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Please read pinned piazza posts!
Use the 15-213 shark machines!
Bootcamp: Sun 1-3:30 Rashid
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From Bits through Integers

15-213/14-513/15-513:

Introduction to Computer Systems Instructors:
David Andersen
2 Lecture, Jan 18, 2024 Nathan Beckmann
Brian Railing
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Bits, Bytes, and Integers

m Representing information as bits CSAPP 2.1

m Bit-level manipulations
m Integers CSAPP 2.2

® Representation: unsigned and signed
® Conversion, casting
= Expanding, truncating

= Addition, negation, multiplication, shifting CSAPP 2.3
m Byte Ordering CSAPP 2.1.3
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Analog Computers

m Before digital computers there were analog computers.

m Consider a couple of simple analog computers:

= A simple circuit can allow one to adjust voltages using variable
resistors and measure the output using a volt meter:

= A simple network of adjustable parallel resistors can allow one to
find th~ ~vrgrma ~f the jnputs.
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https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml
https://www.quora.com/VWhat-is-the-most-basic-voltage-adder-circuit-

without-a-transistor-op-amp-and-any-external-supply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5


https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-Summer-Calculator.phtml
https://www.quora.com/What-is-the-most-basic-voltage-adder-circuit-without-a-transistor-op-amp-and-any-external-supply

Carnegie Mellon

Needing Less Accuracy+Precision is Easier

m We don’t try to measure exactly
" We just ask, is it high enough to be “On”, or

" |s it low enough to be “Off”.

m We have two states, so we have a binary, or 2-ary, system.

" We represent these statesas 0and 1

m Now we can easily interpret, communicate, and duplicate signals well enough to know
what they mean.
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Binary Representation

m Binary representation leads to a simple binary, i.e. base-2,
numbering system

" Orepresents 0

" 1 represents 1

= Each “place” represents a power of two, exactly as each place in our
usual “base 10”7, 10-ary numbering system represents a power of ten

m By encoding/interpreting sets of bits in various ways, we can
represent different things:

= QOperations to be executed by the processor, numbers, enumerable
things, such as text characters

m As long as we can assign it to a discrete number, we can
represent it in binary
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Binary Representation:
Simple Numbers

m For example, we can count in binary, a base-2 numbering
system
= 000, 001, 010, 0117, 100, 101, 110, 111, ...
= 000=0%2%2 + 0*%21* 0*2° = 0 (in decimal)
= 001 =0*2% + 0*21* 1*29 = 1 (in decimal)
= 010=0%2%2 + 1*21+* 0*2° = 2 (in decimal)
= 011=0%22 + 1*21* 1*20 = 3 (in decimal)
= Etc.
m For reference, consider some base-10 examples:
= 000 =0%*10% + 0*10! * 0*10°
« 001 =0%102 + 0*10! *+ 1*10°
« 357 =3%102 + 5*10! + 7*10°
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Hexadecimal and Octal

m Writing out numbers in binary takes too many digits

m We want a way to represent numbers more densely such that
fewer digits are required

® But also such that it is easy to get at the bits that we want

m Any power-of-two base provides this property

® Qctal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our
familiar base-10.

" Each has been used by “computer people” over time
" Hexadecimal is often preferred because it is denser.
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Hexadecimal

m Hexadecimal 0016 to FFis ~€~Q’+ QP

= Base 16 number representation
® Use characters ‘0’ to ‘9" and ‘A’ to ‘F

m Consider 1A2B in Hexadecimal:
" 1*%163 + A*162 + 2*16! + B*16°
= 1*163 + 10*16%2 + 2*16! + 11*16° =6699 (decimal)

" The C Language prefixes hexadecimal numbers with “0x”
so they aren’t confused with decimal numbers

" Write FA1D37B1e in C as
= OxFA1D37/B

- Oxfald37b  15213: 0011 1011 0110 1101
3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10
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Today: Bits, Bytes, and Integers

|
m Bit-level manipulations
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Boolean Algebra
m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
m A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
O0({0 O O(0 1
110 1 111 1
Not Exclusive-Or (Xor)
m “A=1when A=0 s AAB = 1 when either A=1 or B=1, but not both
~| A0 1
O] O(0 1
110 111 0
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General Boolean Algebras

m Operate on Bit Vectors
® QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101 ~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply
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Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

