15-411/15-611 Compiler Design

Spring 2025 with Seth Copen Goldstein and Ben Titzer

http://www.cs.cmu.edu/~411

http://www.cs.cmu.edu/~411

Compilers at 60K

What is a Compiler?

(@)

€. \

S

(0
program

@)

program

\

R

executable form

executable form

© Goldstein 2020

(@

D)

program

e \

-(
J

W,

15-411

What did | forget”

@)

RESULT!

“A” Compiler is a misnomer

» Multiple sources compiled into .o files
» Linker combines .0 files into .exe file
» Loader combines .exe file (with .s0) into a

runnable application

» But, we will mostly ignore this in class.

© Goldstein 2020

Better View of a Compiler

Source 1 Compiler Target _
code P code

» Errors

Implications

» Must recognize legal (and illegal) programs
- Must generate correct code
- Must manage storage of all variables (and code)
- Must agree with target on format for object code

Big step up from assembly language—use higher level
notations

Executors

(@

D)

()): J

© Goldstein 2020

(@

@

)

program

» Compilers transform specifications

» Interpreters execute specifications
- (without generating new target code)
» £E.9.: C++ Is usually compiled
Python is usually interpreted
Java/JavaScript are JIT-compiled

- Many common issues
+ 411 malinly focuses on compillers.

15-411

Why take this class?

» Compilers design and construction
combines:
— theory
— algorithms
- Al
— systems
— architecture
— software engineering

© Goldstein 2020

Compilers Are Everywhere

- FTP daemon

- Web browsers

- perl, sed, awk, emacs, bc
» excel, tex

» web servers (e.q., asp)

» databases (query opt)

- virtual machines

© Goldstein 2020

Compilers are Essential

- 50-AON

- QO-AON

| /0-AON

- 9(0-AON

- GO-AON

| $0-AON

- £0-AON

- (0-AON

\ - TO-AON
4 - 00-AON

\ L 66-AON

N\
/ “\ - 86-AON
//
/ / | /6-AON
/,,
\
\ | 96-AON

S6-AON

Performance Gains Due to Compiler (gcc)

0 0 0
m/m,,w;
o LN o

50%
45%
40%
35%
30%
25%
20%
15%

i

juswdnoIdwT 2ouewi019d 000ZD3dS

15-411

© Goldstein 2020

Compilers are Essential

Virtual machines employ JITs for dramatic speedups

JIT Speedup - Wizard-SPC gIalIopt @ nok @ nokfold B noisel @ nomr
30 -

25 -,

20 -

15

LN
e o
S
S CU

10

PolyBenchC Ostrich Libsodium

© Goldstein 2020 15-411

Compilers Are Fun

- Many very hard problems
- Many (if not most) are NP-hard
- S0, what to do”

» Applies theory and practice

- Modern architectures depend on
compilers: Compiler writers drive

architectures!
* YOU can see the results

© Goldstein 2020

What makes a good compiler?

- Correctness

» Performance of translated program
- Predictably small and fast code
- Scalability of compiler

— Fast compile time
— Separate (incremental, parallel) compilation

+ Easy to modify
- Aids programmer

— good compile time error messages
— support for debugger

© Goldstein 2020 15-411

Compilers at 30K

13

A Simple Example

X :=a *2 +b * (x * 3)

- What does this mean? Is it valid?
» How do we determine its meaning:

© Goldstein 2020

— break into words
— convert words to sentences
— Interpret the meaning of the sentences

Lexical Analysis

X :=a *2 +b * (x * 3)

1d<x> assign id<a> times 1int<2> plus id
times lparen id<x> times int<3> rparen

» Group characters into tokens

o

th

11T

e

inate unnecessary characters from

iINnput stream

» Use regular expressions to specify and
DFAS to implement.

- E.9., lex

© Goldstein 2020

15-411

15

Syntactic Analysis

X :=a *2 +Db * (x * 3)

1d<x> assign id<a> times 1int<2> plus id
times lparen id<x> times int<3> rparen

» Group tokens into sentences Q\

» Eliminate unnecessary tokens from X }K
the input stream ;{ ;{
+ Use context-free grammars to
specity and push down automata to@ @ @652

mplement
- E.g., bison

© Goldstein 2020

Semantic Analysis

X :=a *2 +Db * (x * 3)

1d<x> assign id<a> times 1int<2> plus id
times lparen id<x> times int<3> rparen

» Determines meaning of sentence.

- What are the types of the variables }K
(x, a, b)?
- Constants (2, 3)7 Q Q

» Operators (*, +) ﬂ) (2
)

- |s it legal to read and write X7

» Use attributed grammars, symbol
tables, ...

