Carnegie Mellon

4

VELCOME "‘ ’ |5;ﬁ3" —
. et

T ————

<« AN g s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
20t Lecture, November 5, 2020

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Review from last lecture

m Exceptions
= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
®= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

" One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

execve: Loading and Running Programs

int execve (char *filename, char *argv[], char *envp[])

Replaces the program running in the current process

N

N

m Overwrites code, data, and stack

m Retains PID, open files, working directory, etc.
N

Called once and never returns

= .exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

ECF Exists at All Levels of a System

m Exceptions \
= Hardware and operating system kernel software

. Previous Lecture
m Process Context Switch >

= Hardware timer and kernel software J
m Signals .
o This Lecture
= Kernel software and application software

m Nonlocal jumps Textbook and

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Today

m Shells CSAPP 8.4.6
m Signals CSAPP 8.5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Linux Process Hierarchy

(started by kernel)

AN

Login shell
Child

w w Note: you can view the

hierarchy using the Linux
pstree command

a
"
-

s
aen®
ot
.
.
.
*

e.d. httpd .- :' Login shell

‘e
-
.
-
e
w .
" s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Shell Programs

m Ashellis a program that runs other programs on behalf of the

user.
= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
" csh/tcsh BSD Unix C shell
" bash “Bourne-Again” Shell (default Linux shell)

m GUI “desktop” interfaces can also be thought of as shells

m Next lab: Simple shell
= Described in the textbook, starting at p. 753
= |mplementation of a very elementary shell
" Purpose
= Understand what happens when you type commands
= Understand use and operation of process control operations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Simple Shell Example

linux> ./shellex

> /bin/1ls -1 csapp.c Must give full pathnames for programs
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32017 pts/2 00:00:00 shellex

32019 pts/2 00:00:00 ps
> /bin/sleep 10 & Run program in background

32031 /bin/sleep 10 &
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh

32024 pts/2 00:00:00 emacs

32030 pts/2 00:00:00 shellex

32031 pts/2 00:00:00 sleep Sleep is running

32033 pts/2 00:00:00 ps in background
> quit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Simple Shell Implementation

m Basic loop

= Read line from command line
= Execute the requested operation
= Built-in command (only one implemented is quit)

» Load and execute program from file

int main(int argc, char** argv) . .
{ Executionis a

char cmdline [MAXLINE]; /* command line */ sequence O_f
while (1) { read/evaluate

/* read */ steps
printf ("> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof (stdin))

exit (0) ;

/* evaluate */
eval (cmdline) ;

shellex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)
parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

shellex.c

Bry 7 ™ T (=] 12

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;

bg = parseline (buf, argv)

if (argv[0] == NULL) .
return; /* Ignore empty lines */ lgnore empty lines.

shellex.c

13

Bry , - T o ™

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

shellex.c

Bry 14

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

Create child

shellex.c
Bry . , . 15

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */
if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

Startargv[O0].
Remember execve only returns on
error.

By shellex.c

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}
/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error("waitfg: waitpid error") ;

If running child in
foreground, wait until
it is done. shellex. c

Bry 7 ™ T (=4 ™ 17

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */

if ('bg) {
int status; . - .
if (waitpid(pid, &status, 0) < 0) If running child in
} unix error("waitfg: waitpid error") background, print pld
else . -
printf("%d %s", pid, cmdline) and continue dOIng
feturn; other stuff.

shellex.c |
Bry —— y = - ; 18

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE] ; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv)
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0) .
unix error("waitfg: waitpid error") ; OOpS There IS d
}

else problem with

printf("%d %s", pid, cmdline)

} this code.

return;

shellex.c |
Bry ———r y = - 19

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m Our example shell correctly waits for and reaps
foreground jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

ECF to the Rescue!

