
15-411: Compiler Design Spring 2025

Recitation 1: Instruction Selection 24 Jan

Lab 1
Designing a compiler for each of the labs is the heart of this course. The handouts for Lab 1 checkpoint
and Lab 1 compiler are both linked on the course website at https://www.cs.cmu.edu/~411/, under
assignments. Lab submissions are via Gradescope at https://www.gradescope.com/courses/937862.
In very short summary,

• Lab 1 checkpoint asks you to implement register allocation based on graph coloring algorithm given
in class.

• Lab 1 asks you to implement the compiler for the language L1.

Read the handouts carefully and good luck have fun!

Instruction Selection
In this recitation, we’re going to go through an example of instruction selection. Since you won’t have
to touch the frontend for Lab 1 (lexer and parser), we’ll leave them for a future week. Here the AST
generated by the frontend is provided for you:

1 int main() {
2 int x = 42;
3 int z;
4 if (x % 2 == 0) {
5 x++;
6 z = 1;
7 } else {
8 z = −1;
9 }

10 int y = 1;
11 while (y <= x − 1) {
12 y = x + y;
13 }
14 return z * y;
15 }

1 declare(x, seq(
2 assign(x, const(42)),
3 declare(z, seq(
4 if(compare(mod(x, const(2)), const

(0), EQ), seq(
5 incr(x),
6 assign(z, const(1))
7),
8 assign(z, neg(const(1)))
9),

10 declare(y, seq(
11 assign(y, const(1)), seq(
12 while(
13 compare(y, minus(x, 1),

LEQ),
14 assign(y, add(x, y))
15),
16 return(times(z,y))
17)
18))
19))
20))

Intermediate Representation
As discussed in lecture yesterday, we use the "maximal munch" algorithm to generate abstract 3-address
assembly from AST. For AST node, we recursively pattern-match as deep as possible into each sub-
expression and generate lines of assembly at each step.

https://www.cs.cmu.edu/~411/
https://www.gradescope.com/courses/937862

Our translation target is formulated as follow:

Source Operands s ::= t | r | c
Destination Operands d ::= t | r
Instructions i ::= d← s

| d← s1 ⊕ s2
| if (s1 ? s2) then lt else lf
| goto l
| l :
| ret

Binop ⊕ ::= + | − | ∗ | / | · · ·
Condition Code ? ::= = | ≠ | . . .
Programs p ::= i1; . . . ; in

Recall that one formulation of maximal munch for expression was the following:

codegen(e) = ⟨ě, ě⟩

ě : sequence of instructions generated from e
ê : destination operand storing the value of e

e ě ê proviso
c · c

x · x

e1 ⊕ e2 ě1, ě2, t← ê1 ⊕ ê2 t t fresh

and for statements:

codegen(s) = š

s š

x = e ě, x← ê

return e ě, %rax← ê, ret

Checkpoint 0
Fill in translation rules for if and while AST nodes.

Checkpoint 1
Applying the translation rules, we derive the following abstract 3-address assembly:

1 main:
2 x <− 42
3 t1 <− 2
4 t2 <− x % t1
5 if (t2 == 0) then L1 else L2

6 L1:
7 x <− x + 1
8 z <− 1
9 goto L3

10 L2:
11 t3 <− 1
12 z <− t3 * −1
13 goto L3
14 L3:
15 y <− 1
16 goto L4
17 L4:
18 t4 <− x − 1
19 if (y <= t4) then L5 else L6
20 L5:
21 t5 <− x + y
22 y <− t5
23 goto L4
24 L6:
25 %eax <− z * y
26 return

Draw the control flow graph (CFG) based on the 3-address assembly. Think about where you need to
put Φ functions if you turn it into SSA form.

Maximum Cardinality Search
From the last recitation, you already know how to perform liveness analysis and construct interference
graph. For this program, the graph is given here:

x t4

yz

t5

t1 t2 t3

eax

In order to color the interference graph using the greedy algorithm, we need to decide on an order in
which to process the vertices. We do this using the Maximum Cardinality Search algorithm. We first
assign a weight of 0 to each vertex. Then, at each step, we:

(a) Choose a vertex with maximal weight from the working set

(b) Add it to our ordering and remove it from the working set

(c) Increment the weights of all of its neighbors

This algorithm produces an ordering which is optimal for chordal graphs.

Checkpoint 2
Use Maximum Cardinality Search to generate an ordering of the vertices in the example above. Break
ties by choosing the vertex that is lexicographically first.

Greedy Graph Coloring
Once we have an ordering, we can assign registers to each of the temps in our program. Ignoring
pre-colored vertices, such as %eax, we can color the temps by assigning the lowest register that is not
assigned to any of the vertex’s neighbors.

Checkpoint 3
Perform Greedy Graph Coloring on the interference graph from above to assign registers %r1, %r2, ...
to the temps in the program. Then rewrite the abstract assembly using the new registers.

Lab 1 Tip: Spilling Temps
We can’t fit all of our data in registers, so we spill into memory. But we need at least one operand in a
register for most arithmetic operations. This is getting into the software engineering part of the course,
but we will outline one strategy that you can use.

You will need to reserve a register, typically %r11d. Perform register allocation, then scan through your
instructions looking for memory-memory operations. You then insert a mov from the destination to
%r11d, perform the operation, then move %r11d back to memory.

In a functional language, you can implement this in a pass similar to code generation, where you case
on instruction type and produce either a list with the input instruction, or a list with the moves into and
out of %r11d.

(Bonus) Best-Effort Coalescing
Unlike iterative register allocation, SSA-based register allocation perform coalescing after coloring. For
a copy instruction where x and y do not interfere

x← y

we can eliminate it by reassigning x and y to the same register. Let K be the number of machine registers
available, Sx and Sy be the set of colors used in Nbr(x) and Nbr(y). Best-effort coalescing decides to
merge x and y as node xy and choose color c as xy’s color if c < K and c /∈ Sx ∪ Sy. If this can be
done, we replace all occurrence of x and y in the program with xy.

Checkpoint 4
Perform best-effort coalescing on the colored abstract 3-address assembly from previous checkpoint.

