Type checking

15-411/15-611 Compiler Design

Seth Copen Goldstein

October 5, 2021

piler Phase

Nntax tree

fd

15-411/611

<I <I <I <I

Today

nes & Type Systems
ne Expressions
ne Equivalence

ne Checking

Types

* Atype is a set of values and a set of operations
that can be performed on those values.
—E.g, int incOis in [-2°%1,2%)
— boolinCOisin{ false, true}

Types & Type systems

* Atype is a set of values and a set of operations
that can be performed on those values.

* A Type system is a set of rules which assign types
to expressions, statements, and thus the entire
program
— what operations are valid for which types
— Concise formalization of the checking rules
— Specified as rules on the structure of expressions, ...
— Language specific

Static vs Dynamic Types

Static type: type assigned to an expression
at compile time

Dynamic type: type assigned to a storage
location at run time

Statically typed language: static type
assigned to every expression at compile
time

Dynamically typed language: type of an
expression determined at run time

Untyped language: no typechecking, e.g.,
assembly

Why Static Typing?

Compiler can reason more effectively

Allows more efficient code: don’t have to
check for unsupported operations

Allows error detection by compiler
Documents code!

But:

— requires at least some type declarations
— type decls often can be inferred (ML, C+11)

Dynamic checks

Array index out of bounds
null in Java, null pointers in C
Inter-module type checking in Java

Sometimes can be eliminated through static
analysis (but usually harder than type
checking)

Sound Type System

If an expression is assigned type t, and it
evaluates to a value v, then v is in the set of
values defined by t

IOW, dynamic type of expression (at
runtime) is the static type of the expression
(derived at compiled time)

SML, OCAML, Scheme and Ada have sound
type systems

Most implementations of C and C++ do not

Strongly Typed Language

* When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

* strongly typed != statically typed

Strongly Typed Language

* C++ claimed to be “strongly typed”, but
—Union types allow creating a value of one

type and using it at another

—Type coercions may cause unexpected

(undesirable) effects

—No array bounds check (in fact, no

runtime checks at all)

* SML, OCAML “strongly typed”
do dynamic array bounds chec
type case analysis, and other c

out still must
Ks, runtime

necks

Limitations

* Can still have runtime errors:
— division by zero
— exceptions
* Static type analysis has to be conservative,

thus some “correct” programs will be
rejected.

Example: c(type system

Language type systems have primitive types
(also: basic types, atomic types)

CO: int, bool, char, string

Also have type constructors that operate on
types to produce other types

CO:foranytype T, T[], T" is a type.
Extra types: void denotes absence of value

Type Expressions

* Type expressions are used in declarations
and type casts to define or refer to a type
— Primitive types, such as int and bool

— Type constructors, such as pointer-to, array-of,
records and classes, templates, and functions

— Type names, such as typedefs in C and named
types in Pascal, refer to type expressions

15-411/611 © 2019 -21 Goldstein

Type expressions: aliases

* Some languages allow type aliases (e.g.,
type definitions)
— C: typedef int int_array] |;
— Modula-3: type int_array = array of int;

* Int_array is type expression denoting same
type as int [] -- not a type constructor

Type Expressions: Arrays

Different languages have various kinds of
array types

w/o bounds: array(T)

—C, Java: T[], Modula-3: array of T

size: array(T, L) (may be indexed 0..L-1)
— C: T[L], Modula-3: array[L] of T

upper & lower bounds: array(T,L,U)

— Pascal, Modula-3: indexed L..U

Multi-dimensional arrays (FORTRAN)

Records/Structures

More complex type constructor

Has form {id: T, id: T, ...} for some ids and
types T.

Supports access operations on each field,
with corresponding type

C: struct { int a; float b; } corresponds to
type {a: int, b: float}

Class types (e.g. Java) extension of record
types

15-411/611

Functions

Some languages have first-class function types (C,
ML, Modula-3, Pascal, not Java)

Function value can be invoked with some
argument expressions with types T, returns
return type T.

Type: T, XT, X ... X T —T
C: int f(float x, float y)
— f: float X float — int

Function types useful for describing methods, as
in Java, even though not values, but need
extensions for exceptions.

Type Equivalence

* Name equivalence: Each distinct type name
Is a distinct type.

