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Dataflow Analysis

e A framework for proving facts about program
— Reasons about lots of little facts
— Little or no interaction between facts
— Based on all paths through program

e Solve with iterative solver:

— How do we know it terminates?

— How do we know whether solution is precise?
(or even correct?)



Recall: Data Flow Equations

. Let s be a statement
— Succ(s) = {immediate successors of s}
— Pred(s) = {immediate predecessors of s}
— In(s) program point just before executing s
— Out(s) program point just after executing s

e Transfer functions (for forward, must):
In(s) = ﬂ Out(s’)
srepred(s)

Out(s) = Gen(s) U (In(s) — Kill(s))

e Gen(s) set of facts made true by s
e Kill(s)  set of facts invalidated by s



Recall: Worklist algorithm (forward)
Initialize: in[B] = out[b] = Universe
Initialize: in[entry] = &
Work queue, W = all Blocks in topological order
while (|W| 1=0) {

remove b from W

temp = out[b]
compute In[b]
compute Out[b]

if (temp = out[b]) W =W U succ(b)
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Some Unidirectional Dataflow Analysis

Union intersection
(may) (must)
Forward Reaching Available
definitions expressions
Live variables very busy
Backward expressions




Available Expressions

e X+Y is “available” at statement S if

— x+y is computed along every path from the startto S

AND
— neither x nor y is modified after the last evaluation
of x+y
a <- b+c
b <- a-d

C <- b+c «—— b+c Not available, since b redefine

d <- a-d «—— a-d is available
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Available Expressions

z=a+b

y=a*b

y> (a+b)

a=a+l

x=a+b

In(s) = ﬂ Out(s’)
srepred(s)

Out(s) = (In(s) U Gen(s)) — Kill(s)

For x= a®b:
Gen = {a®Pb}
Kill = {All expressions using x}

Initialize all but entry to

universe of expressions




Available Expressions

_! (0 In(s) = ﬂ Out(s")
srepred(s)
z=a+b
{a+b} Out(s) = (In(s) U Gen(s)) — Kill(s)
y=a*b
{a+b,a*b} Forx=a®b:
Gen = {a®Pb}
y>(atb) Kill = {All expressions using x}

a+b,a*b}
Initialize all but entry to

universe of expressions
a=a+l

{}

x=a+b

{a+b}



Available Expressions

| e Why Does this terminate?
T ()
z=a+b
{a+b}
y=a*b
{a+b,a*b}
y> (a+b)
N*b}
a=a+l ()
x=a+b In(s) = ﬂ Out (s’)

srepred(s)

{a+b} Out(s) = (In(s) U Gen(s)) — Kill(s)



Available Expressions

| e Why Does this terminate?
T ) — In(s) never grows
z=a+b — Out(s) never grows
{a+b}
y=a*b
{a+b,a*b}
y> (a+b)
/\bra*b}
a=a+l ()
x=a+b In(s) = ﬂ Out(s")

srepred(s)

{a+b} Out(s) = (In(s) U Gen(s)) — Kill(s)



Liveness as a dataflow problem

e This is a backwards analysis

— A variable is live out if used by a successor

— Gen: For a use: indicate it is live coming into s

— Kill: Defining a variable v in s makes it dead before s

(unless s uses v

to define v)

— Lattice is just live (top) and dead (bottom)

e \alues are variables

e In[n] =variab
= (out|n_

e Qut[n] =variab
= (JIn[s]
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es live before n
—kill[n]) w gen|n]

es live after n
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Liveness

e Backward, May

In(s) = (Out(s) — kill(s)) U Gen(s)

z=a+b

Out(s) = U In(s")
y=a*b sresucc(s)
y> (a+b) * Gen: For x= a®b:

Gen = {a,b}
!///”\\\\\\\\‘ Kill = {x}

return
a=a+l Y Initialize all to empty sei

x=a+b
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Liveness

e Backward, May

{a,b} In(@s) = (Out(s) — kill(s)) U Gen(s)

z=a+b
{a,b} outs) = U In(s")
y=a*b sresucc(s)
{a,b,y}
y> (a+b) * Gen: For x= a®b:

