Type checking

15-411/15-611 Compiler Design

Seth Copen Goldstein

October 5, 2021

Today

- Types & Type Systems
- Type Expressions
- Type Equivalence
- Type Checking

Types

- A **type** is a set of values and a set of operations that can be performed on those values.
 - E.g, **int** in c0 is in [-2³¹, 2³¹)
 - bool in C0 is in { false, true }

Types & Type systems

- A **type** is a set of values and a set of operations that can be performed on those values.
- A Type system is a set of rules which assign types to expressions, statements, and thus the entire program
 - what operations are valid for which types
 - Concise formalization of the checking rules
 - Specified as rules on the structure of expressions, ...
 - Language specific

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time
- Untyped language: no typechecking, e.g., assembly

Why Static Typing?

- Compiler can reason more effectively
- Allows more efficient code: don't have to check for unsupported operations
- Allows error detection by compiler
- Documents code!
- But:
 - requires at least some type declarations
 - type decls often can be inferred (ML, C+11)

Dynamic checks

- Array index out of bounds
- null in Java, null pointers in C
- Inter-module type checking in Java
- Sometimes can be eliminated through static analysis (but usually harder than type checking)

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- IOW, dynamic type of expression (at runtime) is the static type of the expression (derived at compiled time)
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is **strongly typed**
- strongly typed != statically typed

Strongly Typed Language

- C++ claimed to be "strongly typed", but

 Union types allow creating a value of one
 type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Limitations

- Can still have runtime errors:
 - division by zero
 - exceptions
- Static type analysis has to be conservative, thus some "correct" programs will be rejected.

Example: c0 type system

- Language type systems have primitive types (also: basic types, atomic types)
- C0: int, bool, char, string
- Also have type constructors that operate on types to produce other types
- CO: for any type T, T [], T* is a type.
- Extra types: void denotes absence of value

Type Expressions

- Type expressions are used in declarations and type casts to define or refer to a type
 - Primitive types, such as int and bool
 - Type constructors, such as pointer-to, array-of, records and classes, templates, and functions
 - Type names, such as typedefs in C and named types in Pascal, refer to type expressions

Type expressions: aliases

- Some languages allow type aliases (e.g., type definitions)
 - C: typedef int int_array[];

– Modula-3: type int_array = array of int;

 int_array is type expression denoting same type as int [] -- not a type constructor

Type Expressions: Arrays

- Different languages have various kinds of array types
- w/o bounds: array(T)

- C, Java: T[], Modula-3: array of T

- size: array(T, L) (may be indexed 0..L-1)
 C: T[L], Modula-3: array[L] of T
- upper & lower bounds: array(T,L,U)
 - Pascal, Modula-3: indexed L..U
- Multi-dimensional arrays (FORTRAN)

Records/Structures

- More complex type constructor
- Has form {id₁: T₁, id₂: T₂, ...} for some ids and types T_i
- Supports access operations on each field, with corresponding type
- C: struct { int a; float b; } corresponds to type {a: int, b: float}
- Class types (e.g. Java) extension of record types

Functions

- Some languages have first-class function types (C, ML, Modula-3, Pascal, not Java)
- Function value can be invoked with some argument expressions with types T_i, returns return type T_r.
- Type: $T_1 \times T_2 \times ... \times T_n \rightarrow T_r$
- C: int f(float x, float y)
 - f: float \times float \rightarrow int
- Function types useful for describing methods, as in Java, even though not values, but need extensions for exceptions.

Type Equivalence

- Name equivalence: Each distinct type name is a distinct type.
- Structural Equivalence: two types are identical if they have the same structure

Name Equivalence

- Each type name is a distinct type, even when the type expressions the names refer to are the same
- Types are identical only if names match
- Used by Pascal (inconsistently)

type link = ^node;	Using name equivalence:
<pre>var next : link;</pre>	$p \neq next$
<pre>last : link;</pre>	$\dot{\mathbf{p}} \neq \mathbf{last}$
p : ^node;	$\mathbf{p} = \mathbf{q} = \mathbf{r}$
q, r : ^node;	next = last

Structural Equivalence

- Two types are the same if they are structurally identical
- Used in CO, C, Java

```
typedef node* link;
link next;
link last;
node* p;
node* q;
```

Using structural equivalence:

$$p = q = next = last$$

Representing Types

int *f(char*,char*)