Ol | X

© Goldstein 2020

Translation

» Interface between front-end and back-end

- Many different types of IRs
ierarchical

— Linear

— [ree based

— [riple based

© Goldstein 2020

Instruction Selection

» Translates IR into target instruction set
» Choose instructions (smul or s11)

» Choose operand modes
- immediate constants (2 or 3)

— load immediates “ }K

— addressing modes
» Complex instructions
» [ypes of branches

» Use tree grammars &
dynamic programming

© Goldstein 2020

Instruction Selection

load M[fp+x]
loadi3

mul r,, r,

load M[fp+b]

mul r r

37 T4
load M[fp+a]
sll r,, 1

addr_, r.

store M[fp+x] « r,

15-411

20

Optimizations

» Improves the code by some

Mmetric:

— code size , « load M[fp+x]
- register usage , < loadi3

— speed y < mulr,, r,

« load M[£fp+b]

P mulr3 , T

— power consumption

» Types of optimizations:
— Basic block (peephole)
— Global (loop hoisting)
— Interprocedural (leaf functions)
- Whole program (inlining of
methods)
- Uses: flow analysis, etc.

19

(8]

4
« load M[fp+a]

«— Sler, 1

«— addr7 , X

o

H\]HHHHHHH

(00}

5

store M[fp+x] « r,

© Goldstein 2020 15-411

Metrics Matter

Assume load takes 3 cycles, mul takes 2 cycles

r, « load M[fp+x] r, « load M[fp+x]
r, « loadi3 r, « load M[fp+b]
r, « mulr , r, r, « load M[fp+a]
r, « load M[fp+b] r, « loadi3

r, « mulrl, r, r, « mulrl, r,

r, « load M[fp+a] r, « mulr , r,

r, « sllr,, 1 r, « sler, 1

r, « addr , r, r, « ader, r,

store M[fp+x] « r, store M[fp+x] « r,

Cycles:14 Cycles:9

© Goldstein 2020 15-411 22

Register Allocation

» Assign variables to registers
and/or memory locations

« Decisions are cruciall

- Take Into account

— specialized registers
(fp, sp, mul on x86)

— calling conventions
— number and type
— lifetimes

» graph coloring and linear scan
are the most commonly-used
algorithms

R R R R R KR R K
o P PN O A~ PR

[

© Goldstein 2020 15-411

load M[fp+x]
load M[fp+b]
load M[fp+a]
loadi3

mul r.,

mul r.,

sler,

addr6 , ¥

store M[fp+x] « r,

23

Compilers at 45K

24

Compilers

- A compiler translates a programming language (source language) into

executable code (target language)

- Quality measures for a compiler

» Correctness (Does the compiled code work as intended?)

» Code quality (Does the compiled code run fast?)

» Efficiency of compilation (

» Usability (Does the compi

s compilation fast?)

er produce useful errors and warnings?)

25

Organizing a Compiler

- Split work into different compiler phases !

- Phases transform one program representation into another

- Every phase has a clear role, some more complex than others

- Phases can be between different types of program representations

- Phases can be on the same program representation

26

Example phases of a compiler

Parse Semantics Translation

Instruction L Register Code
. Optimization . .
selection allocation generation

Order of these may vary

© Goldstein 2020 15-411 27

Many representations

Abstract syntax tree

| ex -

Parse ——+ Semantics -

tokens

AST+symbol tables

Translation

Intermediate Representation (tree)

Instruction
selection

— —~ Optimization

Register
allocation

Code
generation

© Goldstein 2020

Code
Triples

15-411

28

Traditional Two-pass Compiler

Source Front IR Back Machine _
code g End g End code
» Errors
Implications

- Use an intermediate representation (IR)

» Front end maps legal source code into IR

» Back end maps IR into target machine code

» Supports independence between source and target

Typically, front end is O(n) or O(n log n), while back end
IS NP-hard

Without IR

0

)
>
)
L

\

b

A

\/

O

nxm compilers!

With IR

SML X86
Java Sparc
C “ > MIPS
OCaml PPC
C# ARM

P.S. No compiler has a truly universal IR (so far).

vs n+m compilers

Traditional Three-pass Compiler

Source Front

Code End

Code
- Ana

IR Middle IR Back Machine

>

End End code

» Errors

mprovement (or Optimization)

yzes IR and

rewrites (or transforms) IR

» Primary goal is to improve program (“optimize”)

— EXxecution time space, power consumption, ...