{y} Gen = {a,b}
{a/b/y/)/\ K|”={X}
L

return
a=a+l Y Initialize all to empty sei
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Liveness

e Why does this terminate?
{a,b}
z=a+b
{a,b}
y=a*b
| {a,b,y}
y> (a+b)

{y}
{a,b,y/)/\
L

return y

x=a+b In(s) = (Out(s) — kill(s)) U Gen(s)

{a,b,y} Out(s) = U In(s"

sresucc(s)



z=a+b

y=a*b

y> (a+b)

{y}
{a'b'zk//\\\\\\\\‘
L

Liveness

e Why does this terminate?
ta,b} — In(s) & Out(s) never shrink

— Eventually reach fixed point
since number of variables is
{a,b,y} finite.

{a,b}

return y

In(s) = (Out(s) — kill(s)) U Gen(s)

Out(s) = U In(s")

sresucc(s)



Data Flow Facts and lattices

e Typically, data flow facts form a lattice
e Example, Available expressions

a+b, a'b,a+1 | “top"

I

a+b, a*b ‘ a+b, a+1

a*b, a+1
a+

a'‘b

\ b/a+1

mone) | bottom”




Lattices

e All our dataflow analyses map program points
to elements of a lattice.

e Acomplete lattice L= (S, <, V, A, L, T)is
formed by:
— AsetS
— A partial order < between elements of S.
— A least element L
— A greatest element T
— A join operator V
— A meet operator A



Least Upper Bound & Join

e IfL=(S, <V, A, L, T)is acomplete lattice,
ande; ESande, €S, then
least upper bound of {e;, e,}=¢e ,=(e,Ve;) ES



Least Upper Bound & Join

e IfL=(S, <V, A, L, T)is acomplete lattice,
ande; ESande, €S, then
least upper bound of {e;, e,}=¢e ,=(e,Ve;) ES
e Visthe “join” operator
e e, theleast upper bound, has the properties:
—e, < g pande,<e,
— Foralle' €S, ife;<e'ande,<e’, thene , <e’



Least Upper Bound & Join

IfL=(S, <, V, A L, T)is a complete lattice,
ande; ESande, €S, then
least upper bound of {e;, e,}=¢e ,=(e,Ve;) ES

V is the “join” operator

e, the least upper bound, has the properties:

—e, < g pande,<e,

— Foralle' €S, ife;<e'ande,<e’, thene , <e’
least upper bound of S'cS, is pairwise lub of all
elements of &’

For L to be a lattice, for all S’cS, lub(S’) € S



Greatest Lower Bound & Meet

e IfL=(S, <V, A, L, T)is acomplete lattice,
ande; ESande, €S, then
greatest lower bound of {e,, e,} =e,,= (e, Ae;) €S

e Aisthe “meet” operator

* e,, the greatest lower bound, has the properties:
—e,, < e;and ey, <€
— Foralle'€S,ife;<e'and e, <e’, thene’' <e,,



Greatest Lower Bound & Meet

IfL=(S, <, V, A L, T)is a complete lattice,
ande; ESande, €S, then
greatest lower bound of {e,, e,} =e,,= (e, Ae;) €S

A is the “meet” operator

e,y the greatest lower bound, has the properties:
—e,, < e;and ey, <€

— Foralle'€S,ife;<e'and e, <e’, thene’' <e,,
greatest lower bound of S'cS, is pairwise glb of
all elements of §’

For L to be a lattice, for all S'cS, glb(S’) € S



Properties of join (and meet)

Joinis idempotent: XxVx=x
Join is commutative: yVx=xVy
Join is associative: xV(yvz)=(xVy)Vz

Join has a multiplicative one:
forallxins, (LV x) = x

Join has a multiplicative zero:
forallxinS, (Tvx)=T



Properties of join (and meet)