* Structural Equivalence: two types are
identical if they have the same structure

Name Equivalence

* Each type name is a distinct type, even
when the type expressions the names refer

to are the same
* Types are identical only if names match

* Used by Pascal (inconsistently)

type link = “node; Using name equivalence:
var next : link; p # next
last : link; p # last
p : “node; p=g=r

q, r : “node; next = last

15-411/611 © 2019 -21 Goldstein

Structural Equivalence

* Two types are the same if they are
structurally identical

* Usedin CO, C, Java

typedef node* link;
link next;

link last;

node* p;

node* q;
Using structural equivalence:

pPp = q = next = last

Representing Types

int *f (char*,char¥*)

fun fun

a g&\\. pointer rg pointer
e | D |

pointer pointer int p01nter int

char char char

Tree forms Directed Graph

15-411/611 © 2019 -21 Goldstein

Representing Types

int *f (char*,char¥*)

fun

fun

— T~

//3;g§\\~ poiTter (‘/,args\\’7 poiTter

pointer pointer int p01nter int

char char char

Tree forms Directed Graph

15-411/611 © 2019 -21 Goldstein

Cyclic Graph Representations

struct Node

{

int val;
struct Node *next;

};

struct

vil next

int pointer

Cyclic graph

© 2019 -21 Goldstein

Structural Equivalence (cont’d)

* Two structurally equivalent type
expressions have the same pointer address
when constructing graphs by sharing nodes

struct Node

{

int wval; struct
struct Node *next; val next

}; | |

int pointer

Structural Equivalence (cont’d)

* Two structurally equivalent type
expressions have the same pointer address
when constructing graphs by sharing nodes

struct Node

S
{ ~
int wval; struct
struct Node *next; vﬁl nert
};
int pointer
struct Node s, *p; yd

Structural Equivalence (cont’d)

* Two structurally equivalent type
expressions have the same pointer address
when constructing graphs by sharing nodes

*p

struct Node /
(S\\\\

int val; struct

struct Node *next; val next
}; | |
int pointer
struct Node s, *p; yd [
P
.. p = &s; // OK &s
*p = s; // OK

15-411/611

Constructing Type Graphs

* Construct over AST (or during parse)

type — int $$ = getintType();
bool $$ = getBoolType();
* type $$ = makePtrType($2);
type [num] $$ = makeArrayType($1, $3);

typedef — typedef typeid install($3,$2);

* Invariant:
Same structural type is same pointer.

Type Checking

* When is op(argl,...,argn) allowed?

* Type checking ensures that operations are
applied to the right number of arguments
of the right types

Right type may mean:
— same type as was specified, or

— may mean that there is a predefined implicit
coercion that will be applied

* Used to resolve overloaded operations

Type Checking

* Type checking may be done statically
at compile time or dynamically at run
time

* Dynamically typed languages (eg LISP,
Prolog, javascript) do only dynamic
type checking

* Statically typed languages can do most
type checking statically

Dynamic Type Checking

* Performed at run-time before each
operation is applied

* Types of variables and operations left
unspecified until run-time

— Same variable may be used at different
times with different types

Dynamic Type Checking

* Data object must contain type information

* Errors aren’t detected until violating
application is executed

* May introduce extra overhead at runtime.
* Can make code hard to read
* Supposedly, easier to prototype code

Static Type Checking

* Performed after parsing, before code
generation

* Type of every variable and signature of
every operator must be known at
compile time

Static Type Checking

* Can eliminate need to store type
information in data object if no
dynamic type checking is needed

* Catches many programming errors at
earliest point

* Can’t check types that depend on
dynamically computed values

—Eg: array bounds

Static Type Checking

* Typically places restrictions on
languages
— Garbage collection
— References instead of pointers
— All variables initialized when created

—Variable only used as one type

* Union types allow for work-arounds, but
effectively introduce dynamic type checks

Type Inference

* Type inference: A program analysis to
assign a type to an expression from
the program context of the expression

— Fully static type inference first introduced
oy Robin Miller in ML

—Haskle, OCAML, SML all use type
inference

* Records are a problem for type
Inference

Format of Type Judgments

A type judgement has the form
['|-exp:7t

I' is a typing environment

— Supplies the types of variables and functions

— [Tisasetof theform{x:0, ...}
— For any x at most one o such that (x: o € I')

exp Is a program expression
T is a type to be assigned to exp

|- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

Axioms - Constants

I' |[-n:int (assuming nis an integer constant)

I" |- true : bool I' |- false : bool

* These rules are true in any typing environment
* I, n are meta-variables

Axioms — Variables

Notation: LetI'(x) =7 ifx:t €T

Variable axiom:

I'x) =7
I'|-x:7t

Simple Rules - Arithmetic

Primitive operators (@ € {+,%, &8, ..)):

['|[-e:t T'|-e;t

['|[-e,®e,:1

T is a type variable, i.e., it can take any type but
all instances of T must be the same.

Simple Rules — Relational Ops

[l
A
[l
\'
Il
A e
N

Relations (~ € {<, >, ==, <=,

['|[-e,:t T'l-e,:7

I'|-e, ~e,:bool

Do we know what t is here?

Example: {x:int} |- x+ 2 ==3 :bool

What do we need to show first?

{x:int} [-x+2==3: bool

Example: {x:int} [-x+ 2 ==3 :bool

What to do on left side?

