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Today
• Types & Type Systems
• Type Expressions
• Type Equivalence
• Type Checking
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Types
• A type is a set of values and a set of operations 

that can be performed on those values.
– E.g, int in c0 is in [-231,231)
–         bool in C0 is in { false, true }
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Types & Type systems
• A type is a set of values and a set of operations 

that can be performed on those values.
• A Type system is a set of rules which assign types 

to expressions, statements, and thus the entire 
program
– what operations are valid for which types
– Concise formalization of the checking rules
– Specified as rules on the structure of expressions, …
– Language specific
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Static vs Dynamic Types
• Static type: type assigned to an expression 

at compile time

• Dynamic type: type assigned to a storage 
location at run time

• Statically typed language: static type 
assigned to every expression at compile 
time

• Dynamically typed language: type of an 
expression determined at run time

• Untyped language: no typechecking, e.g., 
assembly
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Why Static Typing?
• Compiler can reason more effectively
• Allows more efficient code: don’t have to 

check for unsupported operations
• Allows error detection by compiler
• Documents code!
• But:

– requires at least some type declarations
– type decls often can be inferred (ML, C+11)
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Dynamic checks
• Array index out of bounds
• null in Java, null pointers in C
• Inter-module type checking in Java
• Sometimes can be eliminated through static 

analysis (but usually harder than type 
checking)
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Sound Type System
• If an expression is assigned type t, and it 

evaluates to a value v, then v is in the set of 
values defined by t

• IOW, dynamic type of expression (at 
runtime) is the static type of the expression 
(derived at compiled time)

• SML, OCAML, Scheme and Ada have sound 
type systems

• Most implementations of C and C++ do not 
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Strongly Typed Language

• When no application of an operator to 
arguments can lead to a run-time type 
error, language is strongly typed

• strongly typed != statically typed
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Strongly Typed Language
• C++ claimed to be “strongly typed”, but 

– Union types allow creating a value of one 
type and using it at another

– Type coercions  may cause unexpected 
(undesirable) effects

– No array bounds check (in fact, no 
runtime checks at all)

• SML, OCAML “strongly typed” but still must 
do dynamic array bounds checks, runtime 
type case analysis, and other checks
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Limitations
• Can still have runtime errors:

– division by zero
– exceptions

• Static type analysis has to be conservative, 
thus some “correct” programs will be 
rejected.
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Example: c0 type system
• Language type systems have primitive types 

(also: basic types, atomic types)
• C0: int, bool, char, string
• Also have type constructors that operate on 

types to produce other types
• C0: for any type T, T [ ], T* is a type.
• Extra types: void denotes absence of value

15-411/611 © 2019 -21 Goldstein



Type Expressions
• Type expressions are used in declarations 

and type casts to define or refer to a type
– Primitive types, such as int and bool
– Type constructors, such as pointer-to, array-of, 

records and classes, templates, and functions
– Type names, such as typedefs in C and named 

types in Pascal, refer to type expressions
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Type expressions: aliases
• Some languages allow type aliases (e.g., 

type definitions)
– C:  typedef int int_array[ ];
– Modula-3: type int_array = array of int;

• int_array is type expression denoting same 
type as int [ ] -- not a type constructor
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Type Expressions: Arrays
• Different languages have various kinds of 

array types
• w/o bounds: array(T)

– C, Java: T[ ], Modula-3: array of T
• size: array(T, L) (may be indexed 0..L-1)

– C: T[L], Modula-3: array[L] of T
• upper & lower bounds: array(T,L,U)

– Pascal, Modula-3: indexed L..U

• Multi-dimensional arrays (FORTRAN)

15-411/611 © 2019 -21 Goldstein



Records/Structures

• More complex type constructor

• Has form {id1: T1, id2: T2, …} for some ids and 

types Ti

• Supports access operations on each field, 
with corresponding type

• C: struct { int a; float b; } corresponds to 
type {a: int, b: float}

• Class types (e.g. Java) extension of record 
types
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Functions

• Some languages have first-class function types (C, 
ML, Modula-3, Pascal, not Java)

• Function value can be invoked with some 
argument expressions with types T i, returns 
return type Tr.