Joinis idempotent: XxVx=x
Join is commutative: yVx=xVy
Join is associative: xV(yvz)=(xVy)Vz

Join has a multiplicative one:
forallx €S, (LV x) =x

Join has a multiplicative zero:
forallxesS, (Tvx)=T



Properties of join (and meet)

Joinis idempotent: XxVx=x
Join is commutative: yVx=xVy
Join is associative: xV(yvz)=(xVy)Vz

Join has a multiplicative one:
forallx €S, (LV x) =x

Join has a multiplicative zero:
forallxesS, (Tvx)=T

Similarly for meet, but:
— multiplicative oneis T, i.e., for all x€S, (TAX) =T
— multiplicative zerois L, i.e., forall x€S, (LAX) =T



Semilattices

e Notice the dataflow analysis we looked at
have either the join or meet operator, e.g.,

— available expressions uses meet: A is intersection

— liveness uses join: V is union

e If only one of meet or join are defined, we call
it a semilattice.



Partial Order

e A partial order is a pair (S, <) such that:
— < SxS
— < is reflexive, i.e.,
X < X
— < is anti-symmetrig, I.e.,
X <yandy<ximplies x=y
— < iIs transitive, i.e.,
X <yand x <zimplies x £z



Partial Order, V, A, and Semi-Lattice

e Join, least upper bound, on a semi-lattice
defines a partial order:
X<yiff xVy=y

e Meet, greatest lower bound, on a semi-
lattice defines a partial order:
X <y iff X A y=x



Useful Lattices

® (2°, ) forms a lattice for any set S.

— 2°is the power set of S (set of all subsets)
e |f (S, <)is alattice, sois (S, =)

— i.e., lattices can be flipped
e A |attice for constant propagation

T

/TR

1 2 3

=

1



Semilattice of Liveness

e L=({a,b,x,y,z},c,, {},{a,b,x,y,z})

— Only define Join, U
— Least Element, L, {}
— Greatest Element, T, {a,b,x,y,z}

—Xx<ymeans X cCy

e more generally,
L=(ZSI glul {}IS)

z=a+b
y=a*b
y> (a+b)
+1 return y
a=a

x=a+b




L=(2% <, {},S)

e Join operator must have the property:
- x<yiffxVy=y
— Or, in our case, Is it true that: x cy iff x Uy=y?

e Is{} L, orinourcase:is {} c x, forall xeS?
e sST,orinourcaseisxcT, forall x €S?



Semilattice of Available Expressions

e L=({a+b,a*b,a+1},0,M, {a+b,a*b,a+1},{})

— Only define Meet, N

— Least Element, L, {a+b,a*b,a+1}

— Greatest Element, T, {}
— x <y means x is superset of y

e In general:
L=(2°, 2,m, S,{})

z=a+b
y=a*b

y> (a+b)

A

return y

a=a+l
x=a+b
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Available Expressions

{(} e
z=a+b | :‘\\\?m, a‘b,a+1 | “t0p”
{ a+b } ————— N\\\ SN
y=a*b yatb, a’b \\ \\ a+b, a+1
” A
{at+b,a*b} .- /
\ 4 /
U
y> (a+b) //
at+b,a*b}/ a'b
a=a+1 { } ,,,,’ @ L -’--’-bottomu
x=a+b ””,z’
(atb} Solution to a dataflow problem is a mapping
a -

from program points to lattice points

33



Monotonicity & Termination

e A function f on a partial order is monotonic if
x <y implies f(x) < f(y)
e We call f atransfer function



Monotonicity for Available Expressions

e A function f on a partial order is monotonic if
X <y implies f(x) < f(y)

For x= a®b:
Gen = {a®b}

Kill = {All expressions using x
In(s) = ﬂ Out(s) { P 8 x)

srepred(s)
Out(s) = Gen(s) U (In(s) — Kill(s))

Out(s) = f5< ﬂ OUt(S')>

srepred(s)



