
15-411/15-611 Compiler Design

Seth Copen Goldstein

Type checking

October 5, 2021

Compiler Phases

Lex Parse Semantics translation

instruction
selection

register
allocation

code
generatio

n

optimizatio
n

Abstract syntax tree

AST+symbol tables

Intermediate Representation (tree)

Code Triples

source
code

15-411/611 © 2019 -21 Goldstein

Today
• Types & Type Systems
• Type Expressions
• Type Equivalence
• Type Checking

15-411/611 © 2019 -21 Goldstein

Types
• A type is a set of values and a set of operations

that can be performed on those values.
– E.g, int in c0 is in [-231,231)
– bool in C0 is in { false, true }

15-411/611 © 2019 -21 Goldstein

Types & Type systems
• A type is a set of values and a set of operations

that can be performed on those values.
• A Type system is a set of rules which assign types

to expressions, statements, and thus the entire
program
– what operations are valid for which types
– Concise formalization of the checking rules
– Specified as rules on the structure of expressions, …
– Language specific

15-411/611 © 2019 -21 Goldstein

Static vs Dynamic Types
• Static type: type assigned to an expression

at compile time

• Dynamic type: type assigned to a storage
location at run time

• Statically typed language: static type
assigned to every expression at compile
time

• Dynamically typed language: type of an
expression determined at run time

• Untyped language: no typechecking, e.g.,
assembly

15-411/611 © 2019 -21 Goldstein

Why Static Typing?
• Compiler can reason more effectively
• Allows more efficient code: don’t have to

check for unsupported operations
• Allows error detection by compiler
• Documents code!
• But:

– requires at least some type declarations
– type decls often can be inferred (ML, C+11)

15-411/611 © 2019 -21 Goldstein

Dynamic checks
• Array index out of bounds
• null in Java, null pointers in C
• Inter-module type checking in Java
• Sometimes can be eliminated through static

analysis (but usually harder than type
checking)

15-411/611 © 2019 -21 Goldstein

Sound Type System
• If an expression is assigned type t, and it

evaluates to a value v, then v is in the set of
values defined by t

• IOW, dynamic type of expression (at
runtime) is the static type of the expression
(derived at compiled time)

• SML, OCAML, Scheme and Ada have sound
type systems

• Most implementations of C and C++ do not

15-411/611 © 2019 -21 Goldstein

Strongly Typed Language

• When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

• strongly typed != statically typed

15-411/611 © 2019 -21 Goldstein

Strongly Typed Language
• C++ claimed to be “strongly typed”, but

– Union types allow creating a value of one
type and using it at another

– Type coercions may cause unexpected
(undesirable) effects

– No array bounds check (in fact, no
runtime checks at all)

• SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

15-411/611 © 2019 -21 Goldstein

Limitations
• Can still have runtime errors:

– division by zero
– exceptions

• Static type analysis has to be conservative,
thus some “correct” programs will be
rejected.

15-411/611 © 2019 -21 Goldstein

Example: c0 type system
• Language type systems have primitive types

(also: basic types, atomic types)
• C0: int, bool, char, string
• Also have type constructors that operate on

types to produce other types
• C0: for any type T, T [], T* is a type.
• Extra types: void denotes absence of value

15-411/611 © 2019 -21 Goldstein

Type Expressions
• Type expressions are used in declarations

and type casts to define or refer to a type
– Primitive types, such as int and bool
– Type constructors, such as pointer-to, array-of,

records and classes, templates, and functions
– Type names, such as typedefs in C and named

types in Pascal, refer to type expressions

15-411/611 © 2019 -21 Goldstein

Type expressions: aliases
• Some languages allow type aliases (e.g.,

type definitions)
– C: typedef int int_array[];
– Modula-3: type int_array = array of int;

• int_array is type expression denoting same
type as int [] -- not a type constructor

15-411/611 © 2019 -21 Goldstein

Type Expressions: Arrays
• Different languages have various kinds of

array types
• w/o bounds: array(T)

– C, Java: T[], Modula-3: array of T
• size: array(T, L) (may be indexed 0..L-1)

– C: T[L], Modula-3: array[L] of T
• upper & lower bounds: array(T,L,U)

– Pascal, Modula-3: indexed L..U

• Multi-dimensional arrays (FORTRAN)

15-411/611 © 2019 -21 Goldstein

Records/Structures

• More complex type constructor

• Has form {id1: T1, id2: T2, …} for some ids and

types Ti

• Supports access operations on each field,
with corresponding type

• C: struct { int a; float b; } corresponds to
type {a: int, b: float}

• Class types (e.g. Java) extension of record
types

15-411/611 © 2019 -21 Goldstein

Functions

• Some languages have first-class function types (C,
ML, Modula-3, Pascal, not Java)

• Function value can be invoked with some
argument expressions with types T i, returns
return type Tr.

• Type: T1T2  …  TnTr

• C: int f(float x, float y)
– f: float  float  int

• Function types useful for describing methods, as
in Java, even though not values, but need
extensions for exceptions.

