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Many kinds of processors

Why so many? What differentiates these processors?

CPU GPU FPGA Etc.
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Why so many kinds of processors?

Each processor is designed for different kinds of programs

§ CPUs
§ “Sequential” code – i.e., single / few threads

§ GPUs
§ Programs with lots of independent work è “Embarrassingly parallel”

§ Many others: Deep neural networks, Digital signal processing, Etc.

TODAY
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Parallelism pervades architecture

§ Speeding up programs is all about parallelism
§ 1) Find independent work
§ 2) Execute it in parallel
§ 3) Profit

§ Key questions:
§ Where is the parallelism?
§ Whose job is it to find parallelism?
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Where is the parallelism?

Different processors take radically different approaches

§ CPUs: Instruction-level parallelism
§ Implicit
§ Fine-grain

§ GPUs: Thread- & data-level parallelism
§ Explicit
§ Coarse-grain
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Whose job to find parallelism?

Different processors take radically different approaches

§ CPUs: Hardware dynamically schedules instructions
§ Expensive, complex hardware è Few cores (tens)
§ (Relatively) Easy to write fast software

§ GPUs: Software makes parallelism explicit
§ Simple, cheap hardware è Many cores (thousands)
§ (Often) Hard to write fast software
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Visualizing these differences

§ Pentium 4 
“Northwood” (2002)
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Visualizing these differences

§ Pentium 4 
“Northwood” (2002)

§ Highlighted areas 
actually execute 
instructions

è Most area spent 
on scheduling 
(not on executing the 
program)
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Visualizing these differences

§ AMD Fiji (2015)
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Visualizing these differences

§ AMD Fiji (2015)

§ Highlighted areas 
actually execute 
instructions

è Most area 
spent executing 
the program
§ (Rest is mostly 

I/O & memory, 
not scheduling)



Today you will learn…

How CPUs exploit ILP to speed up sequential code

§ Key ideas:
§ Pipelining & Superscalar: Work on multiple instructions at once
§ Out-of-order execution: Dynamically schedule instructions 

whenever they are “ready”
§ Speculation: Guess what the program will do next to discover 

more independent work, “rolling back” incorrect guesses

§ CPUs must do all of this while preserving the illusion that 
instructions execute in-order, one-at-a-time
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In other words… Today is about:



Buckle up!

…But please ask questions!
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Example:
Polynomial evaluation

int poly(int *coef,

         int terms, int x) {

  int power = 1;

  int value = 0;

  for (int j = 0; j < terms; j++) {

    value += coef[j] * power;

    power *= x;

  }

  return value;

}
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Example:
Polynomial evaluation
§ Compiling on ARM

int poly(int *coef,

         int terms, int x) {

  int power = 1;

  int value = 0;

  for (int j = 0; j < terms; j++) {

    value += coef[j] * power;

    power *= x;

  }

  return value;

}

poly:
  cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
.L3:
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  pop     {r4, r5}
  bx      lr
.L4:
  movs    r0, #0
  bx      lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]
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Example:
Polynomial evaluation
§ Compiling on ARM

int poly(int *coef,

         int terms, int x) {

  int power = 1;

  int value = 0;

  for (int j = 0; j < terms; j++) {

    value += coef[j] * power;

    power *= x;

  }

  return value;

}

poly:
  cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
.L3:
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  pop     {r4, r5}
  bx      lr
.L4:
  movs    r0, #0
  bx      lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]
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Example:
Polynomial evaluation
§ Compiling on ARM

  for (int j = 0; j < terms; j++) {

    value += coef[j] * power;

    power *= x;

  }

.L3:
  ldr     r5, [r3], #4  // r5 <- coef[j]; j++   (two operations)
  cmp     r1, r3   // compare: j < terms?
  mla     r0, r4, r5, r0 // value += r5 * power  (mul + add)
  mul     r4, r2, r4  // power *= x
  bne     .L3    // repeat?
  

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]
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Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ...
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Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ...
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Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ...