{x:int} |-x+2:int {x:int} |- 3 :int

{x:int} [-x+2==3: bool

Example: {x:int} [-x+ 2 ==3 :bool

Almost Done

{x:int} |- x:int {x:int} |- 2:int
{x:int} |-x+2:int {x:int} |- 3 :int

{x:int} [-x+2==3: bool

Example: {x:int} [-x+ 2 ==3 :bool

Complete Proof (type derivation)

['(x) = int
{x:int} |- x:int {x:int} |- 2:int
{x:int} |-x+2:int {x:int} |- 3 :int

{x:int} [-x+2==3: bool

Simple Rules - Booleans

Connectives
I' |-e,:bool

I' |-e,:bool

['|-e, && e, : bool

['|-e, :bool

I

- e, : bool

['|-e, |]e,:bool

Function Application

* Application rule:
I'|-e,:t,—7T, I'|-¢e,:7,

I'|-el(e):T,

* If you have a function expression e, of type
T, — T, applied to an argument e, of type
T,, the resulting expression e (e) has type
TZ

What about statements?

* Statements don’t have types.

* But, they result in a function returning a
value with a type.

* If a function returns type T, then we say s
Is well typed if,
I |-s:[t]
read as: “s is well typed if it is consistent
with the function returning type t”

15-411/611

Language

* Our language:

e
S

:=n | x | el+e2
1= Xe—e

if (e,sl,s2)
while (e, s)
return (e)
seq(sl,s2)
decl (x,T, s)

nop

© 2019-21 Goldstein

el && e2

52

Type checking return

e :=n | x | el+e2 | el && e2
S :=x<—e

if(e,sl,s2)

while (e, s)

return (e)

decl (x,T, s)

I
I
I
| seq(sl,s2)
I
I

nop

* For a function returning t

I'|-e:t

I' |- returnle): [t]

15-411/611 © 2019 -21 Goldstein

Type checking rules for stmts

e :=n | x | el+e2 | el && e2
S :=x—e

if(e,sl,s2)

while (e, s)

return (e)

I

I

I

| seqg(sl,s2)
| decl(x,T,s)
I

nop

15-411/611 © 2019 -21 Goldstein

Type checking rules for stmts

e :=n | x | el+e2 | el && e2
S :=x—e

if(e,sl,s2)

while (e, s)

return (e)

I

I

I

| seqg(sl,s2)
| decl(x,T,s)
I

nop

15-411/611 © 2019 -21 Goldstein

What about statements?

INz)=7 Thre:7 'te:bool T'ksy:[r] Tk sg:|[7]
[- assign(x, e) : [7] [+ if(e, s1,82) @ [7]
'Fe:bool TFs:|[7] CFe:T
[' = while(e,s) : [7] [' - return(e) : [7]

Iksyc[r] Thsy:[r]
'+ nop : [7] ' - seq(s1,s2) @ [7]

Cer’' = s [7]
I' - decl(x, 7/, s) : [7]

© 2019 -21 Goldstein

EffectonI

Nz)=7 T'ke:7 'e:bool T'Fsy:[r] Tk sg:|7]
[' - assign(z,e) : [7] ' if(e, s1,52) : [7]
'Fe:bool TFs:|[7] Cke:T
[' = while(e,s) : [7] [' - return(e) : [7]

Tksi:[r] TFsy:l[r]
'+ nop : [7] ' - seq(s1, s2) : [7]

Cer’' = s [7]
I'+decl(z, 7', s) : [7]

15-411/611 © 2019 -21 Goldstein

Shadowing?

Nz)=7 T'ke:7 'e:bool T'Fsy:[r] Tk sg:|7]
[- assign(x, e) : [7] ' if(e, s1,52) : [7]
['Fe:bool TFs:[7] PFe:T
[' = while(e,s) : [7] [' - return(e) : [7]

'Esy:fr] T'ksy:7]
'+ nop : [7] ' - seq(s1,s2) @ [7]

Cer’' = s [7]

'+ decl(z, 7', 8) : [7]

x&dom(T')

15-411/611 © 2019 -21 Goldstein

Or, as in L2 handout

r:7' &' forany 7 ', x:7F s wvalid

I' - declare(x, 7, s) valid

15-411/611 © 2019 -21 Goldstein

Function Rule

* Rules describe types, but also how the
environment I' may change

r,{ft—t,, x:1, }|-s[t]

I'|-7,f(t,x)s

Example

int fact(int x) {
If (x==0) return 1; else return x * fact(x - 1);

}

Implementing rules

* Start from goal judgments for each function
[|-=wid(...,7a..){s}
* Work backward applying inference rules to
sub-trees of abstract syntax trees

* Exactly the same kind of recursive traversal
as lecture 7

Other Issues

* What to do with types after type checking?
— decorate AST?
— Typed IR?
— Typed triples?
* What to do on errors?
— uninitialized variable?
— undeclared variable?
— wrong return type?
— wrong operator type?

