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Review from last lecture

 Exceptions
▪ Events that require nonstandard control flow

▪ Generated externally (interrupts) or internally (traps and faults)

 Processes
▪ At any given time, system has multiple active processes

▪ Only one can execute at a time on any single core

▪ Each process appears to have total control of 
processor + private memory space
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Review (cont.)

 Spawning processes
▪ Call fork

▪ One call, two returns

 Process completion
▪ Call exit

▪ One call, no return

 Reaping and waiting for processes
▪ Call wait or waitpid

 Loading and running programs
▪ Call execve (or variant)

▪ One call, (normally) no return
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execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Replaces the program running in the current process

 Overwrites code, data, and stack

 Retains PID, open files, working directory, etc.

 Called once and never returns
▪ …except if there is an error
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ECF Exists at All Levels of a System

 Exceptions
▪ Hardware and operating system kernel software

 Process Context Switch
▪ Hardware timer and kernel software

 Signals
▪ Kernel software and application software

 Nonlocal jumps
▪ Application code

Previous Lecture

This Lecture

Textbook and 
supplemental slides
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Today

 Shells CSAPP 8.4.6 

 Signals CSAPP 8.5
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Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the 
hierarchy using the Linux 
pstree command

(started by kernel)
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Shell Programs
 A shell is a program that runs other programs on behalf of the 

user.
▪ sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

▪ csh/tcsh BSD Unix C shell

▪ bash “Bourne-Again” Shell (default Linux shell)

 GUI “desktop” interfaces can also be thought of as shells

 Next lab: Simple shell
▪ Described in the textbook, starting at p. 753

▪ Implementation of a very elementary shell

▪ Purpose

▪ Understand what happens when you type commands

▪ Understand use and operation of process control operations



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Example
linux> ./shellex

> /bin/ls -l csapp.c

-rw-r--r-- 1 bryant users 23053 Jun 15  2015 csapp.c

> /bin/ps

PID TTY          TIME CMD

31542 pts/2    00:00:01 tcsh

32017 pts/2    00:00:00 shellex

32019 pts/2    00:00:00 ps

> /bin/sleep 10 &

32031 /bin/sleep 10 &

> /bin/ps

PID TTY          TIME CMD

31542 pts/2    00:00:01 tcsh

32024 pts/2    00:00:00 emacs

32030 pts/2    00:00:00 shellex

32031 pts/2    00:00:00 sleep

32033 pts/2    00:00:00 ps

> quit

Must give full pathnames for programs

Run program in background

Sleep is running
in background
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Simple Shell Implementation
 Basic loop

▪ Read line from command line

▪ Execute the requested operation

▪ Built-in command (only one implemented is quit)

▪ Load and execute program from file

int main(int argc, char** argv)

{

char cmdline[MAXLINE]; /* command line */

while (1) {

/* read */

printf("> ");

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))

exit(0);

/* evaluate */

eval(cmdline);

}

...

Execution is a 
sequence of 
read/evaluate 
steps

shellex.c
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

parseline will parse ‘buf’ into 
‘argv’ and return whether or not
input line ended in ‘&’
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Ignore empty lines.
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

If it is a ‘built in’ command, then 
handle it here in this program.  
Otherwise fork/exec the program 
specified in argv[0]
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Create child
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Start argv[0].
Remember execve only returns on 
error.
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

If running child in 
foreground, wait until 
it is done.
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void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}

Simple Shell eval Function

shellex.cshellex.c

If running child in 
background, print pid
and continue doing 
other stuff.
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Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE];   /* Holds modified command line */
int bg;              /* Should the job run in bg or fg? */
pid_t pid;           /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return;   /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) {   /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

}
shellex.cshellex.c

Oops.  There is a 
problem with 
this code.
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Problem with Simple Shell Example

 Shell designed to run indefinitely
▪ Should not accumulate unneeded resources

▪ Memory

▪ Child processes

▪ File descriptors

 Our example shell correctly waits for and reaps
foreground jobs

 But what about background jobs?
▪ Will become zombies when they terminate

▪ Will never be reaped because shell (typically) will not terminate

▪ Will create a memory leak that could run the kernel out of memory
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ECF to the Rescue!