...
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  pop     {r4, r5}
  bx      lr
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Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp     r1, #0
  ble     .L4
  push    {r4, r5}
  mov     r3, r0
  add     r1, r0, r1, lsl #2
  movs    r4, #1
  movs    r0, #0
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ...

...
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  ldr     r5, [r3], #4
  cmp     r1, r3
  mla     r0, r4, r5, r0
  mul     r4, r2, r4
  bne     .L3
  pop     {r4, r5}
  bx      lr
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The software-hardware boundary

§ The instruction set architecture (ISA) is a functional 
contract between hardware and software
§ It says what each instruction does, but not how
§ Example: Ordered sequence of x86 instructions

§ A processor’s microarchitecture is how the ISA is 
implemented

Arch : 𝜇Arch :: Interface : Implementation
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Simple CPU model

§ Execute instructions in program order

§ Divide instruction execution into stages, e.g.:
§ 1. Fetch – get the next instruction from memory
§ 2. Decode – figure out what to do & read inputs
§ 3. Execute – perform the necessary operations
§ 4. Commit – write the results back to registers / memory

§ (Real processors have many more stages)
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr

1. Read “ldr r5, [r3] #4” 
from memory
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr

2. Decode “ldr r5, [r3] #4” 
and read input regs
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr

3. Load memory at r3 and 
compute r3 + 4
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr

4. Write values 
into regs r5 and r3
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp
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Evaluating polynomial on the 
simple CPU model

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mla
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Evaluating polynomial on the 
simple CPU model

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1 ns

Throughput = 1 instr / 4 ns
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Simple CPU is very wasteful

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

TIME
1 ns

Idle 
Hardware
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Pipelining
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mul mla cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

bne mul mla cmp
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Pipelining keeps CPU busy through 
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr bne mul mla
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Evaluating polynomial on the 
pipelined CPU

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1 ns

Throughput = 1 instr / ns
4X speedup!CMU 15-418/15-618, Fall 2023



Speedup achieved through 
pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME
Processor works on 4 
instructions at a time
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Limitations of pipelining

§ Parallelism requires independent work

§Q: Are instructions independent?

§ A: No! Many possible hazards limit parallelism…
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Data hazards

ldr ra, [rb], #4 // ra ß Memory[rb]; rb ß rb + 4
cmp rc, rd       // rc ß rd + re

Q: When can the CPU pipeline the cmp behind ldr?

Fetch ldr cmp … … … …

Decode ldr cmp … … …

Execute ldr cmp … …

Commit ldr cmp …

§ A: When they use 
different registers
§ Specifically, when 
cmp does not read 
any data written 
by ldr

§ E.g., rb != rd
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Dealing with data hazards:
Stalling the pipeline

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

ldr

§ Cannot pipeline cmp (ldr writes r3)
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§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

??
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§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr
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§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Inject a “bubble” (NOP) 
into the pipeline
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§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

CPU
Fetch Decode Execute Commit

mla cmpmul

cmp proceeds once ldr 
has committed
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Stalling degrades performance

§ But stalling is sometimes unavoidable
§ E.g., long-latency instructions (divide, cache miss)

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne ldr

…

TIME
Processor works on 3 
instructions at a time
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Dealing with data hazards:
Forwarding data
§Wait a second… data is available after Execute!

§ Forwarding eliminates many (not all) pipeline stalls

CPU
Fetch Decode Execute Commit

mla cmp ldrmul
r3+4r3

r1
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Speedup achieved through 
pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME
Processor works on 4 

instructions at a time J 
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Pipelining is not free!

§Q: How well does forwarding scale?
§ A: Not well… many forwarding paths in deep & 

complex pipelines

CPU
Fetch Decode Execute Commit

Mem

Execute
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Control hazards + Speculation

§ Programs must appear to execute in program order
è All instructions depend on earlier ones

§Most instructions implicitly continue at the next…
§ But branches redirect execution to new location
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Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

bne mul mla cmp

Static instruction sequence
(i.e., program layout in memory)
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Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

pop bne mul mla

Static instruction sequence
(i.e., program layout in memory)
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Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

bx pop bne mul

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the 

wrong instructions! 
(Loop not finished)
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Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

ldr bne

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the 

wrong instructions! 
(Loop not finished)

