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Moore’s Law Origins

Electromcs

Cold cathode count and store poage B0
Dosimeter s laser radiation: poge 93
35th asniversary —the exgerts ook ahead: page 99 i ot St st

Cramming more components
onto integrated circuits

With unit cost falling as the number of components per
circuit rises, by 1975 economics may dictate squeezing as
many as 65,000 components on a single silicon chip

April 19, 1965
By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor
division of Fairchild Camera and Instrument Corp.
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Moore’s Law Origins

Relative Manufacturing Cost/Component
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Moore’s Thesis

= Minimize price per
device

m Optimum number of
devices / chip increasing
2x / year

Later
m 2x /2 years
m “Moore’s Prediction”
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Moore’s Law: 50 Years

Transistor Count by Year
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What Moore’s Law Has Meant

m 1976 Cray 1 m 2014 iPhone 6 —
= 250 M Ops/second = >4 B Ops/second
= ~170,000 chips = ~10 chips
" (.5B transistors = > 3B transistors
= 5,000 kg, 115 KW = 120g,<5W
= SOM = 5649
= 80 manufactured = 10 million sold in first 3 days
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What Moore’s Law Has Meant

m 1965 Consumer m 2015 Consumer
Product Product

Apple A8 Processor
2 B transistors
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Visualizing Moore’s Law to Date

If transistors were the size of a grain of sand

Intel 4004
1970
2,300 transistors 0.1g
Apple A8
2014 f Cf .
2 B transistors Iy ' ,numnn A
Biioe: o &5 if T 88 kg
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Moore’s "Law” drove itself

Better

Sales
Products °o

Capital +
Product P
. R&D
Design
Investment

New Technology

Consumer products sustain the
$300B semiconductor industry
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What Moore’s Law Could Mean

m 2015 Consumer m 2065 Consumer Product

Product
?

O
= Portable
" Low power
= Will drive markets & innovation
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Requirements for Future Technology

m Must be suitable for portable, low-power operation
= Consumer products
" |nternet of Things components
" Not cryogenic, not quantum
m Must be inexpensive to manufacture
= Comparable to current semiconductor technology

= O(1) cost to make chip with O(N) devices

m Need not be based on transistors
= Memristors, carbon nanotubes, DNA transcription, ...
= Possibly new models of computation

= But, still want lots of devices in an integrated system
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Increasing Transistor Counts

1. Chips have gotten bigger
= 1 area doubling / 10 years

2. Transistors have gotten smaller
= 4 density doublings / 10 years

Will these trends continue?
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Chips Have Gotten Bigger

Intel 4004 Apple A8 IBM z13
1970 2014 205
2,300 transistors 2 B transistors 4 B transistors

89 mm? | 678 m2 |

uuuuuuuuuu

1| 18 g
2 LSS |
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Chip Size Trend

Area by Year
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Chip Size Extrapolation

Area by Year
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Extrapolation: The iPhone 31s

Apple A59
2065
1017 transistors

173 cm?

D T (D LURAL TE NG
Bpvigr
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SDRAM
Interface

"SORAM
Interface

SRAM Cache

Quad-Core GPU
Dual-Core CPU

SDRAM Interface
. -
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Transistors Have Gotten Smaller

" Area A

= N devices L — \/A/N

® Linear Scale L

YT Y



Carnegie Mellon

Linear Scaling Trend

Linear Scale by Year
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Decreasing Feature Sizes

Apple A8
Intel 4004 2014
1970 2 B transistors
2,300 transistors L=211 nm
L =72,000 nm Blaaits

mmmmmmm
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Linear Scaling Trend
Linear Scale by Year
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Submillimeter Dimensions

'*“ }‘(_‘;" .