"a=1ifj €A
= 01101001 {0,3,5,6}
= 76543210
= 01010101 {0,2,4,6}
= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
m A Symmetric difference 00111100 {2,3,4,5}
m o~ Complement 10101010 {1,3,5,7}
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Bit-Level Operations in C

m Operations &, |, ~, A Availablein C

= Apply to any “integral” data type
- long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

m Examples (Char data type)
" ~Ox41 > OxBE

= ~Px00 > OxFF

= Ox69 & Ox55 > 0x41

= Ox69 | Ox55 - Ox7D

e e A e
o e e Y P e R e A B R LN (=)
'_\
o
|—l
o

1 EHO QW Oolo|douo|d|wN| RO
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Bit-Level Operations in C

>
o+ ec}@.go‘*
m Operations &, |, ~, A Available in C OO
A 0O | 0 | 0000
= Apply to any “integral” data type 1|1 [0001
- long, 1int, short, char, unsigned § § 8812
= View arguments as bit vectors 4 |4 |0100
: L 5 | 5 [ 0101
= Arguments applied bit-wise 6 | 6 | 0110
7 17 [0111
m Examples (Char data type) 8 18 11000
= ~Q0x41 - OxBE 9 190 18%
- ~01000001: > 101111102 g 111011
= ~0x00 > OxFF C [12[ 1100
. ~00000000; > 111111112 o=
" Ox69 & 0x55 > 0x41 F [15] 1111

- 011010012 & 010101012 > 010000012
= Px69 | Ox55 = 0Ox7D
» 011010012 | 01010101 > 011111012
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Bit-Level Operations in C

S+ ec’\&(\&

[ [ L] e \
m Operations &, |, ~, A Availablein C ‘5‘ 00 ongo
= Apply to any “integral” data type 1|1 0001
] : : 2 |2 [ 0010
long, 1int, short, char, unsigned 3 T3 0011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise > | 5 1 0101
g Pp 6 | 6 [ 0110
m Examples (Char data type) L %éé
= ~0x41 > 1011 1110 9 | 9 1001
. A (101010
0x00 > 1111 1111 = T11 1 1011
" 0x69 & 0x55: O0x69 | 0x55: C (12| 1100
0110 1001 0110 1001 D |13 1101
E (14| 1110
& 0101 0101 | 0101 0101 F |15 | 1111

0100 0001 0111 1101

Bryant and O’Hallaron, Compute: Sys-erqs: A Frogramner’s Terspective, Third Edition 17
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Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor1

= Early termination

m Examples (char data type)

Watch out for && vs. & (and || vs. |)...
= 10x41 > 0x00 Super common C programming pitfall!
= 10x00 > 0x01
= 110x41> 0x01

0x69 && Ox55 -> 0x01
O0x69 || Ox55 > 0x01
p && *p  (avoids null pointer access)
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Shift Operations

m Left Shift: x << vy Argument x | 01100010

= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
= Right Shift: x >> v
= Shift bit-vector x right y positions

Log. >> 2 | 00011000

Arith. >> 2 | 00011000

: : 1 1
= Throw away extra bits on right Argument x | 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift

= Replicate most significant bit on left

Arith.>> 2 | 11101000

m Undefined Behavior

= Shift amount < 0 or = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19
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Today: Bits, Bytes, and Integers

m Integers

® Representation: unsigned and signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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Binary Number Lines

m In binary, the number of bits in the data type size
determines the number of points on the number line.
= We can assign the points any meaning we’d like

m Consider the following examples:
= 1 bit number line
o -
0 1
= 2 bit number line

oo 0 @

00 01 10 11
= 3 bit number line

20000000

000 001010 011 100 101 110 111

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Some Purely Imaginary Examples

m 3 bit number line

o 00 0 0000

-1/16  -1/8 -1/4 0 1/16  1/8 1/4 1/2

00 0000

2 4

o000 0000

-4 -3 -2 1 0 1 2 3

000000
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Overflow

m Let’s consider a simple 3 digit number line:

90000000

0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111

m What happens if we add 1 to 77
" |n other words, what happens if we add 1 to 1117

m 111+ 001 =1 000

= But, we only get 3 bits — so we lose the leading 1.
" This is called overflow

m The result is 000
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Modulus Arithmetic

m Let’s explore this idea of overflow some more
" 111+001=1000=000
" 111+010 =1001 =001
= 111+011= 1010 =010
= 111+100= 1011 =011