» Must preserve “meaning” of the code
— Correct behavior, output of the program

Compilers is a “Mature” Field

- Compiler History
» 1943: Plankalkul, first high-level language (Konrad Zuse)
» 1951: Formules, first self-hosting compiler
» 1952: A-0, term ‘compiler’ (Grace Hopper)
» 1957: FORTRAN, first commercial compiler (John Backus; 18 PY)
» 1962: Lisp, self-hosting compiler and GC (Tim Hart and Mike Levin)

- Compilers today
» Modern compilers are complex (gcc has 7.5M LOC)
» There is still a lot of compiler research (LLVM, verified compilation, ...)

» There is still a lot of compiler development in industry (guest lecture?)

33

Classic Compilers
1957: The FORTRAN Automatic Coding System

— Eront —1 Ind :Code=F| 1 Register 1 Final
ron ndex Merge ow egister Final

End Optimiz’n Analysis | | Allocat’n| | Assembly
bookkeeping

Front End Middle End Back End

+ SiX passes in a fixed order

 Generated good code
Assumed unlimited index registers
Code motion out of loops, with ifs and gotos
Did flow analysis & register allocation

Classic Compilers
1969: IBM’s FORTRAN H Compiller

| Build | | . ‘ | Loop | ‘ ; ‘ | e
| 5% 1 CFG [e "] CSE [Inv 7] Copy [T OSR [] Resssoc [1] jieQ- = Final
R usy Code Elim t Alloc. | | Assy.
Parse Vars) ' (consts)
DOM Mot'n
Front MiddleEnd Back End
End

- Used low-level IR (quads), identified loops with
dominators

+ Focused on optimizing loops (“inside out” order)
Passes are familiar today
- Simple front end, simple back end for IBM 370

Classic Compilers
1975: BLISS-11 compiler (Wulf et al., CMU)

Register allocation

Lex-
I Syn- | |Delay| | TLA | |Rank| |Pack| |Code| |Final|
Flo
Front Middle | BackEnd
End End

» The great compiler for the PDP-11
+ Seven passes In a fixed order

+ Focused on code shape & instruction selection
LexSynFlo did preliminary flow analysis
Final included a grab-bag of peephole optimizations

Classic Compilers

1980: IBM’s PL.8 Com

pller

Dead code elimination

Global cse

Code motion
Constant folding

Strength reduction

Value numbering

Dead store elimination
Code

Trap elimination
Algebraic reassociation

Back End

- Many passes, one front end, several back ends

» Collection of 10 or more passes

Repeat some passes and analyses
Represent complex operations at 2 levels
Below machine-level IR

Multi-level IR has
/ become common

wisdom

Classic Compilers

1986: HP’s PA-RISC Compiler
Front Middle End Back
End End
 Several front ends, an optimizer, and a back end

» Four fixed-o
(9 passes)

rder cholces 1

'or optimizatio

» Graph-coloring allocator, instruction scheduler,
peephole optimizer

Classic Compilers
1999: The SUIF Compiler System

Fortran — T

27 \ C/Fortran

C & C++ 7 Alpha

Java x86
E --- SSA construction
Front End Middle End Datd Dead code elimination
; CC;Z Partial redundancy elimination
edr

Constant propagation

Another classically-built compiler /A:/ Global value mumbering
[rengtn reduction
- 3 front ends, 3 back ends loc

Reassociation
y Cap

- 18 passes, configurable order/ v 4o scheduing

Register allocation

Gar age Curection

- Two-level IR (High SUIF, Low SUir
» |Intended as research infrastructure

Logisitics

40

Course Staff — Seth Copen Goldstein

- Office hours: Wed 1pm-3pm 7111GHC or zoom (link on piazza)

- Research
» Concurrent Systems (Parallel, Distributed, ...)
» Architecture/Compilers
» Monetary Systems (BoLT) & Future of Work
» Web3

- Teaching
» 15-411/611 Compiler Design
» 15-319/619 Cloud Computing

»15-213 Introduction to Computer Systems

41

Course Staff — Ben L. Titzer

- Office hours: Tue 2pm - 4pm

* Research
» Virtual machine design (Wizard Research Engine)
» All things WebAssembly

» Systems programming languages (Virgil)

+ SG Teaching
»17-363 Programming Language Pragmatics (with Aldrich)
»17-770 Virtual Machines and Managed Languages

42

Communication and Resources

e |ecture: Tue/Thu 9:30-10:50am at DH A302

e Recitation A: Fri1:00pm GHC 4102
B: Fri2:00pm BH 235A
C: Fri4:00pm WEH 5312
D: Fri 1:00pm GHC 4301

e Website: hitp://www.cs.cmu.edu/~411

e Piazza: You should be on already

e (Gradescope: Enrollment code on Piazza

e Lecture notes: Will be available after the lecture

e Textbook: Andrew Appel - Modern Compiler Implementation in ML

http://www.cs.cmu.edu/~411

The

—ssential TAS!