 Solution: Exceptional control flow
▪ The kernel will interrupt regular processing to alert us when a background 

process completes

▪ In Unix, the alert mechanism is called a signal
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Today

 Shells

 Signals
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Signals

 A signal notifies a process that an event has occurred

 Akin to exceptions and interrupts
▪ Exceptions and interrupts go from hardware to kernel

▪ Signals go from kernel to a specific process

 Can happen either synchronously or asynchronously

 Many causes
▪ Hardware exceptions

▪ Hardware interrupts

▪ Events within another process

▪ Explicit requests by another process
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Signals

 Every signal has a name and an ID number
▪ Constant named SIGsomething, defined in <signal.h>

▪ Most signals carry no information besides their ID number

 Most signals can be handled within a process
▪ Like interrupt handlers: table of function pointers

 All signals have a default action
▪ What to do if the signal is not handled

▪ Usually either “ignore” (do nothing) or “terminate process”

Event Name ID Default Action

User typed ctrl-c SIGINT 2 Terminate

Force termination (cannot be handled) SIGKILL 9 Terminate

Segmentation violation SIGSEGV 11 Terminate 

Timer signal SIGALRM varies Terminate

Child stopped or terminated SIGCHLD varies Ignore
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Signal Concepts: Sending and Delivering

 The kernel sends a signal when the causative event happens
▪ Hardware exception

▪ Hardware interrupt

▪ Something happened to another process (e.g. it exited)

▪ Another process asks for a signal to be sent

 The kernel delivers a signal when it makes the destination 
process react to that signal
▪ By executing the handler

▪ Or by carrying out the default action

 There can be a delay between sending and delivering
▪ Usually because the process cannot be scheduled immediately

▪ During the delay, the signal is pending



Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet delivered
▪ Important: Signals are not queued

▪ If a process has a pending signal of type k, then subsequent signals of 
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
▪ Blocked signals will not be delivered until the signal is unblocked



Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it reacts in some 

way to the delivery of the signal

 Some possible ways to react:
▪ Ignore the signal (do nothing)

▪ Terminate the process (with optional core dump)

▪ Catch the signal by executing a user-level function called signal handler

▪ Akin to a hardware exception handler being called in response to an 
asynchronous interrupt:

(2) Control passes 

to signal handler 

(3) Signal  

handler runs
(4) Signal handler

returns to 

next instruction

Icurr
Inext

(1) Signal received 

by process 
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Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the 
context of each process
▪ pending: represents the set of pending signals

▪ Kernel sets bit k in pending when a signal of type k is delivered

▪ Kernel clears bit k in pending when a signal of type k is received 

▪ blocked: represents the set of blocked signals

▪ Can be set and cleared by using the sigprocmask function

▪ Also referred to as the signal mask.
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Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C
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Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1



Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1
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Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0 1
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Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1 1
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Sending Signals: Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground 
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

Return process group of current process

setpgid()

Change process group of a process (see 
text for details)
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Sending Signals with /bin/kill Program

 /bin/kill program 
sends arbitrary signal to a 
process or process group

 Examples
▪ /bin/kill –9 24818

Send SIGKILL to process 24818

▪ /bin/kill –9 –24817

Send SIGKILL to every process 
in process group 24817

linux> ./forks 16 

Child1: pid=24818 pgrp=24817 

Child2: pid=24819 pgrp=24817 

linux> ps

PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh

24818 pts/2    00:00:02 forks 

24819 pts/2    00:00:02 forks 

24820 pts/2    00:00:00 ps

linux> /bin/kill -9 -24817 

linux> ps

PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh

24823 pts/2    00:00:00 ps

linux> 
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Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every 

job in the foreground process group.
▪ SIGINT – default action is to terminate each process 

▪ SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground 
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20
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Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh

28107 pts/8    T      0:01 ./forks 17

28108 pts/8    T      0:01 ./forks 17

28109 pts/8    R+     0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh

28110 pts/8    R+     0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more 
details
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Signal Delivery in Detail
 Suppose kernel is returning from an exception handler 

and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Signal Delivery in Detail
 Suppose kernel is returning from an exception handler 

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked

▪ The set of pending nonblocked signals for process p

 If  (pnb == 0) 

▪ Pass control to next instruction in the logical flow for p

 Else
▪ Choose least nonzero bit k in pnb and force process p to receive

signal k

▪ The receipt of the signal triggers some action by p

▪ Repeat for all nonzero k in pnb

▪ Pass control to next instruction in logical flow for p
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Default Actions

 Each signal type has a default action, which is one of:
▪ Nothing happens (the signal is ignored)

▪ The process terminates

▪ A core dump may be generated

▪ The process stops until started again

▪ This is like being blocked, but gets a different label in ps (“T”)

▪ The process is started again if it was stopped
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/20895

https://canvas.cmu.edu/courses/20895
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Installing Signal Handlers
 The sigaction function changes the action associated with 

the receipt of signal signum:

▪ int sigaction(int signum,
const struct sigaction *sa,
struct sigaction *old_sa)

 The data in the sa structure sets the new action
▪ Choices include “ignore”, “use the default action”, “call this function”

▪ Also has options that control details of signal delivery

 If old_sa is not NULL, the old action is stored there
▪ Can later do sigaction(signum, &old_sa, 0)

to revert to the old action

 An older function called signal can also install handlers
▪ Do not use this function. Any use is a bug

▪ (some examples coming up use it to help the code fit on the slide, though)
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Signal Handling Example
#include <signal.h>

#include <stdio.h>

void sigint_handler(int sig) {

// Doesn’t do anything but interrupt the call to pause() below.

