {
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
forks.c

Bye
printf

LO L1l

printf
L2
> >0

Bye

Bye

[» >@
printf fork printf

Feasible or Infeasible?
LO

Bye

L1l

Bye

Bye

L2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork printf printf

Feasible or Infeasible?
LO

L1l

Bye

Bye

L2

Bye

47

fork Example: Nested forks in children

void fork5 ()

{ -
printf ("LO\n") ; printf printf
if (fork() == 0) { 3?. Nl E¥e

printf ("L1\n") ; printf fork printf
if (fork() == 0) { LO Bye
printf ("L2\n") ; pr:igtf f=ork p;:i..ntf
}
}
printf ("Bye\n") ;
} forks.c Feasible or Infeasible? Feasible or Infeasible?
LO LO
Bye Bye
L1l L1l
Bye L2
Bye Bye

L2 Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Reaping Child Processes
m ldea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait or waitpid)
" Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= Unless ppid == 1! Then need to reboot...
= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Zombie
Example

linux> ./forks 7 &
[1] 6639

Running Parent, PID

Terminating Child,
linux> ps

PID TTY

6585 ttyp9 00:
6639 ttyp9 00:
6640 ttyp9 00:
6641 ttyp9 00:
linux> kill 6639
[1] Terminated
linux> ps

PID TTY

6585 ttyp9 00:
6642 ttyp9 00:

Carnegie Mellon

void fork7() {

while (1)

}

if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID =
exit (0) ;

} else {

printf ("Running Parent, PID =

; /* Infinite loop */

$d\n", getpid()):;

$d\n", getpid());

PID

6639
6640

TIME
00:00
00:03
00:00
00:00

CMD
tcsh
forks

forks <defunct> /

Ps

TIME
00:00
00:00

CMD
tcsh

Ps

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ps shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to
be reaped by init

50

Non-
terminating
Child Example

Carnegie Mellon

void fork8 ()
{
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)

linux> ./forks 8
Terminating Parent, PID =
Running Child, PID =

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

} else {

}

printf ("Terminating Parent, PI

exit(0) ;

; /* Infinite loop */

= %d\n",
getpid()) ;

6675
6676 |

TIME CMD
00:00:00 tecsh
00:00:06 fork u

00:00:00
linux> kill 6676

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME CMD
00:00:00 tcsh
00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Child process still active even
though parent has terminated

Must kill child explicitly, or else will
keep running indefinitely

51

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
" |mplemented as syscall

Parent Process Kernel code

Exception .
syscall = - And, potentially other user

‘w Processes, including a child
Returns

| of parent

<

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps a child by calling the wait function

m int wait(int *child status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

" Ifchild status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:

= Checked using macros definedinwait.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

wait: Synchronizing with Children

void fork9 () {
int child status;
HC exit
: »® >e
if (fork() == 0) { printf
printf ("HC: hello from child\n");
exit (0) ;
CT
} else { B
printf ("HP: hello from parent\n"); I\ EF =&47 =ze
wait (&child status); fork printf wait printf
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
} forks.c
Feasible output(s): Infeasible output:
HC HP HP
HP HC CT
CT CT Bye

Bye Bye HC

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Another wait Example

m |f multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO () {
pid t pid[N];
int i, child status;

for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) { /* Parent */
pid t wpid = wait(&child status) ;
if (WIFEXITED (child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)) ;
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

waitpid: Waiting for a Specific Process

m pid t waitpid(pid t pid, int *status, int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void forkll () {
pid t pid[N];
int i;
int child status;

for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (1 = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)) ;
else
printf ("Child %d terminate abnormally\n", wpid);

} forks.c

Bryant dnNa U HAalraromn, COImputer SYSTEms? A PTOBrdrmmer S PETSpecuve, 1Tra earton 56

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file £filename

= Can be object file or script file beginning with # ! interpreter
(e.g., #! /bin/bash)

= _.with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
= getenv, putenv, printenv
m Overwrites code, data, and stack

= Retains PID, open files and signal context

m Called once and never returns

= ..exceptifthereisan error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

execve Example

m Execute "/bin/ls -1t /usr/include" inchild process
using current environment:

envp[n] = NULL
envp [n-1] ——> "PWD=/usr/droh"
, envp [0] —> "USER=droh"
environ —>
myargv[argc] = NULL
(argc == 3) myargv[2] —> "/usr/include"

myargv[l] Ly "_]t"

myargv =————> gy L) —> "/bin/1s"

if ((pid = Fork()) == 0) { /* Child runs program */

if (execve (myargv[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]);
exit(1l);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Bottom of stack

Null-terminated

Stru Ctu re Of environment variable strings e

Null-terminated

the StaCk When command-line arg strings
d Neéw program

E envp[n] == NULL
Sta rtS ; 20 (D=1 environ
| (global var)
| envp [0] PR gy
| argv[argc] = NULL 1 envp
argv[argc-1] (in $rdx)
argv. | e argv[0]
(in $rsi)
argc Stack frame for
i : libc start main
(in $rdi) — — Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

The execwve Function Revisited

User stack } Private, demand-zero ™ To load and run a new
program a.out in the
l current process using

execve:
libc.so T

.data Memory mapped region) m Freevm area struct’s
“o Shared, file-backed — —

text for shared libraries and page tables for old areas

t m Createvm area struct’s

and page tables for new
Runtime heap (via malloc) } Private, demand-zero areas
" Programs and initialized data
Uninitialized data (.bss) } Private, demand-zero backed by object files.

a.out = _bss and stack backed by
data Initialized data (.data) anonymous files.
toxt Private, file-backed
LD ¢ Program text (.text)

m Set PC to entry pointin
0 .text

® Linux will fault in code and
data pages as needed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Summary

m Exceptions

= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, noreturn

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

" One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Making £fork More Nondeterministic

m Problem
" Linux scheduler does not create much run-to-run variance

= Hides potential race conditions in nondeterministic programs
= E.g., does fork return to child first, or to parent?

m Solution

= Create custom version of library routine that inserts random delays along
different branches

= E.g., for parent and child in fork

= Use runtime interpositioning to have program use special version of
library code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Variable delay fork

/* fork wrapper function */
pid_t fork(void) ({
initialize() ;
int parent delay = choose_ delay() ;
int child delay = choose delay() ;
pid t parent pid = getpid() ;
pid t child pid or zero = real fork();
if (child pid or zero > 0) {
/* Parent */
if (verbose) {
printf (

"Fork. Child pid=%d, delay = %dms. Parent pid=%d, delay = %dms\n",
child pid or zero, child delay,
parent pid, parent delay);

fflush (stdout) ;

}

ms_sleep (parent delay) ;
} else {
/* Child */
ms_sleep(child delay);
}
return child pid or zero;
} myfork.c 67