Tree forms

Directed Graph

15-411/611

Representing Types

Tree forms

Directed Graph

Cyclic Graph Representations

```
struct Node
```

```
int val;
struct Node *next;
};
```

val next int pointer Cyclic graph

Structural Equivalence (cont'd)

 Two structurally equivalent type expressions have the same pointer address when constructing graphs by sharing nodes

Structural Equivalence (cont'd)

 Two structurally equivalent type expressions have the same pointer address when constructing graphs by sharing nodes

Structural Equivalence (cont'd)

 Two structurally equivalent type expressions have the same pointer address when constructing graphs by sharing nodes

Constructing Type Graphs

• Construct over AST (or during parse)

type –) int	\$\$ = getIntType();
	bool	\$\$ = getBoolType();
	* type	\$\$ = makePtrType(\$2);
	type [num]	\$\$ = makeArrayType(\$1, \$3);
typedef -	<pre>typedef type id</pre>	install(\$3,\$2);

• Invariant:

Same structural type is same pointer.

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking ensures that operations are applied to the right number of arguments of the right types Right type may mean:
 - same type as was specified, or
 - may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed languages (eg LISP, Prolog, javascript) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different times with different types

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed
- May introduce extra overhead at runtime.
- Can make code hard to read
- Supposedly, easier to prototype code

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values

-Eg: array bounds

Static Type Checking

- Typically places restrictions on languages
 - -Garbage collection
 - -References instead of pointers
 - -All variables initialized when created
 - -Variable only used as one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
 - Fully static type inference first introduced by Robin Miller in ML
 - -Haskle, OCAML, SML all use type inference
 - Records are a problem for type inference

Format of Type Judgments

- A type judgement has the form $\Gamma = \frac{1}{\tau}$
- Γ is a typing environment
 - Supplies the types of variables and functions
 - Γ is a set of the form { $x : \sigma, \ldots$ }
 - For any x at most one σ such that (x : $\sigma \in \Gamma$)
- exp is a program expression
- τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")

Axioms - Constants

 $\Gamma \mid -n: int$ (assuming *n* is an integer constant)

 Γ |- true : bool Γ |- false : bool

- These rules are true in any typing environment
- Γ , *n* are meta-variables

Axioms – Variables

Notation: Let $\Gamma(x) = \tau$ if $x : \tau \in \Gamma$

Variable axiom:

$$\Gamma(\mathbf{x}) = \tau$$
$$\overline{\Gamma \mid -\mathbf{x} : \tau}$$

Simple Rules - Arithmetic

Primitive operators ($\oplus \in \{+, *, \&\&, ...\}$):

$$\frac{\Gamma \mid -e_1:\tau \quad \Gamma \mid -e_2:\tau}{\Gamma \mid -e_1 \oplus e_2:\tau}$$

 τ is a type variable, i.e., it can take any type but all instances of τ must be the same.

15-411/611

Simple Rules – Relational Ops

Relations ($\sim \in \{ <, >, ==, <=, >= \}$):

$$\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau$$
$$\Gamma \mid -e_1 \sim e_2 : \text{bool}$$

Do we know what τ is here?

15-411/611

What do we need to show first?

$\{x:int\} | - x + 2 == 3 : bool$

What to do on left side?

 $x : int |-x+2 : int {x:int} |-3 : int {x:int} |-x+2 == 3 : bool$

Almost Done

 $\frac{\{x:int\} | - x:int \quad \{x:int\} | - 2:int}{\{x:int\} | - x + 2:int \quad \{x:int\} | - 3:int}$ $\frac{\{x:int\} | - x + 2 = 3:bool}{\{x:int\} | - x + 2} = 3:bool}$

Complete Proof (type derivation)

 $\frac{\Gamma(x) = int}{\{x:int\} | - x:int} \quad \overline{\{x:int\} | - 2:int} \\ \frac{\{x:int\} | - x + 2:int}{\{x:int\} | - x + 2:int} \quad \overline{\{x:int\} | - 3:int} \\ \frac{\{x:int\} | - x + 2 == 3:bool}{\{x:int\} | - x + 2 == 3:bool}$

Simple Rules - Booleans

Connectives

$$\frac{\Gamma \mid -e_1 : \text{bool} \quad \Gamma \mid -e_2 : \text{bool}}{\Gamma \mid -e_1 \&\& e_2 : \text{bool}}$$

$$\frac{\Gamma | - e_1 : \text{bool} \quad \Gamma | - e_2 : \text{bool}}{\Gamma | - e_1 | | e_2 : \text{bool}}$$

Function Application

Application rule:

$$\Gamma \mid -e_1 : \tau_1 \to \tau_2 \quad \Gamma \mid -e_2 : \tau_1$$
$$\Gamma \mid -e_1(e_2) : \tau_2$$

• If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument e_2 of type τ_1 , the resulting expression $e_1(e_2)$ has type τ_2

What about statements?