" 111+110 =1101 =101
= 111+111=1110= 110

m So, arithmetic “wraps around” when it gets “too positive”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24
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Unsighed and Non-Negative Integers

m We'll use the term “ints” to mean the finite set of integer
numbers that we can represent on a number line enumerated by
some fixed number of bits, i.e. bit width.

m We normally represent unsigned and non-negative int using
simple binary as we have already discussed

= An “unsigned” int is any int on a number line, e.g. of a data type, that
doesn’t contain any negative numbers

= A non-negative number is a number greater than or equal to (>=) O on a
number line, e.g. of a data type, that does contain negative numbers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25
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How represent negative Numbers?

m We could use the leading bit as a sign bit:

® 0 means non-negative
" 1 means negative

200 00 0O

000 001 o010 100 111
0 1 2 3 -0 -1 -2 -3

m This has some benefits

" |t lets us represent negative and non-negative numbers
" Orepresents 0

m It also has some drawbacks
" There is a -0, which is the same as 0, except that it is different
" How to add such numbers 1 + -1 should equal O
= But, by simple math, 001 + 101 = 110, which is -27?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



A Magic Trick!

m Let’s just start with three ideas:
® 1 should be represented as 1
=-1+1=0
= We want addition to work in the familiar way, with simple rules.

m We want a situation where “-1” +1=0

m Consider a 3 bit number:
= 001+“1"=0
= 001+111=0

= Remember 001 + 111 =1 000, and the leading one is lost to
overflow.

m“-1" =111
" Yep!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Negative Numbers
m Well, if 111 is -1, what is -27?

=1 -1
= 111-001=110

m Does that really work?
" [fitdoes-2+2=0
= 110 + 010=1000 =000

m -2 + 5 should be 3, right?
= 110+101= 1011 = 011

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Finding —x the easy way

m Given a non-negative number in binary, e.g. 5, represented
with a fixed bit width, e.g. 4
= 0101

m We can find its negative by flipping each bit and adding 1
= 0101 Thisis 5
= 1010 This is the “ones complement of 5”, e.g. 5 with bits flipped

= 1011 This is the “twos complement of 5”7, e.g. 5 with the bits
flipped and 1 added

"= 0101 + 1011 = 1 0000 = 0000

"X ="x+1

m Because of the fixed width, the “two’s complement” of a
number can be used as its negative.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Why Does This Work?

m Consider any number and its (ones) complement:
" 0101
= 1010

m They are called complements because complementary bits

are set. As a result, if they are added, all bits are necessarily
set:

" 0101 +1010=1111

m Adding 1 to the sum of a number and its complement
necessarily results in a 0 due to overflow

= (0101 +1010)+1 = 1111+1 =10000 = 0000

m And if x+y =0, y must equal —x

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Why Does This Work? Cont.

m Ifx+y=0

= v must equal —x

m So if x + (Complement(x) +1) =0
= Complement(x) + 1 must equal —x

m Another way of looking at it:
= if x + (Complement(x) + 1) =0
= x + Complement(x) =-1
= x =-1- Complement(x)
= -x =1+ Complement(x)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Visualizing Two’s Complement

m Numbers “wrap around” with -1 at the very end

o900 00000

000 001 010 011 100 101 110 111
0 1 2 3 -4 -3 -2 -1

m A few things to note:
= All negative numbers start with a ”1”
= E.g. 100 is “-4”
" You can view the leading “1” as introducing a “-4”
= E.g. 101 =1*-4+0*2+1%1=-3
= But 010 =0*-4+1*2+0*1=2
® -4 is missing a positive partner

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Complement & Increment Examples

x=0
Decimal | Hex Binary
0 0| 00 00| 00000000 00000000
~0 -1 FF FF| 11111111 11111111
~0+1 0| 00 00| 00000000 00000000

X = Tmin (The most negative two’s complement number)

Decimal| Hex Binary
X -32768| 80 00| 10000000 00000000
~X 32767| 7F FF| 01111111 11111111
~x+1 [ -32768| 80 00| 10000000 00000000

Canonical counter example

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
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Encoding Integers: Dense Form