}

int main(void) {

struct sigaction sa;

// Sensible defaults.  Use these unless you have a reason not to.

sigemptyset(&sa.sa_mask);

sa.sa_flags = SA_RESTART;

// The handler for SIGINT will be sigint_handler.

sa.sa_handler = sigint_handler;

if (sigaction(SIGINT, &sa, 0) != 0)

unix_error("signal error");

/* Wait for the receipt of a signal */

pause();

puts("Ctrl-C received, exiting.");

return 0;

}
sigint.c
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Signal Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that 
runs concurrently with the main program

 But, this flow exists only until returns to main program

Process A 

while (1)

;

Process A

handler(){

…

}

Process B

Time
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Another View of Signal Handlers as 
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Nested Signal Handlers

 Handlers can be interrupted by other handlers

(2) Control passes 

to handler S

Main program

(5) Handler T

returns to 

handler S

Icurr

Inext

(1) Program 

catches signal s

Handler S Handler T

(3) Program 

catches signal t

(4)  Control passes 

to handler T

(6) Handler S

returns to 

main 

program

(7) Main program 

resumes 
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Blocking and Unblocking Signals

 Implicit blocking mechanism
▪ Kernel blocks any pending signals of type currently being handled. 

▪ E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
▪ sigprocmask function

 Supporting functions
▪ sigemptyset – Create empty set

▪ sigfillset – Add every signal number to set

▪ sigaddset – Add signal number to set

▪ sigdelset – Delete signal number from set
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Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);

Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */

Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */

Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…
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Safe Signal Handling

 Handlers are tricky because they are concurrent with main 
program and share the same global data structures.
▪ Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid trouble. 
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Guidelines for Writing Safe Handlers

 G0: Keep your handlers as simple as possible
▪ e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
▪ printf, sprintf,  malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
▪ So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily 
blocking all signals. 
▪ To prevent possible corruption

 G4: Declare global variables as volatile
▪ To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
▪ flag: variable that is only read or written (e.g. flag = 1, not flag++)

▪ Flag declared this way does not need to be protected  like other globals
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Async-Signal-Safety

 Function is async-signal-safe if either reentrant (e.g., all 
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe 
▪ Source: “man 7 signal-safety”

▪ Popular functions on the list:

▪ _exit, write, wait, waitpid, sleep, kill

▪ Popular functions that are not on the list:

▪ printf,  sprintf, malloc, exit 

▪ Unfortunate fact: write is the only async-signal-safe output function
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Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in 

your handlers.
▪ ssize_t sio_puts(char s[]) /* Put string */

▪ ssize_t sio_putl(long v)   /* Put long */

▪ void sio_error(char s[])   /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{

Sio_puts("So you think you can stop the bomb"

" with ctrl-c, do you?\n");

sleep(2);

Sio_puts("Well...");

sleep(1);

Sio_puts("OK. :-)\n");

_exit(0);

} sigintsafe.c
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Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf !

▪ Handles restricted class of printf format strings

▪ Recognizes: %c %s %d %u %x %%

▪ Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */

{

Sio_printf("So you think you can stop the bomb"

" (process %d) with ctrl-%c, do you?\n",

(int) getpid(), 'c');

sleep(2);

Sio_puts("Well...");

sleep(1);

Sio_puts("OK. :-)\n");

_exit(0);

}

sigintsafe.c
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 Pending signals are 
not queued
▪ For each signal type, one 

bit indicates whether or 
not signal is pending…

▪ …thus at most one 
pending signal of any 
particular type. 