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Today

m Shells
m Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Signals

m A signal notifies a process that an event has occurred
m Akin to exceptions and interrupts

= Exceptions and interrupts go from hardware to kernel
= Signals go from kernel to a specific process

m Can happen either synchronously or asynchronously
m Many causes

= Hardware exceptions
= Hardware interrupts
= Events within another process

Explicit requests by another process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Signals

m Every signal has a name and an ID number
= Constant named SIGsomething, defined in <signal.h>
" Most signals carry no information besides their ID number
m Most signals can be handled within a process
= Like interrupt handlers: table of function pointers
m All signals have a default action

= What to do if the signal is not handled
= Usually either “ignore” (do nothing) or “terminate process”

Event Name ID Default Action
User typed ctrl-c SIGINT 2 Terminate
Force termination (cannot be handled) SIGKILL 9 Terminate
Segmentation violation SIGSEGV 11 Terminate
Timer signal SIGALRM varies Terminate

Child stopped or terminated SIGCHLD varies lIgnore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Signal Concepts: Sending and Delivering

m The kernel sends a signal when the causative event happens
= Hardware exception
= Hardware interrupt
= Something happened to another process (e.g. it exited)
= Another process asks for a signal to be sent

m The kernel delivers a signal when it makes the destination
process react to that signal
= By executing the handler
® Or by carrying out the default action
m There can be a delay between sending and delivering
= Usually because the process cannot be scheduled immediately
= During the delay, the signal is pending

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet delivered
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals will not be delivered until the signal is unblocked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it reacts in some
way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process | to signal handler

curr ¥ >
|next (3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function

= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process C

(dp]
(40)
-
Q.
w»
..6.. kernel
)

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1] Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level

Process B

Process A

kernel

Blocked for A
Blocked for B
nding for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

0| Pending for C (1) Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User level
Process A
o
9 Process C
<7
Vs
// kernel
W/ Anding for A Blocked for A
N _“ending for B Blocked for B
1] Pending for C 1| Blocked for C

Carnegie Mellon

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 piC?:fo
pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signaltoa 1inux> ./forks 16

Childl: pid=24818 pgrp=24817
Process or process group Child2: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD

= /bin/kill -9 24818 24788 Pts/2 00:00:00 tecsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/2 00-00-05 Forks

24820 pts/2 00:00:00 ps
» /bin/kill -9@4817 linux> /bin/kill -9 -24817

linux> ps
Send SIGKILL to every process PID TTY TIME CMD

in process group 24317 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= SIGINT — default action is to terminate each process
= S|GTSTP — default action is to stop (suspend) each process

pid=20

id=40
pgid=20 pl. _
pgid=40
Background Background
process group 32 process group 40
pgid=20 pgid=20
Foreground

rocess group 20
Bryant and O’ HaIIarv.pw.. s .,ng...,e.. Fepr s o1 wiopeviive, Third Edition 37

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28107 pts/8
28108 pts/8 T
28109 pts/8 R+
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28110 pts/8 R+

|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
-tcsh
./forks
./forks
pPs W

COMMAND
-tcsh
pPs w

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader

+: foreground proc group

See “man ps” for more
details

38

Carnegie Mellon

Signal Delivery in Detail

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process q

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Signal Delivery in Detail

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked

" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p

m Else

= Choose least nonzero bit kin pnb and force process p to receive
signal k

"= The receipt of the signal triggers some action by p

= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Default Actions

m Each signal type has a default action, which is one of:
= Nothing happens (the signal is ignored)
" The process terminates
= A core dump may be generated
" The process stops until started again
= This is like being blocked, but gets a different label in ps (“T”)
"= The process is started again if it was stopped

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/20895

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

https://canvas.cmu.edu/courses/20895

Carnegie Mellon

Installing Signal Handlers

m The sigaction function changes the action associated with
the receipt of signal signum:
" int sigaction(int signum,
const struct sigaction *sa,
struct sigaction *old sa)

m The data in the sa structure sets the new action

= Choices include “ignore”, “use the default action”, “call this function”
= Also has options that control details of signal delivery

m If old_sais not NULL, the old action is stored there

= Canlater dosigaction(signum, &old sa, 9)
to revert to the old action

m An older function called signal can also install handlers

® Do not use this function. Any use is a bug
= (some examples coming up use it to help the code fit on the slide, though)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Signal Handling Example

#include <signal.h>
#include <stdio.h>

void sigint handler (int sig) {
// Doesn’t do anything but interrupt the call to pause() below.
}

int main(void) {
struct sigaction sa;
// Sensible defaults. Use these unless you have a reason not to.
sigemptyset (&sa.sa mask) ;
sa.sa_flags = SA RESTART;
// The handler for SIGINT will be sigint handler.
sa.sa_handler = sigint handler;

if (sigaction (SIGINT, &sa, 0) != 0)
unix error () ;

/* Wait for the receipt of a signal */
pause() ;

puts () ;
return O;

int.
) sigint.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Signal Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

m But, this flow exists only until returns to main program

Process A Process A Process B

while (1) handler () {

}

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
I
|
. . I .
Signal delivered —> leyrr I user code (main)
I
to process A kernel code } context switch
|
: user code (main)
I !
] kernel code } context switch
Signal received —>» I
I user code (handler)
by process A ! :
: kernel code
I ¢ I
next I user code (main)
v I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T
(2) Control passes
(1) Program leure to handler S
catches signal s

(4) Control passes
(3) Program to handler T

(7) Main program next catches signal t .

