
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
20th Lecture, November 5, 2020

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review from last lecture

 Exceptions
▪ Events that require nonstandard control flow

▪ Generated externally (interrupts) or internally (traps and faults)

 Processes
▪ At any given time, system has multiple active processes

▪ Only one can execute at a time on any single core

▪ Each process appears to have total control of
processor + private memory space

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review (cont.)

 Spawning processes
▪ Call fork

▪ One call, two returns

 Process completion
▪ Call exit

▪ One call, no return

 Reaping and waiting for processes
▪ Call wait or waitpid

 Loading and running programs
▪ Call execve (or variant)

▪ One call, (normally) no return

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Replaces the program running in the current process

 Overwrites code, data, and stack

 Retains PID, open files, working directory, etc.

 Called once and never returns
▪ …except if there is an error

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF Exists at All Levels of a System

 Exceptions
▪ Hardware and operating system kernel software

 Process Context Switch
▪ Hardware timer and kernel software

 Signals
▪ Kernel software and application software

 Nonlocal jumps
▪ Application code

Previous Lecture

This Lecture

Textbook and
supplemental slides

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells CSAPP 8.4.6

 Signals CSAPP 8.5

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

(started by kernel)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs
 A shell is a program that runs other programs on behalf of the

user.
▪ sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

▪ csh/tcsh BSD Unix C shell

▪ bash “Bourne-Again” Shell (default Linux shell)

 GUI “desktop” interfaces can also be thought of as shells

 Next lab: Simple shell
▪ Described in the textbook, starting at p. 753

▪ Implementation of a very elementary shell

▪ Purpose

▪ Understand what happens when you type commands

▪ Understand use and operation of process control operations

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Example
linux> ./shellex

> /bin/ls -l csapp.c

-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c

> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32017 pts/2 00:00:00 shellex

32019 pts/2 00:00:00 ps

> /bin/sleep 10 &

32031 /bin/sleep 10 &

> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32024 pts/2 00:00:00 emacs

32030 pts/2 00:00:00 shellex

32031 pts/2 00:00:00 sleep

32033 pts/2 00:00:00 ps

> quit

Must give full pathnames for programs

Run program in background

Sleep is running
in background

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Implementation
 Basic loop

▪ Read line from command line

▪ Execute the requested operation

▪ Built-in command (only one implemented is quit)

▪ Load and execute program from file

int main(int argc, char** argv)

{

char cmdline[MAXLINE]; /* command line */

while (1) {

/* read */

printf("> ");

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))

exit(0);

/* evaluate */

eval(cmdline);

}

...

Execution is a
sequence of
read/evaluate
steps

shellex.c

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Ignore empty lines.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

If it is a ‘built in’ command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Create child

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Start argv[0].
Remember execve only returns on
error.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

If running child in
foreground, wait until
it is done.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}

Simple Shell eval Function

shellex.cshellex.c

If running child in
background, print pid
and continue doing
other stuff.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Oops. There is a
problem with
this code.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example

 Shell designed to run indefinitely
▪ Should not accumulate unneeded resources

▪ Memory

▪ Child processes

▪ File descriptors

 Our example shell correctly waits for and reaps
foreground jobs

 But what about background jobs?
▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Will create a memory leak that could run the kernel out of memory

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!

 Solution: Exceptional control flow
▪ The kernel will interrupt regular processing to alert us when a background

process completes

▪ In Unix, the alert mechanism is called a signal

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Shells

 Signals

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 A signal notifies a process that an event has occurred

 Akin to exceptions and interrupts
▪ Exceptions and interrupts go from hardware to kernel

▪ Signals go from kernel to a specific process

 Can happen either synchronously or asynchronously

 Many causes
▪ Hardware exceptions

▪ Hardware interrupts

▪ Events within another process

▪ Explicit requests by another process

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 Every signal has a name and an ID number
▪ Constant named SIGsomething, defined in <signal.h>

▪ Most signals carry no information besides their ID number

 Most signals can be handled within a process
▪ Like interrupt handlers: table of function pointers

 All signals have a default action
▪ What to do if the signal is not handled

▪ Usually either “ignore” (do nothing) or “terminate process”

Event Name ID Default Action

User typed ctrl-c SIGINT 2 Terminate

Force termination (cannot be handled) SIGKILL 9 Terminate

Segmentation violation SIGSEGV 11 Terminate

Timer signal SIGALRM varies Terminate

Child stopped or terminated SIGCHLD varies Ignore

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending and Delivering

 The kernel sends a signal when the causative event happens
▪ Hardware exception

▪ Hardware interrupt

▪ Something happened to another process (e.g. it exited)

