
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2023

Lecture 4:

GPU Architecture &
CUDA Programming

 CMU 15-418/618,
Fall 2023

Today

▪ History: how graphics processors, originally designed to
accelerate 3D games like Quake, evolved into highly parallel
compute engines for a broad class of applications

▪ Programming GPUs using the CUDA language

▪ A more detailed look at GPU architecture

 CMU 15-418/618,
Fall 2023

Recall basic GPU architecture

Memory
DDR5 DRAM

(~10s GB)

~150-300 GB/sec
(high end GPUs)

GPU
Multi-core chip
SIMD execution within a single core (many execution units performing the same instruction)
Multi-threaded execution on a single core (multiple threads executed concurrently by a core)

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618,
Fall 2023

Graphics 101 + GPU history
(for fun)

 CMU 15-418/618,
Fall 2023

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

What GPUs were originally designed to do:
3D rendering

 CMU 15-418/618,
Fall 2023

What GPUs are still designed to do

Unreal Engine Kite Demo (Epic Games 2015)

Real-time (30 fps) on a high-end GPU

 CMU 15-418/618,
Fall 2023

Tip: how to explain a system

▪ Step 1: describe the things (key entities) that are manipulated
- The nouns

 CMU 15-418/618,
Fall 2023

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

1

2

3

4

Real-time graphics primitives (entities)
Represent surface as a 3D triangle mesh

 CMU 15-418/618,
Fall 2023

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

1

2

3

4

Fragments

Real-time graphics primitives (entities)

 CMU 15-418/618,
Fall 2023

How to explain a system

▪ Step 1: describe the things (key entities) that are manipulated
- The nouns

▪ Step 2: describe operations the system performs on the entities
- The verbs

 CMU 15-418/618,
Fall 2023

Rendering a picture
Input: a list vertices in 3D space
(and their connectivity into primitives)

list_of_positions = {
 v0x, v0y, v0z,
 v1x, v1y, v1x,
 v2x, v2y, v2z,
 v3x, v3y, v3x
 };

Example: every three vertices defines a triangle

triangle 0 = {v0, v1, v2}
triangle 1 = {v1, v2, v3}

Vertex Generation

3D vertex stream

Input vertex
buffer

 CMU 15-418/618,
Fall 2023

Rendering a picture
Step 1: given a scene camera position,
compute where the vertices lie on screen

v1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Input vertex
buffer

v0

v2
v3

v0

v1

v2

v3

 CMU 15-418/618,
Fall 2023

Rendering a picture
Step 2: group vertices into primitives

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Input vertex
buffer

v1

v0

v2
v3

 CMU 15-418/618,
Fall 2023

Rendering a picture
Step 3: generate one fragment for each pixel a
primitive overlaps

t0 t1

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Input vertex
buffer

 CMU 15-418/618,
Fall 2023

Rendering a picture
Step 4: compute color of primitive for each
fragment (based on scene lighting and
primitive material properties) Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Input vertex
buffer

 CMU 15-418/618,
Fall 2023

Rendering a picture
Step 5: put color of the “closest fragment”
to the camera in the output image

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

 CMU 15-418/618,
Fall 2023

Fragment processing computations simulate
reflection of light off of real-world materials

Example materials:

Images from Matusik et al. SIGGRAPH 2003

 CMU 15-418/618,
Fall 2023

Early graphics programming (OpenGL API)

▪ Graphics programming APIs provided programmer mechanisms
to set parameters of scene lights and materials

▪ glLight(light_id, parameter_id, parameter_value)

- Examples of light parameters: color, position, direction

▪ glMaterial(face, parameter_id, parameter_value)

- Examples of material parameters: color, shininess

 CMU 15-418/618,
Fall 2023

Great diversity of materials and lights in the world!

 CMU 15-418/618,
Fall 2023

Graphics shading languages
▪ Allow application to extend the functionality of the

graphics pipeline by specifying materials and lights
programmatically!
- Support diversity in materials
- Support diversity in lighting conditions

▪ Programmer provides mini-programs (“shaders”)
that define pipeline logic for certain stages
- Pipeline maps shader function onto all

elements of input stream

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Primitive stream

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

 CMU 15-418/618,
Fall 2023

Example fragment shader program *

uniform sampler2D myTexture;
uniform float3 lightDir;

varying vec3 norm;

varying vec2 uv;

void myFragmentShader()
{
 vec3 kd = texture2D(myTexture, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return vec4(kd, 1.0);
}

OpenGL shading language (GLSL) shader program:
defines behavior of fragment processing stage

myTexture is a texture map

Run once per fragment (per pixel covered by a triangle)

read-only global variables

per-fragment inputs

per-fragment output: RGBA surface color at pixel

“fragment shader”
(a.k.a kernel function mapped onto
input fragment stream)

* Syntax/details of this code not important to 15-418.
 What is important is that it’s a kernel function operating on a stream of inputs.