• Type: T1T2  …  TnTr

• C: int f(float x, float y)
– f: float  float  int

• Function types useful for describing methods, as 
in Java, even though not values, but need 
extensions for exceptions.
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Type Equivalence
• Name equivalence: Each distinct type name 

is a distinct type.  
• Structural Equivalence: two types are 

identical if they have the same structure
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Name Equivalence
• Each type name is a distinct type, even 

when the type expressions the names refer 
to are the same

• Types are identical only if names match
• Used by Pascal (inconsistently)

type link = ^node;
var next : link;
    last : link;
       p : ^node;
    q, r : ^node;

Using name equivalence:
p ≠ next
p ≠ last
p = q = r
next = last
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Structural Equivalence
• Two types are the same if they are 

structurally identical
• Used in C0, C, Java

typedef node* link;
link next;
link last;
node* p;
node* q;
 Using structural equivalence:

p = q = next = last
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Representing Types

int *f(char*,char*)

fun

args pointer

char

intpointer

char

pointer

Tree forms

fun

args pointer

char

intpointer

Directed Graph
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Representing Types

int *f(char*,char*)

fun

args pointer

char

intpointer

char

pointer

Tree forms

fun

args pointer

char

intpointer
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Cyclic Graph Representations

struct Node
{ 
  int val;
  struct Node *next;
};

struct

val

pointerint

Cyclic graph

next
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Structural Equivalence (cont’d)
• Two structurally equivalent type 

expressions have the same pointer address 
when constructing graphs by sharing nodes

struct

val

int

struct Node
{ 
  int val;
  struct Node *next;
};

next

pointer
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Structural Equivalence (cont’d)
• Two structurally equivalent type 

expressions have the same pointer address 
when constructing graphs by sharing nodes

struct

val

int

struct Node
{ 
  int val;
  struct Node *next;
};

next

pointer
struct Node s, *p;

s

p
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Structural Equivalence (cont’d)
• Two structurally equivalent type 

expressions have the same pointer address 
when constructing graphs by sharing nodes

struct

val

int

struct Node
{ 
  int val;
  struct Node *next;
};

next

pointer
struct Node s, *p;

s

p

*p

&s… p = &s; // OK
… *p = s; // OK
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Constructing Type Graphs
• Construct over AST (or during parse)

• Invariant: 
Same structural type is same pointer.

type  int
| bool
| * type
| type [ num ]

typedef  typedef type id

$$ = getIntType();
$$ = getBoolType();
$$ = makePtrType($2);
$$ = makeArrayType($1, $3);
install($3,$2);
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Type Checking
• When is op(arg1,…,argn) allowed?
• Type checking ensures that operations are 

applied to the right number of arguments 
of the right types
Right type may mean:
– same type as was specified, or 
– may mean that there is a predefined implicit 

coercion that will be applied

• Used to resolve overloaded operations
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Type Checking
• Type checking may be done statically 

at compile time or dynamically at run 
time

• Dynamically typed languages (eg LISP, 
Prolog, javascript) do only dynamic 
type checking

• Statically typed languages can do most 
type checking statically
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Dynamic Type Checking

• Performed at run-time before each 
operation is applied

• Types of variables and operations left 
unspecified until run-time
–  Same variable may be used at different 

times with different types
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Dynamic Type Checking

• Data object must contain type information
• Errors aren’t detected until violating 

application is executed
• May introduce extra overhead at runtime.
• Can make code hard to read
• Supposedly, easier to prototype code
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Static Type Checking

• Performed after parsing, before code 
generation

• Type of every variable and signature of 
every operator must be known at 
compile time
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Static Type Checking
• Can eliminate need to store type 

information in data object if no 
dynamic type checking is needed

• Catches many programming errors at 
earliest point

• Can’t check types that depend on 
dynamically computed values
– Eg: array bounds
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Static Type Checking
• Typically places restrictions on 

languages
– Garbage collection
– References instead of pointers
– All variables initialized when created
– Variable only used as one type

• Union types allow for work-arounds, but 
effectively introduce dynamic type checks
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Type Inference

• Type inference: A program analysis to 
assign a type to an expression from 
the program context of the expression
– Fully static type inference first introduced 

by Robin Miller in ML
– Haskle, OCAML, SML all use type 

inference
• Records are a problem for type 

inference
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Format of Type Judgments