44

Name

- Something about yourself

- Languages Prefer

Picture

45

Kyle Booker

» Senior in CS
- | play in a rock band

- OCaml & Rust

46

Stephen Nah

» Senior in CS
- | play the drums!

* Rust

47

Zigji Liu

- First-year MSCS; undergrad at CMU
- Very into volleyball

« OCaml|

48

Burgert

lvan

e

§s§=§§s

HA ms

%%
.m.,.%\\\m% i
il

)

Rust

-I’'m f
r
om Argentina

- Senior in CS

- OCam
|
(working on le
arning

49

Alex Knox

» Senior in CS
- | play the bagpipe :

« OCaml|

50

Other Textbooks

T S

ENGINEERING
A
COMPILER

= semsr CERERy - g 8
P AT PP ag

.'._ '1.
Nl idiid
I-l‘“l'. - Jall .l

Compilers

Principles, Techniques, & Tools

51

What will you learn?

52

Compiler Design

- How to structure compilers

- Applied algorithms and data structures
» Context-free grammars and parsing
» Static single assignment form
» Data flow analysis and type checking

» Chordal graph coloring and register allocation

- Focus on sequential imperative programming language
Not functional, parallel, distributed, object-oriented, ...

- Focus on code generation and optimization
Not error messages, type inference, runtime system, ...

53

Focus of the Course

» Correctness (Does the compiled code work as intended?)
» Code quality (Does the compiled code run fast?)
» Efficiency of compilation (Is compilation fast?)

» Usability (Does the compiler produce useful errors and warnings?)

54

We won’t discuss this

Software Engineering much in lecture.

- Implementing a compiler is a substantial software project

» Building, organizing, testing, debugging, specifying, ...
- Understanding and implementing high-level specifications
- Satisfying performance constraints

- Make (and reevaluate) design decision

» Implementation language and libraries Compilers are perfect
| to practice software

» Modules and interfaces

- Revise and modify your code

55

Learning Goals |

- Distinguish the main phases of a state-of-the-art compiler

- Understand static and dynamic semantics of an imperative language
- Develop parsers and lexers using parser generators

» Perform semantic analysis

N\

- Translate abstract syntax trees to intermediate representations and
static single assignment form

- Analyze the dataflow in an imperative language

» Perform standard compiler optimizations

56

Learning Goals |I

- Allocate registers using a graph-coloring algorithm
- Generate efficient assembly code for a modern architecture
- Understand opportunities and limitations of compiler optimizations

- Appreciate design tradeoffs and how representation affects
optimizations N

- Develop complex software following high-level specifications

57

ow Will this work??

58

Your Responsibilities

- Attend lectures | No exams.
» Lecture notes are only supplementary material

-+ 5 Labs: you will impl. compilers for subsets of CO to x86-64 assembly
» Lab1-4: each worth 100 points (total 400 points)
| | With a partner
» Code review after Lab 3: 60 points or individual.

» Lab 5: 200 points + 100 points for report

- 4 Assignments: you will complete four problem sets that help you
understand the material presented in the lectures

» Assignments 1-4: each 60 points (total 200 points)

Individual.

59

Labs — Overview

- Labs (700 points)

>

4

>

_ab 1: tests and compiler for L1 (straight-line code)
_ab 2: tests and compiler for L2 (conditionals and loops)

_ab 3: tests and compiler for L3 (functions)

Auto graded.
» Lab 4: tests and compiler for L4 (memory) .
» Lab 5: compiler and paper (optimizations) TA graded
- Code review (60 points) TA graded.

» You show your code for Lab 3 and get feedback

» We expect that every team member is familiar with all components

» We expect that every team member contributes equally

Support for 411/611 Comes From ...

(@) Jane Street

Helps to
» Improve the grading infrastructure

- Pay for AWS cost

61

Source Language: CO

Subset of C

» Small

- Safe

- Fully specified

* Rich enough to be representative and interesting

- Small enough to manage in a semester

62

Target Language

x86-64 architecture
- Widely used
- Quirky, but you can choose the instructions you use

- Low level enough you can get a taste of the hardware

Runtime system
- CO uses the ABI (Application Binary Interface) for C

- Strict adherence (internally, and for library functions)

63

Finding a partner for the labs

| strongly suggest you work in
teams of two.

64

Labs — Finding a Partner -« Pon't panic.

There are two options

1.

2.

You fill out a questionnaire and we suggest a partner (staff selection)

» Suggestion is not binding but it’s expected that you team up

You team up with somebody yourself (self selection)

» Like in previous iterations of the course

Register your team on of before
Monday 1/20.