 CMU 15-418/618,
Fall 2023

Shaded result
Image contains output of myFragmentShader for each pixel covered by surface
(pixels covered by multiple surfaces contain output from surface closest to camera)

 CMU 15-418/618,
Fall 2023

Can we use shader for other computation?

Render 2 triangles that exactly cover screen
(one shader computation per pixel = one shader computation output image element)

v0=(0,0) v1=(512,0)

v2=(512, 512)v3=(0, 512)We now can use the GPU like a data-parallel
programming system.

Fragment shader function is mapped over
512 x 512 element collection.

Hack!

Set OpenGL output image size to be output array size (e.g., 512 x 512)

 CMU 15-418/618,
Fall 2023

“GPGPU” 2002-2003

Coupled Map Lattice Simulation [Harris 02]

Ray Tracing on Programmable Graphics Hardware [Purcell 02]

Sparse Matrix Solvers [Bolz 03]

GPGPU = “general purpose” computation on GPUs

 CMU 15-418/618,
Fall 2023

Brook stream programming language (2004)
▪ Stanford graphics lab research project

▪ Abstract GPU hardware as data-parallel processor
kernel void scale(float amount, float a<>, out float b<>)
{
 b = amount * a;
}

float scale_amount;
float input_stream<1000>; // stream declaration
float output_stream<1000>; // stream declaration

// omitting stream element initialization...

// map kernel onto streams
scale(scale_amount, input_stream, output_stream);

▪ Brook compiler converted generic stream program into OpenGL
commands such as drawTriangles() and a set of shader programs.

[Buck 2004]

 CMU 15-418/618,
Fall 2023

How to run code on a GPU (prior to 2007)

Lets say a user wants to draw a picture using a GPU…

- Application (via graphics driver) provides GPU vertex
and fragment shader program binaries

- Application sets graphics pipeline parameters
(e.g., output image size)

- Application provides hardware a buffer of vertices

- Go! (drawPrimitives(vertex_buffer))

Vertex Processing

Vertex Generation

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment Processing

Pixel Operations
Output

image buffer
(pixels)

Input vertex
buffer

This was the only interface to GPU hardware.
GPU hardware could only execute graphics
pipeline computations.

 CMU 15-418/618,
Fall 2023

CUDA Programming Language

 CMU 15-418/618,
Fall 2023

CUDA programming language
▪ Introduced in 2007 with NVIDIA Tesla architecture

▪ “C-like” language to express programs that run on GPUs

▪ Relatively low-level: CUDA’s abstractions closely match the
capabilities/performance characteristics of modern GPUs
(design goal: maintain low abstraction distance)

 CMU 15-418/618,
Fall 2023

The plan
1. CUDA programming abstractions
2. CUDA implementation on modern GPUs
3. More detail on GPU architecture

Things to consider throughout this lecture:
- Is CUDA a data-parallel programming model?
- Is CUDA an example of the shared address space model?
- Or the message passing model?
- Can you draw analogies to ISPC instances and tasks? What about pthreads?

 CMU 15-418/618,
Fall 2023

Clarification (here we go again...)
▪ I am going to describe CUDA abstractions using CUDA

terminology

▪ Specifically, be careful with the use of the term CUDA thread.
A CUDA thread presents a similar abstraction as a pthread in
that both correspond to logical threads of control, but the
implement of a CUDA thread is very different

▪ We will discuss these differences at the end of the lecture

 CMU 15-418/618,
Fall 2023

CUDA programs consist of a hierarchy of concurrent threads
Thread IDs can be up to 3-dimensional (2D example below)
Multi-dimensional thread ids are convenient for problems that are naturally N-D

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

GPU CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618,
Fall 2023

CUDA blocks map to GPU cores (streaming multiprocessors)

GPU

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016 CMU 15-418/618, Spring 2016

 CMU 15-418/618,
Fall 2023

Grid, Block, and Thread
▪ gridDim: The dimensions of the

grid

▪ blockIdx: The block index within
the grid

▪ blockDim: The dimensions of
the block

▪ threadIdx: The thread index
within the block

Why not have gridIdx and threadDim?