15-411/611 © 2019 -21 Goldstein

Type Equivalence
• Name equivalence: Each distinct type name

is a distinct type.
• Structural Equivalence: two types are

identical if they have the same structure

15-411/611 © 2019 -21 Goldstein

Name Equivalence
• Each type name is a distinct type, even

when the type expressions the names refer
to are the same

• Types are identical only if names match
• Used by Pascal (inconsistently)

type link = ^node;
var next : link;
 last : link;
 p : ^node;
 q, r : ^node;

Using name equivalence:
p ≠ next
p ≠ last
p = q = r
next = last

15-411/611 © 2019 -21 Goldstein

Structural Equivalence
• Two types are the same if they are

structurally identical
• Used in C0, C, Java

typedef node* link;
link next;
link last;
node* p;
node* q;
 Using structural equivalence:

p = q = next = last

15-411/611 © 2019 -21 Goldstein

Representing Types

int *f(char*,char*)

fun

args pointer

char

intpointer

char

pointer

Tree forms

fun

args pointer

char

intpointer

Directed Graph

15-411/611 © 2019 -21 Goldstein

Representing Types

int *f(char*,char*)

fun

args pointer

char

intpointer

char

pointer

Tree forms

fun

args pointer

char

intpointer

15-411/611 © 2019 -21 Goldstein

Directed Graph

Cyclic Graph Representations

struct Node
{
 int val;
 struct Node *next;
};

struct

val

pointerint

Cyclic graph

next

15-411/611 © 2019 -21 Goldstein

Structural Equivalence (cont’d)
• Two structurally equivalent type

expressions have the same pointer address
when constructing graphs by sharing nodes

struct

val

int

struct Node
{
 int val;
 struct Node *next;
};

next

pointer

15-411/611 © 2019 -21 Goldstein

Structural Equivalence (cont’d)
• Two structurally equivalent type

expressions have the same pointer address
when constructing graphs by sharing nodes

struct

val

int

struct Node
{
 int val;
 struct Node *next;
};

next

pointer
struct Node s, *p;

s

p

15-411/611 © 2019 -21 Goldstein

Structural Equivalence (cont’d)
• Two structurally equivalent type

expressions have the same pointer address
when constructing graphs by sharing nodes

struct

val

int

struct Node
{
 int val;
 struct Node *next;
};

next

pointer
struct Node s, *p;

s

p

*p

&s… p = &s; // OK
… *p = s; // OK

15-411/611 © 2019 -21 Goldstein

Constructing Type Graphs
• Construct over AST (or during parse)

• Invariant:
Same structural type is same pointer.

type  int
| bool
| * type
| type [num]

typedef  typedef type id

$$ = getIntType();
$$ = getBoolType();
$$ = makePtrType($2);
$$ = makeArrayType($1, $3);
install($3,$2);

15-411/611 © 2019 -21 Goldstein

Type Checking
• When is op(arg1,…,argn) allowed?
• Type checking ensures that operations are

applied to the right number of arguments
of the right types
Right type may mean:
– same type as was specified, or
– may mean that there is a predefined implicit

coercion that will be applied

• Used to resolve overloaded operations

15-411/611 © 2019 -21 Goldstein

Type Checking
• Type checking may be done statically

at compile time or dynamically at run
time

• Dynamically typed languages (eg LISP,
Prolog, javascript) do only dynamic
type checking

• Statically typed languages can do most
type checking statically

15-411/611 © 2019 -21 Goldstein

Dynamic Type Checking

• Performed at run-time before each
operation is applied

• Types of variables and operations left
unspecified until run-time
– Same variable may be used at different

times with different types

15-411/611 © 2019 -21 Goldstein

Dynamic Type Checking

• Data object must contain type information
• Errors aren’t detected until violating

application is executed
• May introduce extra overhead at runtime.
• Can make code hard to read
• Supposedly, easier to prototype code

15-411/611 © 2019 -21 Goldstein

Static Type Checking

• Performed after parsing, before code
generation

• Type of every variable and signature of
every operator must be known at
compile time

15-411/611 © 2019 -21 Goldstein

Static Type Checking
• Can eliminate need to store type

information in data object if no
dynamic type checking is needed

• Catches many programming errors at
earliest point

• Can’t check types that depend on
dynamically computed values
– Eg: array bounds

15-411/611 © 2019 -21 Goldstein

Static Type Checking
• Typically places restrictions on

languages
– Garbage collection
– References instead of pointers
– All variables initialized when created
– Variable only used as one type

• Union types allow for work-arounds, but
effectively introduce dynamic type checks

15-411/611 © 2019 -21 Goldstein

Type Inference

• Type inference: A program analysis to
assign a type to an expression from
the program context of the expression
– Fully static type inference first introduced

by Robin Miller in ML
– Haskle, OCAML, SML all use type

inference
• Records are a problem for type

inference

15-411/611 © 2019 -21 Goldstein

Format of Type Judgments

• A type judgement has the form

 |- exp : 
•  is a typing environment

– Supplies the types of variables and functions
–  is a set of the form { x : , . . . }
– For any x at most one  such that (x :   )