▪ Another process asks for a signal to be sent

 The kernel delivers a signal when it makes the destination
process react to that signal
▪ By executing the handler

▪ Or by carrying out the default action

 There can be a delay between sending and delivering
▪ Usually because the process cannot be scheduled immediately

▪ During the delay, the signal is pending

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet delivered
▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
▪ Blocked signals will not be delivered until the signal is unblocked

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it reacts in some

way to the delivery of the signal

 Some possible ways to react:
▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes

to signal handler

(3) Signal

handler runs
(4) Signal handler

returns to

next instruction

Icurr
Inext

(1) Signal received

by process

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
▪ pending: represents the set of pending signals

▪ Kernel sets bit k in pending when a signal of type k is delivered

▪ Kernel clears bit k in pending when a signal of type k is received

▪ blocked: represents the set of blocked signals

▪ Can be set and cleared by using the sigprocmask function

▪ Also referred to as the signal mask.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0 1

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1 1

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see
text for details)

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program

 /bin/kill program
sends arbitrary signal to a
process or process group

 Examples
▪ /bin/kill –9 24818

Send SIGKILL to process 24818

▪ /bin/kill –9 –24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group.
▪ SIGINT – default action is to terminate each process

▪ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Delivery in Detail
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Delivery in Detail
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked

▪ The set of pending nonblocked signals for process p

 If (pnb == 0)

▪ Pass control to next instruction in the logical flow for p

 Else
▪ Choose least nonzero bit k in pnb and force process p to receive

signal k

▪ The receipt of the signal triggers some action by p

▪ Repeat for all nonzero k in pnb

▪ Pass control to next instruction in logical flow for p

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions

 Each signal type has a default action, which is one of:
▪ Nothing happens (the signal is ignored)

▪ The process terminates

▪ A core dump may be generated

▪ The process stops until started again

▪ This is like being blocked, but gets a different label in ps (“T”)

▪ The process is started again if it was stopped

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/20895

https://canvas.cmu.edu/courses/20895

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The sigaction function changes the action associated with

the receipt of signal signum:

▪ int sigaction(int signum,
const struct sigaction *sa,
struct sigaction *old_sa)

 The data in the sa structure sets the new action
▪ Choices include “ignore”, “use the default action”, “call this function”

▪ Also has options that control details of signal delivery

 If old_sa is not NULL, the old action is stored there
▪ Can later do sigaction(signum, &old_sa, 0)

to revert to the old action

 An older function called signal can also install handlers
▪ Do not use this function. Any use is a bug

▪ (some examples coming up use it to help the code fit on the slide, though)

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
#include <signal.h>

#include <stdio.h>

void sigint_handler(int sig) {

// Doesn’t do anything but interrupt the call to pause() below.

}

int main(void) {

struct sigaction sa;

// Sensible defaults. Use these unless you have a reason not to.

sigemptyset(&sa.sa_mask);

sa.sa_flags = SA_RESTART;

// The handler for SIGINT will be sigint_handler.

sa.sa_handler = sigint_handler;

if (sigaction(SIGINT, &sa, 0) != 0)

unix_error("signal error");

/* Wait for the receipt of a signal */

pause();

puts("Ctrl-C received, exiting.");

return 0;

}
sigint.c

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

 But, this flow exists only until returns to main program

Process A

while (1)

;

Process A

handler(){

…

}

Process B

Time

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers

 Handlers can be interrupted by other handlers

(2) Control passes

to handler S

Main program

(5) Handler T

returns to

handler S

Icurr

Inext

(1) Program

catches signal s

Handler S Handler T

(3) Program

catches signal t

(4) Control passes

to handler T

(6) Handler S

returns to

main

program

(7) Main program

resumes

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals

 Implicit blocking mechanism
▪ Kernel blocks any pending signals of type currently being handled.

▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
▪ sigprocmask function

 Supporting functions
▪ sigemptyset – Create empty set

▪ sigfillset – Add every signal number to set

▪ sigaddset – Add signal number to set

▪ sigdelset – Delete signal number from set

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);

Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */

Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */

Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling

 Handlers are tricky because they are concurrent with main
program and share the same global data structures.
▪ Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid trouble.