 CMU 15-418/618,
Fall 2023

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

“Host” code : serial execution
Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + B[j][i];
}

CUDA kernel definition
“CUDA device” code: kernel function (__global__
denotes a CUDA kernel function) runs on GPU

 CMU 15-418/618,
Fall 2023

Clear separation of host and device code

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAddDoubleB<<<numBlocks, threadsPerBlock>>>(A, B, C);

“Host” code : serial execution on CPU

“Device” code (SPMD execution on GPU)

Separation of execution into host and device code is performed statically by the programmer

__device__ float doubleValue(float x)
{
 return 2 * x;
}

// kernel definition
__global__ void matrixAddDoubleB(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + doubleValue(B[j][i]);
}

 CMU 15-418/618,
Fall 2023

Number of SPMD threads is explicit in program
Number of kernel invocations is not determined by size of data collection
(a kernel launch is not map(kernel, collection) as was the case with graphics shader programming)

const int Nx = 11; // not a multiple of threadsPerBlock.x
const int Ny = 5; // not a multiple of threadsPerBlock.y

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks((Nx+threadsPerBlock.x-1)/threadsPerBlock.x,
 (Ny+threadsPerBlock.y-1)/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads
// 6 blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 // guard against out of bounds array access
 if (i < Nx && j < Ny)
 C[j][i] = A[j][i] + B[j][i];
}

Regular application thread running on CPU (the “host”)

CUDA kernel definition

 CMU 15-418/618,
Fall 2023

CUDA execution model

Host
(serial execution)

CUDA device
(SPMD execution)

Implementation: CPU Implementation: GPU

 CMU 15-418/618,
Fall 2023

CUDA memory model

Host
(serial execution)

CUDA device
(SPMD execution)

Host memory
address space

Device “global”
memory address space

Implementation: CPU Implementation: GPU

Distinct host and device address spaces

 CMU 15-418/618,
Fall 2023

memcpy primitive
Move data between address spaces

Host Device

Host memory
address space

Device “global”
memory address space

float* A = new float[N]; // allocate buffer in host mem

// populate host address space pointer A
for (int i=0 i<N; i++)
 A[i] = (float)i;

int bytes = sizeof(float) * N
float* deviceA; // allocate buffer in
cudaMalloc(&deviceA, bytes); // device address space

// populate deviceA
cudaMemcpy(deviceA, A, bytes, cudaMemcpyHostToDevice);

// note: deviceA[i] is an invalid operation here (cannot
// manipulate contents of deviceA directly from host.
// Only from device code.)

What does cudaMemcpy remind you of?

 CMU 15-418/618,
Fall 2023

CUDA device memory model

Per-block
shared memory

Per-thread
private memory

Readable/ writable by
all threads in block

Readable/ writable by
thread

Device global
memory

Readable/writable
by all threads

Three distinct types of memory visible to kernels

 CMU 15-418/618,
Fall 2023

CUDA example: 1D convolution

input[0]

output[0] output[1] output[2] output[3] output[4] output[5] output[6] output[7]

input[1] input[2] input[3] input[4] input[5] input[6] input[7] input[8] input[9]

output[i] = (input[i] + input[i+1] + input[i+2]) / 3.f;

 CMU 15-418/618,
Fall 2023

1D convolution in CUDA (version 1)
One thread per output element

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += input[index + i];

 output[index] = result / 3.f;
}

write result to global
memory

each thread computes
result for one element

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

.