.,

103 1 millimeter -
(mm) | 500um:  Length of amoeba

-4 |
10 72um: Intel 4004 linear scale

50um: Average size of cell in human body
10> 4. 10um:  Thickness of sheet of plastic food wrap

S5um: Spider silk thickness

2pm: E coli bacterium length

10® 1 micrometer -
(Um)
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Submicrometer Dimensions

10® 1 micrometer -
e
(- }— 400-700nm: Visible light wavelengths
I ——— 211nm:  Apple A8 linear scale
1077 _
—— 30nm: Minimum cooking oil smoke particle diameter
10-8 T— 9nm: Cell membrane thickness
—— 2nm: DNA helix diameter
10° 1 nanometer 4+—— 1nm: Carbon nanotube diameter

(nm)
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Linear Scaling Extrapolation

Linear Scale by Year
100,000.0 ‘,
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Subnanometer Dimensions

10-9 1 nahometer +— 1nm: Carbon nanotube diameter
(nm) | 543pm: Silicon crystal lattice spacing

——— 230pm: 2065 linear scale projection

1010 - . .
- 74pm: Spacing between atoms in hydrogen molecule
_ 53pm: Electron-proton spacing in hydrogen (Bohr radius)
(<
10 : 9
()

| 2.4pm: Electron wavelength (Compton wavelength)

1012 1 picometer -
(pm)
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Reaching 2065 Goal

m Target
= 10!/ devices
= 400 mm?
" [ =63 pm

m Is this possible?
i Not with 2-d
N @ : fabrication
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| Moore’s Law: The number of transistors on microchips has doubled every two years [oIaWGIE!

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Historical cost of computer memory and storage

Measured in US dollars per megabyte.

100 million $/MB

1 million $/MB

10,000 $/MB

100 $/MB

1 $/MB

0.01 $/MB
—— Memory
— Flash
<0.001 $/MB —— Solid state
I | | | | | [ DISk
1956 1970 1980 1990 2000 2010 2020
Source: John C. McCallum (2022) cc By

Note: For each year the time series shows the cheapest historical price recorded until that year.
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Fabrication Economics

m Currently
" Fixed number of lithography steps
= Manufacturing cost $10-520 / chip
= |ncluding amortization of facility
m Fabricating 1,000,000 physical layers
= Cannot do lithography on every step
m Options
" Chemical self assembly

= Devices generate themselves via chemical processes
= Pattern multiple layers at once
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Challenges to Moore’s Law: Economic

m Growing Capital Costs

umc
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Infineon

Sony

Texas
Instruments
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Intel
Samsung

= State of art fab line ~S20B

= Must have very high volumes to
amortize investment

" Has led to major consolidations

SMIC

UMC

TSMC

Globalfoundries

Renesas

IBM

Fujitsu TSMC

Toshiba Globalfoundries | TSMC
STMicroelectronics | STMicroelectronics | Globalfoundries
Intel Intel Intel
Samsung Samsung Samsung
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Meeting Power Constraints

—

= 2 B transistors " 64 B neurons

= 2 GHz operation = 100 Hz operation
= 1-5W = 15—25W

= Liquid cooling

= Up to 25% body’s total
energy consumption

Can we increase number of devices
by 500,000x without increasing
power requirement?
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End of Dennard Scaling
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Dotted line extrapolations by C. Moore

m What Happened?

® Old: Reduce voltage as we reduced transistor size

= New: Can’t drop voltage below ~1V

= Reached limit of power / chip in 2004

= More logic on chip (Moore’s Law), but can’t make them run faster
= Response has been to increase cores / chip
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End of Easy Gains — Fun Times Ahead

We can’t just crank up the clock

We want to keep improving perf/S, perf/W, etc.

But we’re going to have to be even more clever at all
layers of the computation stack...

|
m We won’t be able to infinitely add cores
|
|
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Samsung V-Nand Flash Example
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® Build up layers of unpatterned material

" Then use lithography to slice, drill, etch, and deposit material across all
layers

= ~30 total masking steps
= Up to 48 layers of memory cells

= Exploits particular structure of flash memory circuits
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Putting Parallelism on the Programmer

@ Cores A Vector Width

30 600
448x

20 400
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e B
® o
0 0
1995 2000 2005 2010 2015
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A lot of parallelism...