Unsigned Two’s Complement
w—1 ) w-2 .
BRUX) = Yx 2 BT(X) = —x,,-2""+>x -2
i=0 i=0
short int x = 15213; \
short int y = -15213;

Sign
m C does not mandate using two’s complement )
= But, most machines do, and we will assume so B |t

m Cshort (2 byteslong)

Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
Y -15213| C4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative, 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
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Numeric Ranges

m Unsigned Values
= UMin = 0

m Two’s Complement Values

= TMin = —2w-1
000...0 100...0
" UMax = 2 " TMax = 2%i-1
111...1 011..1
" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768( 80 00| 10000000 00000000
-1 -1| FF FF| 11111111 11111111
0 0 00 00| 00000000 0OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Quiz Timel!

Check out:

https://canvas.cmu.edu/courses/39547/quizzes/118137
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Today: Bits, Bytes, and Integers

m Integers

= Conversion, casting

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 = 3
0100 4 <_> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15
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Relation between Sighed & Unsighed

Two’s Complement Unsigned
T2U
X > — > UX
T2B ¥ B2U

Maintain Same Bit Pattern

w—1 0
UX 1+]+]+ e +[+ |+
X -|+]|+ °oe +|+]+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39
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Conversion Visualized

m 2’s Comp. = Unsigned
= QOrdering Inversion ® UMax

= Negative — Big Positive ® UMax-1

/_:. TMax +1 | ynsigned

TMax @ *®  TMax Range
2’s Complement 0o @ @ 0
Range _1 .J/ B
-2
TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40
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Signed vs. Unsigned in C

m Constants

= By default are considered to be signed integers

® Unsigned if have “U” as suffix
0U, 42949672590

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;

uy = ty; uy = fun(tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41



Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
® Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation  Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647U -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Summary
Casting Signed <= Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!
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Today: Bits, Bytes, and Integers

m Integers

= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44
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Sign Extension
m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

, —
" X = Xyyqeeer Xp—1» Xusm1 » Xy 5e+er XQ

k copies of MSB <€ w >

v v v v v

<€ k >€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45




Sign Extension: Simple Example

Positive number

-16 8 4 2 1

10 = 1 0 1 0
-3 liG 8 4 2 1
10 = 0 1 0 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Negative number

-16

2 1
1 O
2 1
1 0

46
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Truncation

m Task:

= Given k+w-bit signed or unsigned integer X

= Convert it to w-bit integer X’ with same value for “small enough” X
m Rule:

= Drop top k bits:

,—
" X'= Xy_1, Xy—2 »--» Xo

<€ k > € w >
X oo o )
oo o
X’ oo o
<€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47



Truncation: Simple Example

No sigh change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -0 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 100 = -6 —10 mod 16 = 22U mod 16 = 6U = 6
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

® For small (in magnitude) numbers yields expected behavior
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Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50
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Unsigned Addition

Operands: w bits U -
+ v o0 0
True Sum: w+1 bits y+ v —
Discard Carry: w bits UAddw(u ) V) see \
a
. . & o°°\(?23‘°°d
m Standard Addition Function 5T T 0000
" |gnores carry output ; é 8823
m Implements Modular Arithmetic a2 10150
s = UAdd,(u,v) = u+v mod?2¥ 2 2 gﬂé
7 7 0111
unsigned char 1110 1001 E9 223 S o
+ 1101 0101 + D5 + 213 A |10 ] 1010
B (11 | 1011
1 1011 1110 1BE 446 C [12 [ 1100
- D |13 | 1101
1011 1110 BE 190 E |14 | 1110
F |15 | 1111
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Two’s Complement Addition

Operands: w bits u 000
+ v o 00

True Sum: w+1 bits
u + V ()
Discard Carry: w bits TAdd,(u , v) oo

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE -66

1011 1110 BE -66
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Visualizing “True Sum” Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface
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Carnegie Mellon

Visualizing Unsighed Addition

m Wraps Around Overflow

" |f true sum = 2v¥ \
= At most once UAdd,(u, v)

True Sum
2W+1--
Overflow
2V T _\_ [
O -

Modular Sum
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Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values \

= 4-bit two’s comp.