• A type judgement  has the form

 |- exp : 
•   is a typing environment

– Supplies the types of variables and functions
–   is a set of the form { x : , . . . }
– For any x at most one  such that (x :   ) 

• exp  is a program expression
•   is a type to be assigned to exp
• |- pronounced “turnstyle”, or “entails” (or 

“satisfies” or, informally, “shows”)
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Axioms - Constants

 |- n : int   (assuming n is an integer constant)

 |- true : bool            |- false : bool

•  These rules are true in any typing environment
•  , n  are meta-variables
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Axioms – Variables

Notation: Let (x) =   if x :    

Variable axiom:

(x) = 

                  |- x : 
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Simple Rules - Arithmetic

Primitive operators (   { +,*, &&, …}):

  |- e1:      |- e2: 

 |- e1  e2 : 

 is a type variable, i.e., it can take any type but 
all instances of  must be the same. 
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Simple Rules – Relational Ops

Relations ( ˜  { < , > , ==, <=, >= }):

 |- e1 :       |- e2 : 

  |- e1 ˜ e2 :bool

Do we know what  is here? 
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Example:  {x:int} |- x + 2 == 3 :bool

       

                

                         {x:int} |- x + 2 == 3 : bool

What do we need to show first?
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Example:  {x:int} |- x + 2 == 3 :bool

       

               {x : int} |- x + 2 : int               {x:int} |- 3 :int 

                         {x:int} |- x + 2 == 3 : bool

What to do on left side?
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Example:  {x:int} |- x + 2 == 3 :bool

   {x:int} |- x:int      {x:int} |- 2:int                          

               {x : int} |- x + 2 : int               {x:int} |- 3 :int 

                         {x:int} |- x + 2 == 3 : bool

Almost Done
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Example:  {x:int} |- x + 2 == 3 :bool

        (x) = int

   {x:int} |- x:int      {x:int} |- 2:int                          

               {x : int} |- x + 2 : int               {x:int} |- 3 :int 

                         {x:int} |- x + 2 == 3 : bool

Complete Proof  (type derivation)
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Simple Rules - Booleans

Connectives 

  |- e1 : bool      |- e2 : bool

  |- e1 && e2 : bool

  |- e1 : bool      |- e2 : bool

  |- e1 || e2 : bool
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Function Application

• Application rule:

  |- e1 : 1  2    |- e2  : 1

  |- e1(e2) : 2

• If you have a function expression e1 of type 

 1  2 applied to an argument e2 of type 

1, the resulting expression e1(e2) has type 

2 
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What about statements?

• Statements don’t have types.
• But, they result in a function returning a 

value with a type.
• If a function returns type , then we say s 

is well typed if,

  |- s:[]

read as: “s is well typed if it is consistent 
with the function returning type ”
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Language
• Our language:

e := n | x | e1+e2 | e1 && e2
s := xe 

| if(e,s1,s2)
| while(e,s)
| return(e)
| seq(s1,s2)
| decl(x,,s)
| nop
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e := n | x | e1+e2 | e1 && e2

s := x e

| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking return

• For a function returning 

  |- e : 

  |- return(e) : []
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e := n | x | e1+e2 | e1 && e2

s := x e
| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking rules for stmts
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e := n | x | e1+e2 | e1 && e2

s := x e
| if(e,s1,s2)

| while(e,s)

| return(e)

| seq(s1,s2)

| decl(x,,s)

| nop

Type checking rules for stmts
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What about statements?
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Effect on 
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Shadowing?

xdom()
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Or, as in L2 handout
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Function Rule

• Rules describe types, but also how the 
environment  may change

, {f:12 ,  x : 1 } |- s [2]

  |- 2 f(1 x) s
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Example

int fact(int x)  {

 if (x==0)  return 1; else return x * fact(x - 1); 

}
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Implementing rules
• Start from goal judgments for each function

  |–  id ( ..., i  ai, ... ) { s }

• Work backward applying inference rules to 
sub-trees of abstract syntax trees

• Exactly the same kind of recursive traversal 
as lecture 7
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Other Issues
• What to do with types after type checking?

– decorate AST?
– Typed IR?
– Typed triples?

• What to do on errors?
– uninitialized variable?
– undeclared variable?
– wrong return type?
– wrong operator type?
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