Termination

e Algorithm terminates because:

15-411/611

— The lattice has finite height

— The operations to compute In and Out are

monotonic
— On every iteration either:

e \W gets smaller, or

e out(s) decreases for somes, i.e.,
we move down lattice

Initialize: in[s] = out[s] = Universe
Initialize: in[entry] = &
Work queue, W = all Blocks
while (|W| '=0) {
remove s from W
temp = out[s]
compute In[s]
compute Out|[s]

if (temp != out[s]) W =W U succ(s)
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Lattices (P, S)

e Available expressions
— P =sets of expressions
— S1AS2=S1"S2
— Top = set of all expressions
e Reaching Definitions
— P = sets of definitions (assignment statements)
— S1AS2=S1US2
— Top = empty set



Fixpoints

e We always start with Top

— Every expression is available,
no definitions reach this point

— Most optimistic assumption

— Strongest possible hypothesis
(i.e., true of fewest number of states)

e Revise as we encounter contradictions
— Always move down in the lattice (with meet)
e Result: A greatest fixpoint
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Very Busy Expressions

e A Backward, Must data flow analysis

e An expression e is very busy at point p if On
every path from p, e is evaluated before the

value of e is changed
e Optimization
e Can hoist very busy expression computation

p
/\
a=XxX+y b=x+y




Lattices (P, £), cont’d

e Live variables
— P =sets of variables
— S1AS2=S1US2
— Top = empty set

e Very busy expressions

— P =sets of expressions
— S1AS2=S1nS2
— Top = set of all expressions



Lattices (P, £), cont’d

e Live variables
— P =sets of variables
— S1AS2=S1US2
— Top = empty set

e Very busy expressions

— P =sets of expressions
— S1AS2=S1nS2
— Top = set of all expressions

Could have defined this as a semilattice using join, but dataflow
tradition starts with top and uses meet to compute a greatest
fixed point. (as compared to tradition for denotational semantics,
uses meet and computes least fixed point)
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Forward vs. Backward

Out(s) = Top forall s
W ;= { all statements }

repeat
Take s from W
temp =1 (A

s’ € predés

if (temp != Out(s))
Out(s) :=temp
W =W U succ(s)
}

until W =9

15-411/611

 Out(s” )

In(s) = Top foralls

W ;= { all statements }

repeat
Take s from W
temp = fs(/\ s’ € succ(s) In(s” )
if (temp !'=In(s)) {

In(s) :=temp
W =W u pred(s)
}
until W =9

42



Termination Revisited

e How many times can we apply this step:

temp :=f (M

Out(s’))

s’ € pred(s)

if (temp !=0ut(s)) {... }
Claim: Out(s) only shrinks

15-411/611

Proof: Out(s) starts out as top
— So temp must be < than Top after first step

Assume Out(s’) shrinks for all predecessors s’ of s

Then IM Out(s’) shrinks

s’ € pred(s)

Since f_ monotonic, f (M, . ored(s) Out(s’)) shrinks

43
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Termination Revisited (cont’d)

A descending chain in a lattice is a sequence
— x0d x1Jd x24 ...

The height of a lattice is the length of the longest
descending chain in the lattice

Then, dataflow must terminate in O(nk) time
— n =# of statements in program
— k= height of lattice

— assumes meet operation takes O(1) time

44



Order Matters

e Acyclic
e Cycles, nesting depth
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Order Matters

Assume forward data flow problem
— LetG=(V, E) be the CFG
— Let k be the height of the lattice

If G acyclic, visit in topological order
— Visit head before tail of edge
Running time O(|E|)

— No matter what size the lattice

46
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Order Matters — Cycles

If G has cycles, visit in reverse postorder
— Order from depth-first search

Let Q = max # back edges on cycle-free path
— Nesting depth
— Back edge is from node to ancestor on DFS tree

Then if Vx, f(x)<x (sufficient, but not necessary)
— Running time is O((Q + 1) |E|)
e Note direction of depends on top vs. bottom