.

input[0] input[N+1]

output[0]

input[129]

output[127] output[N-1]output[N-128]

input[N-128]

 CMU 15-418/618,
Fall 2023

1D convolution in CUDA (version 2)
One thread per output element: stage input data in per-block shared memory

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // per-block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local variable

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK + threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result / 3.f;
}

All threads cooperatively load
block’s support region from
global memory into shared
memory
(total of 130 load instructions
instead of 3 * 128 load instructions)

barrier (all threads in block)

write result to global
memory

each thread computes
result for one element

int N = 1024 * 1024
cudaMalloc(&devInput, sizeof(float) * (N+2)); // allocate array in device memory
cudaMalloc(&devOutput, sizeof(float) * N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

Host code

CUDA Kernel

 CMU 15-418/618,
Fall 2023

CUDA synchronization constructs
▪ __syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float atomicAdd(float* addr, float amount)
- Atomic operations on both global memory and shared memory variables

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

 CMU 15-418/618,
Fall 2023

Recap: CUDA abstractions
▪ Execution: thread hierarchy

- Bulk launch of many threads (this is imprecise... I’ll clarify later)
- Two-level hierarchy: threads are grouped into thread blocks

▪ Distributed address space
- Built-in memcpy primitives to copy between host and device address spaces
- Three different types of device address spaces
- Per thread, per block (“shared”), or per program (“global”)

▪ Barrier synchronization primitive for threads in thread block

▪ Atomic primitives for additional synchronization (shared and global variables)

 CMU 15-418/618,
Fall 2023

Assigning work

High-end GPU
(16 cores)

Mid-range GPU
(6 cores)

Want CUDA program to run on all of these
GPUs without modification

Note: there is no concept of num_cores in
the CUDA programs I have shown you. (CUDA
thread launch is similar in spirit to a forall
loop in data parallel model examples)

 CMU 15-418/618,
Fall 2023

CUDA compilation
#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input, float* output) {

 __shared__ float support[THREADS_PER_BLK+2]; // per block allocation
 int index = blockIdx.x * blockDim.x + threadIdx.x; // thread local var

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x] = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local variable
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}

launch 8K thread blocks

A compiled CUDA device binary includes:

Program text (instructions)
Information about required resources:
- 128 threads per block
- B bytes of local data per thread
- 130 floats (520 bytes) of shared space

per thread block

int N = 1024 * 1024;
cudaMalloc(&devInput, N+2); // allocate array in device memory
cudaMalloc(&devOutput, N); // allocate array in device memory

// property initialize contents of devInput here ...

convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, devInput, devOutput);

 CMU 15-418/618,
Fall 2023

CUDA thread-block assignment

Thread block scheduler

Shared mem Shared mem Shared mem Shared mem

Device global memory
(DRAM)

Kernel launch command from host
launch(blockDim, convolve)

. . .
Grid of 8K convolve thread blocks (specified by kernel launch)

Block resource requirements:
(contained in compiled kernel binary)
128 threads
520 bytes of shared mem
(128 x B) bytes of local mem

Major CUDA assumption: thread block
execution can be carried out in any order
(no dependencies between blocks)

GPU implementation maps thread blocks
(“work”) to cores using a dynamic
scheduling policy that respects resource
requirements

Shared mem is fast
on-chip memory

Special HW
in GPU

 CMU 15-418/618,
Fall 2023

Quiz

 CMU 15-418/618,
Fall 2023

NVIDIA GTX 980 (2014)
This is one NVIDIA Maxwell GM204 architecture SMM unit (one “core”)

= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector
“Shared” memory

(96 KB)

Warp execution
contexts
(max 64)
(256 KB)

Warp 0
Warp 1
Warp 2

. . .

L1 cache

L1 cache

. . .

Warp 63

SMM resource limits:
- Max warp execution contexts: 64

(2,048 total CUDA threads)
- 96 KB of shared memory

A warp is a set of 32 threads
executing the same instruction

 CMU 15-418/618,
Fall 2023

Running a single thread block on a SMM “core”

support
(520 bytes)

#define THREADS_PER_BLK 128

__global__ void convolve(int N, float* input,
 float* output)
{
 __shared__ float support[THREADS_PER_BLK+2];
 int index = blockIdx.x * blockDim.x +
 threadIdx.x;

 support[threadIdx.x] = input[index];
 if (threadIdx.x < 2) {
 support[THREADS_PER_BLK+threadIdx.x]
 = input[index+THREADS_PER_BLK];
 }

 __syncthreads();

 float result = 0.0f; // thread-local
 for (int i=0; i<3; i++)
 result += support[threadIdx.x + i];

 output[index] = result;
}Recall, CUDA kernels execute as SPMD programs

On NVIDIA GPUs groups of 32 CUDA threads share an instruction stream. These groups called “warps”.
A convolve thread block is executed by 4 warps (4 warps x 32 threads/warp = 128 CUDA threads per block)
(Warps are an important GPU implementation detail, but not a CUDA abstraction!)