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers

 G0: Keep your handlers as simple as possible
▪ e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals.
▪ To prevent possible corruption

 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)

▪ Flag declared this way does not need to be protected like other globals

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe
▪ Source: “man 7 signal-safety”

▪ Popular functions on the list:

▪ _exit, write, wait, waitpid, sleep, kill

▪ Popular functions that are not on the list:

▪ printf, sprintf, malloc, exit

▪ Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.
▪ ssize_t sio_puts(char s[]) /* Put string */

▪ ssize_t sio_putl(long v) /* Put long */

▪ void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{

Sio_puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep(2);

Sio_puts("Well...");

sleep(1);

Sio_puts("OK. :-)\n");

_exit(0);

} sigintsafe.c

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf !

▪ Handles restricted class of printf format strings

▪ Recognizes: %c %s %d %u %x %%

▪ Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */

{

Sio_printf("So you think you can stop the bomb"

" (process %d) with ctrl-%c, do you?\n",

(int) getpid(), 'c');

sleep(2);

Sio_puts("Well...");

sleep(1);

Sio_puts("OK. :-)\n");

_exit(0);

}

sigintsafe.c

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
▪ For each signal type, one

bit indicates whether or
not signal is pending…

▪ …thus at most one
pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;

void child_handler(int sig) {

int olderrno = errno;

pid_t pid;

if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;

Sio_puts("Handler reaped child ");

Sio_putl((long)pid);

Sio_puts(" \n");

sleep(1);

errno = olderrno;

}

void fork14() {

pid_t pid[N];

int i;

ccount = N;

Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {

if ((pid[i] = Fork()) == 0) {

Sleep(1);

exit(0); /* Child exits */

}

}

while (ccount > 0) /* Parent spins */

;

} forks.c

whaleshark> ./forks 14

Handler reaped child 23240

Handler reaped child 23241

. . .(hangs)

Correct Signal Handling

N == 5

This code is incorrect!

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
▪ Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

}
whaleshark> ./forks 15

Handler reaped child 23246

Handler reaped child 23247

Handler reaped child 23248

Handler reaped child 23249

Handler reaped child 23250

whaleshark>

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing to Avoid Parent-Child Race

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, mask_one, prev_one;

int n = N; /* N = 5 */

Sigfillset(&mask_all);

Sigemptyset(&mask_one);

Sigaddset(&mask_one, SIGCHLD);

Signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {

Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

Execve("/bin/date", argv, NULL);

}

Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

addjob(pid); /* Add the child to the job list */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}

exit(0);

} procmask2.c

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)

{

int olderrno = errno;

pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */

errno = olderrno;

}

void sigint_handler(int s)

{

}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (n--) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Parent */

pid = 0;

Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */

while (!pid)

;

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

}
waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Program is correct, but very wasteful
▪ Program in busy-wait loop

 Possible race condition
▪ Between checking pid and starting pause, might receive signal

 Safe, but slow
▪ Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid) /* Race! */

pause();

while (!pid) /* Too slow! */

sleep(1);

while (!pid)

;

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (n--) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */

pid = 0;

while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

} sigsuspend.c

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Signals provide process-level exception handling
▪ Can generate from user programs

▪ Can define effect by declaring signal handler

▪ Be very careful when writing signal handlers

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */

while(1)

;

}

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

} forks.c

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
▪ Controlled to way to break the procedure call / return discipline

▪ Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

▪ Must be called before longjmp

▪ Identifies a return site for a subsequent longjmp

▪ Called once, returns one or more times

 Implementation:
▪ Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf

▪ Return 0

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

▪ Meaning:

▪ return from the setjmp remembered by jump buffer j again ...

▪ … this time returning i instead of 0

▪ Called after setjmp

▪ Called once, but never returns

 longjmp Implementation:

▪ Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

▪ Set %eax (the return value) to i

▪ Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */

void foo(void)

{

if (error1)

longjmp(buf, 1);

bar();

}

void bar(void)

{

if (error2)

longjmp(buf, 2);

}

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;

int error2 = 1;

void foo(void), bar(void);

int main()

{

switch(setjmp(buf)) {

case 0:

foo();

break;

case 1:

printf("Detected an error1 condition in foo\n");

break;

case 2:

printf("Detected an error2 condition in foo\n");

break;

default:

printf("Unknown error condition in foo\n");

}

exit(0);

}

setjmp/longjmp
Example (cont)

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline

▪ Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline

▪ Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)

{

siglongjmp(buf, 1);

}

int main()

{

if (!sigsetjmp(buf, 1)) {

Signal(SIGINT, handler);

Sio_puts("starting\n");

}

else

Sio_puts("restarting\n");

while(1) {

Sleep(1);

Sio_puts("processing...\n");

}

exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