65

Option 1: Staff Selection

* You fill out a questionnaire about Until Thursday
» Your plans and goals for the class
» Your strengths and work style
» And your time constraints Friday

- We suggest a partner with complementary strengths and similar
plans/goals

* You meet with your partner and (hopefully) decide to team up

- Advantages: Until Monday 1/20

» You will get a partner who is a good match
» You will likely meet somebody new

» Prepares you for working in a software company

66

Option 1: Example Questions we Ask

- What programming language would you prefer to use?

- Are you more interested in theory or in building systems?

- Are you familiar with x86 assembly?

- How much time would be so much that you would rather drop?

- How much effort do you plan to invest in Compilers, on average?
- What grade are you aiming for in Compilers?

- Do you prefer to collaborate when writing code?

67

Option 2: Self Selection

» Pick your partner carefully!

- Have an honest discussion about your goals and expectations
» What grades you are willing to accept?
» How much time will you spend?

» What times of day you work best?

That’s not necessarily your
- Find somebody who’s a good match best friend.

- Go through the questionnaire and compare your answers

Consider switching to Option 1 if
there are mismatches.

68

Labs — Picking a Programming Language

» You can freely choose a programming language to use

- It has been suggested that you use a typed functional language
» Writing a compiler is a Killer app for functional programming

» Most teams used OCaml last year

- We provide starter code for the following languages
» SML, OCaml, Haskell, and, Rust

» Also, but not recommended: C++ and Java

- When picking a language also consider the availability of parser
generators and libraries

69

Logistics

- Assignments are submitted via Gradescope

- Labs are submitted via GitHub (on Gradescope)
» Get a GitHub account and fill out a google form to register your team
» Receive your group name
» Receive an invitation to join your group on GitHub
» Submit your code by pushing to your repository

» Local development is available using docker containers

- Auto grading with Gradescope
» Your compiler is tested against the test cases of other groups
» And test cases from previous years
» You can submit as often as you like
» Best submission before the deadline counts

70

Gradescope Caveats

+ You have to give Gradescope permissions to see your
15-411-s25-<groupname> repo

- You can submit as often as you like, but ...
» Wait for each submission to complete
» If it takes awhile, that is not because Gradescope hung

» Submitting multiple times before previous completes will slow things
down for everyone

71

Advice

e Labs are difficult and take time
o Plan ahead!
o Set up meetings with lab partners
o Talk to us and others about design decisions

e Don’t start the compiler after the tests
e Errors carry over to the next lab
e Submit early and often

e Compilers are complex

o That’s part of the fun

e (Consider rewrites

72

Workload Over the Semester

Plaid

Ludicrous

Ridiculous

High

Light

Lab 1 Lab 2 Lab 3 Lab 4 Lab 5

Workload*

* scale from the movie Spaceballs. s

This Year’'s Theme - Pixar Characters

74

Deadlines and Academic Integrity

- Deadlines are midnight (after class); being late results in a late day
» You have five (5) late days for the labs (see details online)

» You have three (3) late days for the assignments (details online)

- Talk to Ben or me or your undergrad advisor if you cannot make a
deadline for personal reasons (religious holidays, iliness, ...)

- Don’t cheat! (details online)
» Use code only from the standard library, add to Readme
» Don’t use code from other teams, earlier years, etc.
» If in doubt talk to the instructor

» The written assignments need to be completed individually (1 person)

75

Things you Should Use

- Debugger

* Profiler

- Test programs

- Standard library

- Lecture notes

- Textbooks

76

Well-Being

- This is only a course!
» Take care of yourself
» Watch out for others

» Come speak to us. We really do care.

- Get help if you struggle or feel stressed

» If you or anyone you know experiences any academic stress, difficult
life events, or feelings like anxiety or depression seek support

» Counseling and Psychological Services (CaPS) is here to help:
Phone: 412-268-2922
Web: http:// www.cmu.edu/counseling/

77

Who should take this course?

78

15-411 in the Curriculum

+ 15-213 Introduction to Computer Systems Prerequisite

15-411 Compiler Design

» How are high-level programs translated to machine code?

15-410 Operating System Design and Implementation

» How is the execution of programs managed?

15-441 Computer Networks

System
requirement

» How do programs communicate?

+ 15-417 HOT Compilation

» How to compile higher-order typed languages?

79

Things you Should Know (Learn)
» CO programming language
» The source language

+ X86-64 assembly

» The target language

- Functional programming

» Recommended?

- GGit version control

» For submitting labs

80

Reminder: inductive definitions

81