SMX core operation each clock:
- Select up to four runnable warps from 64 resident on SMM core (thread-level parallelism)
- Select up to two runnable instructions per warp (instruction-level parallelism) *

* This diagram doesn’t show additional units used to execute load/store instructions or “special math” (like pow, sin/cos, etc.)

 CMU 15-418/618,
Fall 2023

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

L2 Cache (2 MB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

Shared (96 KB)

GPU memory
DDR5 DRAM

224 GB/sec
(256 bit interface)

NVIDIA GTX 980 (16 SMMs)

 CMU 15-418/618,
Fall 2023

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

 CMU 15-418/618, Spring 2016

. . .

. . .

L2 Cache (2 MB)

GPU memory
(DDR5 DRAM)

224 GB/sec

NVIDIA GTX 980 (2014)

1.1 GHz clock

16 SMM cores per chip

16 x 4 warps x 32 threads/warp
 = 2,048 SIMD mul-add ALUs
 = 4.6 TFLOPs

Up to 16 x 64 = 1024 interleaved warps
per chip (32,768 CUDA threads/chip)

TDP: 165 watts

 CMU 15-418/618,
Fall 2023

GTX 980 (2014) -> A100 (2020)
▪ SMMs remain the same

- Clock speed: 1064 MHz -> 1110 MHz
- Max warps per SMM: 64 -> 64
- Threads per warp: 32 -> 32
- Shared memory per SMM: 96KB -> 96KB (V100) -> 192

KB(A100)

▪ Streaming multiprocessors: 16 SMMs -> 128 SMMs

▪ Peak performance: 4.6 TFLOPs -> 312 TFLOPs (largely because
of tensor cores)

 CMU 15-418/618,
Fall 2023

Tensor Cores
▪ Matrix multiplication unit in SMM

 CMU 15-418/618,
Fall 2023

Tensor Cores

 CMU 15-418/618,
Fall 2023

Review
(If you understand this example you understand how

CUDA programs run on a GPU)

 CMU 15-418/618,
Fall 2023

Running the kernel
convolve hernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Let’s assume array size N is very large, so the host-side kernel launch generates thousands of thread blocks.
#define THREADS_PER_BLK 128
convolve<<<N/THREADS_PER_BLK, THREADS_PER_BLK>>>(N, input_array, output_array);

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Let’s run this program on the fictitious two-core GPU below.
(Note: my fictitious cores are much “smaller” than the GTX 980 cores discussed in lecture: fewer execution
units, support for fewer active threads, less shared memory, etc.)

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

 CMU 15-418/618,
Fall 2023

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Execution context
storage for 384 CUDA

threads
(12 warps)

“Shared” memory
storage (1.5 KB)

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 1: host sends CUDA device (GPU) a command (“execute this kernel”)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 2: scheduler maps block 0 to core 0 (reserves execution contexts for 128 threads and
520 bytes of shared storage)

NEXT = 1
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 0 (contexts 0-127)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 2
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 1 (contexts 0-127)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts
(interleaved mapping shown)

NEXT = 3
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255)

Block 1 (contexts 0-127)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 3: scheduler continues to map blocks to available execution contexts (interleaved mapping shown).
Only two thread blocks fit on a core
(third block won’t fit due to insufficient shared storage 3 x 520 bytes > 1.5 KB)

NEXT = 4
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 0: support
(520 bytes @ 0x0)

Block 0 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 4: thread block 0 completes on core 0

NEXT = 4
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 5: block 4 is scheduled on core 0 (mapped to execution contexts 0-127)

NEXT = 5
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 2: support
(520 bytes 0x520)

Block 2 (contexts 128-255) Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 6: thread block 2 completes on core 0

NEXT = 5
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)

 CMU 15-418/618,
Fall 2023

Fetch/Decode

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

GPU Work Scheduler

Fetch/Decode

Core 0 Core 1

EXECUTE: convolve
ARGS: N, input_array, output_array
NUM_BLOCKS: 1000

Step 7: thread block 5 is scheduled on core 0 (mapped to execution contexts 128-255)

NEXT = 6
TOTAL = 1000

Execution context
storage for 384 CUDA

threads
“Shared” memory

storage (1.5 KB)

Block 4: support
(520 bytes @ 0x0)