- Statements don't have types.
- But, they result in a function returning a value with a type.
- If a function returns type τ , then we say s is well typed if,

 $\Gamma \mid$ - s:[τ]

read as: "s is well typed if it is consistent with the function returning type τ "

- Our language:
 - e := n | x | e1+e2 | e1 && e2

- while(e,s)
- | return(e)

$$decl(x,\tau,s)$$

nop

Type checking return

- e := n | x | e1+e2 | e1 && e2
- s := x←e
 - | if(e,s1,s2)
 - | while(e,s)
 - | return(e)
 - seq(s1,s2)
 - $decl(x,\tau,s)$

nop

• For a function returning τ

$$\Gamma \mid -e:\tau$$

$$\Gamma \mid - \mathbf{return}(e): [\tau]$$

Type checking rules for stmts

- e := n | x | e1+e2 | e1 && e2
- s := x←e
 - | if(e,s1,s2)
 - while(e,s)
 - | return(e)
 - seq(s1,s2)
 - decl(x, τ, s)
 - nop

Type checking rules for stmts

- e := n | x | e1+e2 | e1 && e2
- s := x←e
 - | if(e,s1,s2)
 - while(e,s)
 - | return(e)
 - seq(s1,s2)
 - decl(x, τ, s)
 - nop

What about statements?

 $\begin{array}{ll} \displaystyle \frac{\Gamma(x)=\tau' & \Gamma\vdash e:\tau'}{\Gamma\vdash \mathsf{assign}(x,e):[\tau]} & \displaystyle \frac{\Gamma\vdash e:\mathsf{bool} & \Gamma\vdash s_1:[\tau] & \Gamma\vdash s_2:[\tau]}{\Gamma\vdash \mathsf{if}(e,s_1,s_2):[\tau]} \\ \\ \displaystyle \frac{\displaystyle \frac{\Gamma\vdash e:\mathsf{bool} & \Gamma\vdash s:[\tau]}{\Gamma\vdash \mathsf{while}(e,s):[\tau]} & \displaystyle \frac{\displaystyle \Gamma\vdash e:\tau}{\displaystyle \Gamma\vdash \mathsf{return}(e):[\tau]} \\ \\ \displaystyle \frac{\displaystyle \frac{\displaystyle \Gamma\vdash s_1:[\tau] & \Gamma\vdash s_2:[\tau]}{\displaystyle \Gamma\vdash \mathsf{seq}(s_1,s_2):[\tau]} \\ \\ \displaystyle \frac{\displaystyle \frac{\displaystyle \Gamma, x:\tau'\vdash s:[\tau]}{\displaystyle \Gamma\vdash \mathsf{decl}(x,\tau',s):[\tau]} \end{array}$

Effect on Γ

Shadowing?

Or, as in L2 handout

$\frac{x:\tau' \not\in \Gamma \text{ for any } \tau' \quad \Gamma, \, x:\tau \vdash s \text{ valid}}{\Gamma \vdash \mathsf{declare}(x,\tau,s) \text{ valid}}$

Function Rule

• Rules describe types, but also how the environment Γ may change

$$\Gamma, \{f:\tau_1 \rightarrow \tau_2, x:\tau_1\} \mid -s[\tau_2]$$
$$\Gamma \mid -\tau_2 f(\tau_1 x) s$$

Example

int fact(int x) { if (x==0) return 1; else return x * fact(x - 1); }

Implementing rules

- Start from goal judgments for each function $\Gamma \mid -\tau id (..., \tau_i a_{i,}...) \{s\}$
- Work backward applying inference rules to sub-trees of abstract syntax trees
- Exactly the same kind of recursive traversal as lecture 7

Other Issues

- What to do with types after type checking?
 - decorate AST?
 - Typed IR?
 - Typed triples?
- What to do on errors?
 - uninitialized variable?
 - undeclared variable?
 - wrong return type?
 - wrong operator type?