TAdd,(u , v)
= Range from -8 to +7
m Wraps Around
= |f sum>2%1
= Becomes negative
= At most once
" |f sum < =21
= Becomes positive
= At most once

u 6 _ PosOver
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Carnegie Mellon

Multiplication
m Goal: Computing Product of w-bit numbers x, y

= Either signed or unsigned

m Result: Same as computing ideal, exact result x*y and keeping
w lower bits.

m Ildeal,exact results can be bigger than w bits
= Worst case is up to 2w bits
= Unsigned, because all bits are magnitude
= Signed, but only for Tmin*Tmin, because anything added to Tmin
reduces its magnitude and Tmax is less than Tmin.
m SO, maintaining exact results...
= would need to keep expanding word size with each product computed
" Impossible in hardware (at least without limits), as all resources are finite
® |n practice, is done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigned k
u o 0 0

Operands: w bits

* 2k Ol eee |0l1]0] eee |0OIlO

True Product: w+k bits 1 = 2F KK 0] eee [0]O
Discard k bits: w bits UMult,(u,2%) [ eee 0] eee JOJO
TMult, (u , 25)
m Examples
"u << 3 == u * 8
" (u<< 5 - (u<k 3) == u * 24

= Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u > kgves Lu / 2]
= Uses logical shift

k
U cee cee Binary Point
Operands:
l 2k Ol eee |0l1]0] eee |00
Division: 3/ 2k |0] eee ]0]O cee l/ cee
Result: | 44/ 2k | [0l eee o]0 coo
Division [ Computed Hex Binary

x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6( 00011101 10110110

x >> 4 950.8125 950 03 B6( 00000011 10110110

x >> 8 | 59.4257813 59 00 3B 00000000 00111011
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Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x >> kgives Lx / 2¢]

= Uses arithmetic shift
a Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a

bias). k
000 (X 1) 1 1
Operands: X Binary Point
l 2k O] eee |0|1]0| eee |0OI|O0 /
Division: x / 2k L4 s0e I/ ges
Result:  RoundDown(x / 2¥) eee eoe
Division Computed Hex Binary
X -15213 -15213 C4 93| 11000100 10010011
x > 1 -7606.5 -7607 E2 49| 11100010 01001001
x >> 4 -950.8125 -951 FC 49| 11111100 01001001
x >> 8 |-59.4257813 -60 FF C4( 11111111 11000100
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Carnegie Mellon

Round-toward-0 Divide

m Quotient of Negative Number by Power of 2
= Want [ x / 2] (Round Toward 0)
= Compute as | (x+(2k-1))/ 2~/
» InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k

Dividend: u cce | [0f e 10]0
_|_2k_1 eee |O0I011] eee |111

=

o

Y 1] eee [1]1] Binary Point

Divisor: | 2k 10| eee 10{1]0] e« ]0I0 /

|_u/2k—| 1] eee |11111 XY 41 eee |111

Biasing has no effect

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60



Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x L] eee coe
49k_1 [0 eee ToJO[a] eee Taa

1 eoo eoo
\ J
Y
Incremented by 1 Binary Point
Divisor: [ 2k 10| eee [0]1]0] e 0|0 /
[x/2¢ ] MO e T T
\ J
Y

Incremented by 1

Biasing adds 1 to final result
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Carnegie Mellon

Today: Bits, Bytes, and Integers

m Byte Ordering
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Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
® Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Linux
= Least significant byte has lowest address
m Becomes a concern when data is communicated

= Qver a network, via files, etc.

m Important notes
= Bits are not reversed, as the low order bit is the reference point.
= Doesn’t affect chars, or strings (arrays of chars), as chars are only one byte
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Carnegie Mellon

Byte Ordering Example

m Example

= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01
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Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly

= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b %ebx
8048366 81 c3 ab 12 00 00 dd $0x12ab,oebx

804836¢c: 83 bb 28 0G 00 00 00 cmpl $0x0,0x28 (%ebx)

m Deciphering Numbers

= Value: 0x12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

® Reverse: ab 12 00 00
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Today: Bits, Bytes, and Integers

m Representing information as bits CSAPP 2.1
m Bit-level manipulations
m Integers CSAPP 2.2

® Representation: unsigned and signed
® Conversion, casting
= Expanding, truncating

= Addition, negation, multiplication, shifting CSAPP 2.3
m Byte Ordering CSAPP 2.1.3

Questions?
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