Block 4 (contexts 0-127)

Running the CUDA kernel
Kernel’s execution requirements:

Each thread block must execute 128 CUDA threads
Each thread block must allocate 130 x sizeof(float) = 520 bytes of shared memory

Block 1: support
(520 bytes @ 0x0)

Block 3: support
(520 bytes @ 0x520)

Block 1 (contexts 0-127)

Block 3 (contexts 128-255)
Block 5: support

(520 bytes 0x520)

Block 5 (contexts 128-255)

 CMU 15-418/618,
Fall 2023

Review: what is a “warp”?
▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

Fetch/Decode

…
thread 0 ctx

thread 31 ctx

thread 32 ctx

thread 63 ctx

thread 64 ctx

…

…

thread 383 ctx

Warp 0 context

Warp 1 context

…
thread 352 ctx

Warp 11 context

In this fictitious NVIDIA GPU example:
Core maintains contexts for 12 warps
Selects one warp to run each clock

 CMU 15-418/618,
Fall 2023

Review: what is a “warp”?
▪ A warp is a CUDA implementation detail on NVIDIA GPUs

▪ On modern NVIDIA hardware, groups of 32 CUDA threads in a thread block are
executed simultaneously using 32-wide SIMD execution.

- These 32 logical CUDA threads share an instruction stream and therefore
performance can suffer due to divergent execution.

- This mapping is similar to how ISPC runs program instances in a gang.

▪ The group of 32 threads sharing an instruction stream is called a warp.

- In a thread block, threads 0-31 fall into the same warp (so do threads 32-63, etc.)

- Therefore, a thread block with 256 CUDA threads is mapped to 8 warps.

- Each “SMM” core in the GTX 980 we discussed last time is capable of scheduling
and interleaving execution of up to 64 warps.

- So a “SMM” core is capable of concurrently executing multiple CUDA thread
blocks.

 CMU 15-418/618,
Fall 2023

A more advanced review
(If you understand the following examples you really understand how
CUDA programs run on a GPU, and also have a good handle on the work

scheduling issues we’ve discussed in class to this point.)

 CMU 15-418/618,
Fall 2023

Consider a program that creates a histogram:
▪ This example: build a histogram of values in an array

- All CUDA threads atomically update shared variables in global memory

▪ Notice I have never claimed CUDA thread blocks were guaranteed to be independent. I
only stated CUDA reserves the right to schedule them in any order.

Global memory

int counts[10]

Thread block 0 Thread block N

. . .atomicAdd(&counts[A[i]], 1); atomicAdd(&counts[A[i]], 1);

int* A = {0, 3, 4, 1, 9 , 2, . . . , 8, 4 , 1 }; // array of integers between 0-9

▪ This is valid code! This use of atomics does not impact implementation’s ability to
schedule blocks in any order (atomics used for mutual exclusion, and nothing more)

. . .
int A[N]

 CMU 15-418/618,
Fall 2023

. . .

But is this reasonable CUDA code?
▪ Consider implementation on a single core GPU with resources for

one CUDA thread block per core
- What happens if the CUDA implementation runs block 0 first?

- What happens if the CUDA implementation runs block 1 first?

Global memory
int myFlag

// do stuff here

atomicAdd(&myFlag, 1);

while(atomicAdd(&myFlag, 0) == 0)
 { }

// do stuff here

(assume myFlag is initialized to 0)

Thread block 0 Thread block 1

 CMU 15-418/618,
Fall 2023

CUDA summary
▪ Execution semantics

- Partitioning of problem into thread blocks is in the spirit of the data-parallel model
(intended to be machine independent: system schedules blocks onto any number of cores)

- Threads in a thread block actually do run concurrently (they have to, since they cooperate)
- Inside a single thread block: SPMD shared address space programming

- There are subtle, but notable differences between these models of execution. Make sure
you understand it. (And ask yourself what semantics are being used whenever you
encounter a parallel programming system)

▪ Memory semantics
- Distributed address space: host/device memories
- Thread local/block shared/global variables within device memory

- Loads/stores move data between them (so it is correct to think about local/shared/
global memory as being distinct address spaces)

▪ Key implementation details:
- Threads in a thread block are scheduled onto same GPU core to allow fast communication

through shared memory
- Threads in a thread block are are grouped into warps for SIMD execution on GPU hardware