RTX 3090

At 350W, a lot of power, too
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Google Data Centers

B .“__?. i

mDalles, Oregon
" Hydroelectric power @ 2¢ / KW Hr

" 50 Megawatts = Container: 1160 server nodes,
= Enough to power 60,000 homes 250KW

" Engineered for low cost,
modularity & power efficiency
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Cluster Programming Model

= Application programs written in

terms of high-level operations on Application

data Programs
® Runtime system controls Machine-Independent I

scheduling, load balancing, ... Programming Model

] Runtime

m Scaling Challenges System

® Centralized scheduler forms

bottleneck Hardware

= Copying to/from disk very costly

= Hard to limit data movement
= Significant performance factor

3
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Data Intensity

—39—

>

Computing

Google Data Center

Sophisticated
data analysis

—

Computational Intengity

Landscape
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DNN Application Example

m Facebook DeepFace Architecture

f |
z |
o1\ 4l 2l
< | 8
E '® |
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. e Cl: M2: Cc3: L4: LS: L6: F7: F8:
Calista_Flockhart oooz,jg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21
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The “More than Moore” approach

m “Functional diversification of semiconductor-based
devices”
" |ntegration of sensors, RF, MEMS, quantum?, storage

GlobalFoundries Stops All Tnm Development:
Opts To Focus on Specialized Processes

by Anton Shilov & Ian Cutress on August 27, 2018 4:01 PM EST

m Flowering of application-specific chips
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ASICs in the wild at gigacorps

¥
TR R e

m Google: TPUvV], v2, v3,
custom network interface card,
video transcoder,

m Amazon: Al chip, custom VM
controller, custom switching chip

m Apple: Its own ARM chips, M1,
custom Al chip

YTDEJSOBAQ 2122 1B 6 core CPU,

HOHKNNNEDMMVYHR=NEH

5 core GPU,

16 core Neural Engine,
ISP image processor,
Hardware video codec
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We will have more advances

But they’re bumpy!

Optical interconnects give us a one time big bump
Persistent memory might still — but bumpy

We have more lithographic advances — but really hard

We have yield improvements for EUV — but slowing over
time...
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Adding accelerators

Machine Learning
Graphics & HPC

Video encode/decode

DB primitives?
- Some already handled by GPUs, crypto

% of Cryptographic
CYoIES Network?

Diminishing
Returns

Implementation Complexity
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Can’t outrun Amdahl

m Moore:
= Most CPU functions got faster simultaneously
"= Memory density scaled too!
= |/O (& mem latency) was the primary bottleneck to work around

m Multicore:
= Parallelization bottleneck

m GPUs /SIMD

= Vectorization & parallelization

m Post-Moore:
= Specialization bottleneck
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Future speedups will need it all...

m Hardware improvements

m Specialized hardware/software co-design
m Software implementation improvements
m Algorithmic improvements
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4096 x 4096 Matrix Multiply

Running Absolute
Implementation time (s) GFLOPS speedup
Python 25,052.48 0.005 1
Java 2:912:68 0.058 11
C 542.67 0.253 47
Parallel loops 69.80 1.969 366
Parallel divide-and-conquer 3.80 36.180 6,727
-+ vectorization 1.10 124.914 23,224

+ AVX intrinsics 0.41 337.812 62.806

m (Leiserson et al., “There’s Plenty of Room At The Top”)
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MaxFlow over time (Leiserson et al)
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2018--?: Putting Heterogeneity on the

programmer

m Trend in architecture over last decade: Increasingly shift
pain to the programmer

= Parallelization, vectorization, massive concurrency, etc.

m This will get worse. (No alternative yet)
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Applications

Narrow Waists

_—!

Heterogenous, experts-only Hardware
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Waists are emerging: ML example

Application

DNN graph definition

TensorFlow TensorRT - Android NNAPI Apple CoreML

TPUs v1-3, EdgeTPU, Neural Compute Stick, A12 Bionic, Intel FPGA DLIA, GPUs, x86, ARM, ....
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How do we manage?

m By making sure we combine systems knowledge + domain
knowledge to craft frameworks that help programmers
get things done in this increasingly complex hardware

world

m Go forth and build awesome systems!
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