(6) Handler S (5) Handler T
returns to returns to

; handler S
main

program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism
" sigprocmask function

m Supporting functions
" sigemptyset —Create empty set
" sigfillset —Add everysignal number to set
" sigaddset —Add signal number to set
= sigdelset —Delete signal number from set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Temporarily Blocking Signals

sigset t mask, prev_mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG_BLOCK, é&mask, &prev_mask) ;

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, &prev_mask, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Safe Signal Handling

m Handlers are tricky because they are concurrent with main
program and share the same global data structures.
= Shared data structures can become corrupted.

m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Guidelines for Writing Safe Handlers

GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

G1: Call only async-signal-safe functions in your handlers
" printf, sprintf, malloc, and exit are not safe!

G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno
G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption
G4: Declare global variables as volatile
"= To prevent compiler from storing them in a register
G5: Declare global flags as volatile sig atomic t

" flag: variable that is only read or written (e.g. flag = 1, not flag++)
" Flag declared this way does not need to be protected like other globals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
= Popular functions on the list:
= exlt, write, wait, waitpid, sleep, kill
= Popular functions that are not on the list:
» printf, sprintf, malloc, exit

= Unfortunate fact: write is the only async-signal-safe output function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Safe Formatted Output: Option #1

m Use the reentrant SIO (Safe 1/0 library) from csapp.cin
your handlers.
" ssize t sio puts(char s[]) /* Put string */
" ssize t sio putl(long v) /* Put long */

" void sio error(char s[]) /* Put msg & exit */

void sigint handler(int sig) /* Safe SIGINT handler */

{
Sio puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep (2) ;

Sio puts("Well...");
sleep (1) ;

Sio puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Safe Formatted Output: Option #2

m Use the new & improved reentrant sio_printf !
= Handles restricted class of printf format strings

o®

= Recognizes: $¢c $s %d %u %x %
= Size designators ‘1’ and ‘z’

void sigint handler(int sig) /* Safe SIGINT handler */
{
Sio printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');
sleep(2) ;
Sio puts("Well...");
sleep (1) ;
Sio puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

volatile int ccount = 0;

void child handler (int sig) {
int olderrno errno;
pid t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;
Sio puts("Handler reaped child ");
Sio putl ((long)pid) ;
Sio puts(" \n");
sleep (1) ;
errno olderrno;

}

void forkl4d () {
pid t pid[N];
int i;
ccount = N; .
Signal (SIGCHLD, child handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {
Sleep (1) ;
exit(0); /* Child exits */

}
}

while (ccount > 0) /* Parent spins */

.
4

This code is incorrect!

Correct Signal Handling

m Pending signals are
not queued

® For each signal type, one
bit indicates whether or
not signal is pending...

= ...thus at most one
pending signal of any
particular type.
m You can’t use signals
to count events, such as
children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

forks.c
55

Correct Signal Handling

m Must wait for all terminated child processes
" Put wait inaloop to reap all terminated children

void child handler2 (int sigq)
{
int olderrno = errno;
pid t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;
Sio puts("Handler reaped child ") ;
Sio putl ((long)pid) ;
Sio puts(" \n");
}

if (errno '= ECHILD)
Sio_error("wait error");
errno = olderrno; whaleshark> ./forks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Synchronizing to Avoid Parent-Child Race

int main(int argc, char **argv)
{
int pid;
sigset t mask all, mask one, prev_one;
int n = N; /* N=5 */
Sigfillset (&mask all);
Sigemptyset (&mask_one) ;
Sigaddset (&mask one, SIGCHLD) ;
Signal (SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask (SIG_BLOCK, &mask one, &prev one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve (" /bin/date", argv, NULL);
}
Sigprocmask (SIG BLOCK, &mask all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask (SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}

exit (0) ;
} procmask2.c

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig atomic_t pid;

void sigchld handler (int s)
{

int olderrno = errno;
pid = Waitpid (-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint handler (int s)
{
}

waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Explicitly Waiting for Signals

int main(int argc, char **argv) {
sigset t mask, prev; Similar to a shell waiting
int n = N; /* N =10 */ for a foreground job to
Signal (SIGCHLD, sigchld handler) ; terminate.
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;