• exp is a program expression
•  is a type to be assigned to exp
• |- pronounced “turnstyle”, or “entails” (or

“satisfies” or, informally, “shows”)

15-411/611 © 2019 -21 Goldstein

Axioms - Constants

 |- n : int (assuming n is an integer constant)

 |- true : bool  |- false : bool

• These rules are true in any typing environment
• , n are meta-variables

15-411/611 © 2019 -21 Goldstein

Axioms – Variables

Notation: Let (x) =  if x :   

Variable axiom:

(x) = 

  |- x : 

15-411/611 © 2019 -21 Goldstein

Simple Rules - Arithmetic

Primitive operators (  { +,*, &&, …}):

  |- e1:  |- e2:

 |- e1  e2 : 

 is a type variable, i.e., it can take any type but
all instances of  must be the same.

15-411/611 © 2019 -21 Goldstein

Simple Rules – Relational Ops

Relations (˜  { < , > , ==, <=, >= }):

 |- e1 :   |- e2 : 

  |- e1 ˜ e2 :bool

Do we know what  is here?

15-411/611 © 2019 -21 Goldstein

Example: {x:int} |- x + 2 == 3 :bool

 {x:int} |- x + 2 == 3 : bool

What do we need to show first?

15-411/611 © 2019 -21 Goldstein

Example: {x:int} |- x + 2 == 3 :bool

 {x : int} |- x + 2 : int {x:int} |- 3 :int

 {x:int} |- x + 2 == 3 : bool

What to do on left side?

15-411/611 © 2019 -21 Goldstein

Example: {x:int} |- x + 2 == 3 :bool

 {x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

 {x:int} |- x + 2 == 3 : bool

Almost Done

15-411/611 © 2019 -21 Goldstein

Example: {x:int} |- x + 2 == 3 :bool

 (x) = int

 {x:int} |- x:int {x:int} |- 2:int

 {x : int} |- x + 2 : int {x:int} |- 3 :int

 {x:int} |- x + 2 == 3 : bool

Complete Proof (type derivation)

15-411/611 © 2019 -21 Goldstein

Simple Rules - Booleans

Connectives

  |- e1 : bool  |- e2 : bool

  |- e1 && e2 : bool

  |- e1 : bool  |- e2 : bool

  |- e1 || e2 : bool

15-411/611 © 2019 -21 Goldstein

Function Application

• Application rule:

  |- e1 : 1  2  |- e2 : 1

  |- e1(e2) : 2

• If you have a function expression e1 of type

 1  2 applied to an argument e2 of type

1, the resulting expression e1(e2) has type

2

15-411/611 © 2019 -21 Goldstein

What about statements?

• Statements don’t have types.
• But, they result in a function returning a

value with a type.
• If a function returns type , then we say s

is well typed if,

  |- s:[]

read as: “s is well typed if it is consistent
with the function returning type ”

15-411/611 © 2019 -21 Goldstein

Language
• Our language:

e := n | x | e1+e2 | e1 && e2
s := xe

| if(e,s1,s2)
| while(e,s)
| return(e)
| seq(s1,s2)
| decl(x,,s)
| nop

15-411/611 © 2019-21 Goldstein 52

e := n | x | e1+e2 | e1 && e2

s := x e

| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking return

• For a function returning 

  |- e : 

  |- return(e) : []

15-411/611 © 2019 -21 Goldstein

e := n | x | e1+e2 | e1 && e2

s := x e
| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking rules for stmts

15-411/611 © 2019 -21 Goldstein

e := n | x | e1+e2 | e1 && e2

s := x e
| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking rules for stmts

15-411/611 © 2019 -21 Goldstein

What about statements?

15-411/611 © 2019 -21 Goldstein

Effect on 

15-411/611 © 2019 -21 Goldstein

Shadowing?

xdom()

15-411/611 © 2019 -21 Goldstein

Or, as in L2 handout

15-411/611 © 2019 -21 Goldstein

Function Rule

• Rules describe types, but also how the
environment  may change

, {f:12 , x : 1 } |- s [2]

  |- 2 f(1 x) s

15-411/611 © 2019 -21 Goldstein

Example

int fact(int x) {

 if (x==0) return 1; else return x * fact(x - 1);

}

15-411/611 © 2019 -21 Goldstein

Implementing rules
• Start from goal judgments for each function

  |–  id (..., i ai, ...) { s }

• Work backward applying inference rules to
sub-trees of abstract syntax trees

• Exactly the same kind of recursive traversal
as lecture 7

15-411/611 © 2019 -21 Goldstein

Other Issues
• What to do with types after type checking?

– decorate AST?
– Typed IR?
– Typed triples?

• What to do on errors?
– uninitialized variable?
– undeclared variable?
– wrong return type?
– wrong operator type?

15-411/611 © 2019 -21 Goldstein