47



Distributive Data Flow Problems

e By monotonicity, we also have

flxny) < f(x)N f(y)

e A function fis distributive if

flxNy) = f(x) N f(y)
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Accuracy of Data Flow Analysis

Ideally, we would like to compute the meet over all paths (MOP)
solution:

— Letf, be the transfer function for statement s
— Ifpisapath{s,.., s}, let fp =f ;.of
— Let path(s) be the set of paths from the entry to s

MOP(s) = (T)

Hpepa.th(s) fp

If a data flow problem is distributive, then solving the data flow
equations in the standard way yields the MOP solution

50



What Problems are Distributive?

Analyses of how the program computes
— Live variables

— Available expressions

— Reaching definitions

— Very busy expressions

All Gen/Kill problems are distributive



A Non-Distributive Example

e Constant propagation

e |n general, analysis of what the program
computes is not distributive



Constant Propagation

e L=(S, <, A, L, T) for constant propagation
— Set S
— Partial order < between elements of S.
— Meet operator A
— Least element L
— Greatest element T
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Flow-Sensitivity

Data flow analysis is flow-sensitive
— The order of statements is taken into account
— i.e., we keep track of facts per program point

Alternative: Flow-insensitive analysis
— Analysis the same regardless of statement order
— Standard example: types

54
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Terminology Review

Must vs. May

— (Not always followed in literature)
Forwards vs. Backwards
Flow-sensitive vs. Flow-insensitive
Distributive vs. Non-distributive
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Another Approach: Elimination

e Recall in practice, one transfer function per basic block
e Why not generalize this idea beyond a basic block?

“Collapse” larger constructs into smaller ones, combining data
flow equations

Eventually program collapsed into a single node!

“Expand out” back to original constructs, rebuilding
information

56
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Lattices of Functions

Let (P, <) be a lattice

Let M be the set of monotonic functions on P
Define f <. g if for all x, f(x) < g(x)

Define the function f M g as

- (frg)(x)="f(x) 1 g(x)

Claim: (M, <) forms a lattice

57



Elimination Methods: Conditionals

l

If

PN

l

Then

Else

> ‘ IfThenElse \

fite = (fthen © if) I (felse © if)

Out(if) = f;¢(In(ite)))
Out(then) = (fipen © fif)(In(ite)))
Out(else) = (fa1qe © fif)(In(ite)))



Elimination Methods: Loops

1 |

e > While
Body

fwhile = Jfhead™
Thead © fbody © fhead"
Thead © fbody © thead © fbody © fhead ™




Elimination Methods: Loops (cont)

e letfi=fofo..of (itimes)
- fo=id
o |et

9(7) = Miefo..;)(fhead © fbody)i © fhead

e Need to compute limit as j goes to infinity
— Does such a thing exist?
e Observe: g(j+1) < g(j)



Height of Function Lattice

e Assume underlying lattice (P, <) has finite
height

— What is height of lattice of monotonic functions?
— Claim: At most |P|xHeight(P)

e Therefore, g(j) converges
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Non-Reducible Flow Graphs

Elimination methods usually only applied to reducible flow graphs
— Ones that can be collapsed
— Standard constructs yield only reducible flow graphs

Unrestricted goto can yield non-reducible graphs

~—
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Comments

Can also do backwards elimination

— Not quite as nice (regions are usually single entry but often not
single exit)

For bit-vector problems, elimination efficient

— Easy to compose functions, compute meet, etc.

Elimination originally seemed like it might be faster than iteration
— Not really the case
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Dataflow Framework

e Universe of values forms a lattices

e Meet operator used at join points in CFG
e Basic attributes (e.g., gen, kill)

e Traversal order

e Transfer function

o Will it terminate?
e |s it efficient?
e |s it accurate?
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Dataflow Summary

Union intersection
(may) (must)
Forward Reaching Available
definitions expressions
Live variables very busy
Backward expressions

Later in course we look at bidirectional dataflow
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