Sigaddset (&mask, SIGCHLD) ;

while (n--) {
Sigprocmask (SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;
/* Parent */
pid = 0;
Sigprocmask (SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)
/* Do some work after receiving SIGCHLD */
printf(".");

}

printf ("\n");

Lt (0) ; i i
exit (0) waitforsignal.c

Bryant ¢

Carnegie Mellon

Explicitly Waiting for Signals

while (!'pid)

4

m Program is correct, but very wasteful

" Program in busy-wait loop

while ('pid) /* Race! */
pause() ;

m Possible race condition

= Between checking pid and starting pause, might receive signal

while ('pid) /* Too slow! */
sleep(1) ;

m Safe, but slow

= Will take up to one second to respond

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Waiting for Signals with sigsuspend

m int sigsuspend(const sigset t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask (SIG_SETMASK, &mask, &prev);
pause () ;

sigprocmask (SIG_SETMASK, &prev, NULL) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Waiting for Signals with sigsuspend

int main(int argc, char **argv) {
sigset t mask, prev;
int n = N; /* N = 10 */
Signal (SIGCHLD, sigchld handler) ;
Signal (SIGINT, sigint handler) ;
Sigemptyset (&mask) ;
Sigaddset (&mask, SIGCHLD) ;
while (n--) {
Sigprocmask (SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */
exit (0) ;

/* Wait for SIGCHLD to be received */
pid = O;
while (!pid)
Sigsuspend (&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask (SIG_SETMASK, &prev, NULL) ;
/* Do some work after receiving SIGCHLD */
print£(".");

}

printf ("\n") ;

exit(0) ;

sigsuspend.c
Bry . y 7

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Sending Signals with kill Function

void forkl2()
{

pid t pid[N];
int i;
int child status;

for (i = 0; 1 < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while (1)

}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT);

for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Nonlocal Jumps: setjmp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m int setjmp (jmp buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= (Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PCvalue in jmp buf

" Return O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

setjmp/longjmp (cont)

m void longjmp (jmp buf j, int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning i instead of O
= Called after setjmp

= (Called once, but never returns

® longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set $eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

setjmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo(void)

{
if (errorl)
longjmp (buf, 1) ;
bar () ;
}

void bar (void)
{
if (error2)
longjmp (buf, 2);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

setjmp/longjmp
Example (cont)

jmp buf buf;

int errorl = 0;
int error2 = 1;

void foo(void), bar(void) ;

int main ()
{
switch (setjmp (buf)) {
case O:
foo() ;
break;
case 1:
printf ("Detected an errorl condition in foo\n") ;
break;
case 2:
printf ("Detected an error2 condition in foo\n") ;
break;
default:
printf ("Unknown error condition in foo\n");

}
exit (0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Before longijmp After longjmp

jmp buf env; env
......... > Pl Pl
P1 ()
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P2(); P2
}
} P2
P2 ()
{ . . .P2(); . . . P3(); } P3
P3()
{
longjmp (env, 1);
}

Bryant and O’Hamaron, Computer Systems: A PTOGIammer s PETSPECUVE, TTTO EQTON 70

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

jmp buf env; P1
pP () » P2
{ env
}
P2 () Pl
{

if (setjmp(env)) { env

/* Long Jump to here */ | = e | P2

}
} P2 returns P1
P3() env
{ LD SEH P3

longjmp (env, 1) ;
} At longjmp

Bryant and O’Hz , - . - - , 7

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include "csapp.h"

sigjmp buf buf;
greatwhite> ./restart

void handler (int sig) starting
{ processing. ..
siglongjmp (buf, 1); processing. ..
} processing. ..
i s) restart?ng) Ctrl-c
{ processing. .
if ('sigsetjmp(buf, 1)) { processing. ..
Signal (SIGINT, handler) ; restarting
Sio puts("starting\n"); processing. < Ctrl-c
} processing. ..
S _ processing. ..
Sio_puts("restarting\n");
while (1) {
Sleep (1) ;

Sio_puts("processing...\n");

}

exit (0); /* Control never reaches here */

} restart.c
Bryant , - , ° - N 72