 You can’t use signals 
to count events, such as 
children terminating.

volatile int ccount = 0;

void child_handler(int sig) {

int olderrno = errno;

pid_t pid;

if ((pid = wait(NULL)) < 0)

Sio_error("wait error");

ccount--;

Sio_puts("Handler reaped child ");

Sio_putl((long)pid);

Sio_puts(" \n");

sleep(1);

errno = olderrno;

}

void fork14() {

pid_t pid[N];

int i;

ccount = N;

Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {

if ((pid[i] = Fork()) == 0) {

Sleep(1);

exit(0);  /* Child exits */

}

}

while (ccount > 0) /* Parent spins */

;

} forks.c

whaleshark> ./forks 14

Handler reaped child 23240

Handler reaped child 23241

. . .(hangs)

Correct Signal Handling

N == 5

This code is incorrect!
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Correct Signal Handling

 Must wait for all terminated child processes
▪ Put  wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

}
whaleshark> ./forks 15

Handler reaped child 23246

Handler reaped child 23247

Handler reaped child 23248

Handler reaped child 23249

Handler reaped child 23250

whaleshark>
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Synchronizing to Avoid Parent-Child Race 

int main(int argc, char **argv)

{

int pid;

sigset_t mask_all, mask_one, prev_one;

int n = N; /* N = 5 */

Sigfillset(&mask_all);

Sigemptyset(&mask_one);

Sigaddset(&mask_one, SIGCHLD);

Signal(SIGCHLD, handler);

initjobs(); /* Initialize the job list */

while (n--) {

Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

Execve("/bin/date", argv, NULL);

}

Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

addjob(pid);  /* Add the child to the job list */

Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

}

exit(0);

} procmask2.c
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Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)

{

int olderrno = errno;

pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */

errno = olderrno;

}

void sigint_handler(int s)

{

}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c
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Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (n--) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Parent */

pid = 0;

Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */

while (!pid)

;

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

}
waitforsignal.c

Similar to a shell waiting
for a foreground job to 
terminate. 
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 Program is correct, but very wasteful
▪ Program in busy-wait loop

 Possible race condition
▪ Between checking pid and starting pause, might receive signal

 Safe, but slow
▪ Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid)  /* Race! */

pause();

while (!pid) /* Too slow! */

sleep(1);

while (!pid)

;
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Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:
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Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

sigset_t mask, prev;

int n = N; /* N = 10 */

Signal(SIGCHLD, sigchld_handler);

Signal(SIGINT, sigint_handler);

Sigemptyset(&mask);

Sigaddset(&mask, SIGCHLD);

while (n--) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */

pid = 0;

while (!pid)

Sigsuspend(&prev);

/* Optionally unblock SIGCHLD */

Sigprocmask(SIG_SETMASK, &prev, NULL);

/* Do some work after receiving SIGCHLD */

printf(".");

}

printf("\n");

exit(0);

} sigsuspend.c
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Summary

 Signals provide process-level exception handling
▪ Can generate from user programs

▪ Can define effect by declaring signal handler

▪ Be very careful when writing signal handlers
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Additional slides
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Sending Signals with kill Function
void fork12()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */

while(1)

;

}

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

} forks.c
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Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for 
transferring control to an arbitrary location
▪ Controlled to way to break the procedure call / return discipline

▪ Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

▪ Must be called before longjmp

▪ Identifies a return site for a subsequent longjmp

▪ Called once, returns one or more times

 Implementation:
▪ Remember where you are by storing  the current register context, 

stack pointer,  and PC value in jmp_buf

▪ Return 0
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setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

▪ Meaning:

▪ return from the setjmp remembered by jump buffer j again ... 

▪ … this time returning i instead of 0

▪ Called after setjmp

▪ Called once, but never returns

 longjmp Implementation:

▪ Restore register context (stack pointer, base pointer, PC value) from 
jump buffer j

▪ Set %eax (the return value) to i

▪ Jump to the location indicated by the PC stored in jump buf j
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setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */

void foo(void)

{

if (error1)

longjmp(buf, 1);

bar();

}

void bar(void)

{

if (error2)

longjmp(buf, 2);

}
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jmp_buf buf;

int error1 = 0;

int error2 = 1;

void foo(void), bar(void);

int main()

{

switch(setjmp(buf)) {

case 0:

foo();

break;

case 1:

printf("Detected an error1 condition in foo\n");

break;

case 2:

printf("Detected an error2 condition in foo\n");

break;

default:

printf("Unknown error condition in foo\n");

}

exit(0);

}

setjmp/longjmp
Example (cont)
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Limitations of Nonlocal Jumps
 Works within stack discipline

▪ Can only long jump to environment of function that has been called 
but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{  . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp
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Limitations of Long Jumps (cont.)
 Works within stack discipline

▪ Can only long jump to environment of function that has been called 
but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X
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Putting It All Together: A Program 
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)

{

siglongjmp(buf, 1);

}

int main()

{

if (!sigsetjmp(buf, 1)) {

Signal(SIGINT, handler);

Sio_puts("starting\n");

}

else

Sio_puts("restarting\n");

while(1) {

Sleep(1);

Sio_puts("processing...\n");

}

exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c