(Next loop 

iteration)
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Pipeline flushes destroy 
performance

§ Penalty increases with deeper pipelines

Fetch ldr cmp mla mul bne ldr cmp mla

Decode ldr cmp mla mul bne ldr cmp

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne

…

TIME
Processor works on 2 or 3  

instructions at a time
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Dealing with control hazards:
Speculation!
§ Processors do not wait for branches to execute

§ Instead, they speculate (i.e., guess) where to go next 
+ start fetching

§Modern processors use very sophisticated 
mechanisms
§ E.g., speculate in Fetch stage—before processor even 

knows instrn is a branch!
§ >95% prediction accuracy
§ Still, branch mis-speculation is major problem
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Pipelining Summary

§ Pipelining is a simple, effective way to improve 
throughput
§ 𝑁-stage pipeline gives up to 𝑁× speedup

§ Pipelining has limits
§ Hard to keep pipeline busy because of hazards
§ Forwarding is expensive in deep pipelines
§ Pipeline flushes are expensive in deep pipelines

è Pipelining is ubiquitous, but tops out at 𝑁 ≈ 15

CMU 15-418/15-618, Fall 2023



Software Takeaways

§ Processors with a simple “in-order” pipeline are very 
sensitive to running “good code”
§ Compiler should target a specific model of CPU
§ Low-level assembly hacking

§…But very few CPUs are in-order these days
§ E.g., embedded, ultra-low-power applications

§ Instead, ≈all modern CPUs are “out-of-order”
§ Even in classic “low-power domains” (like mobile)
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Out-of-Order Execution

CMU 15-418/15-618, Fall 2023



Increasing parallelism via 
dataflow
§ Parallelism limited by many false dependencies, 

particularly sequential program order

§Dataflow tracks how instructions actually depend on 
each other
§ True dependence: read-after-write

Dataflow increases parallelism by eliminating 
unnecessary dependences
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Example: Dataflow in polynomial 
evaluation

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

at
io

n
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Example: Dataflow in polynomial 
evaluation

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

at
io

n

ldr

cmp mla

mul

bne

ldr mul

cmp

bne



Example: Dataflow polynomial 
execution
§ Execution only, with perfect scheduling & unlimited 

execution units
§ ldr, mul execute in 2 cycles
§ cmp, bne execute in 1 cycle
§ mla executes in 3 cycles

§Q: Does dataflow speedup execution? By how much?

§Q: What is the performance bottleneck?
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ldr
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr

cmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr mul

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr mul

cmp

mlabne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr mul

ldr
cmp

mla
mul

bne

cmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mlacmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E
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ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E
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Example: Dataflow polynomial 
execution
§Q: Does dataflow speedup execution? By how much?

§ Yes! 3 cycles / loop iteration
§ Instructions per cycle (IPC) = 5/3 ≈ 1.67

(vs. 1 for perfect pipelining)

§Q: What is the performance bottleneck?
§ mla: Each mla depends on previous mla & takes 3 cycles
§ è This program is latency-bound
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Latency Bound

§What is the “critical path” of the computation?
§ Longest path across iterations in dataflow graph
§ E.g., mla in last slide (but could be multiple ops)

§ Critical path limits maximum performance
§ Real CPUs may not achieve latency bound, but 

useful mental model + tool for program analysis
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Out-of-order (OoO) execution uses 
dataflow to increase parallelism
§ Idea: Execute programs in dataflow order, but give 

the illusion of sequential execution
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High-level OoO microarchitecture

CPU

Fetch Decode Commit

Execute

      Instruction    Buffer

In-order In-orderOut-of-order
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CPU

OoO is hidden behind 
in-order frontend & commit

§ Instructions only enter & leave instruction buffer in 
program order; all bets are off in between!

Fetch Decode Commit

Execute

      Instruction    Buffer

ABC
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Example: OoO polynomial 
evaluation
§Q: Does OoO speedup execution? By how much?

§Q: What is the performance bottleneck?

§ Assume perfect forwarding & branch prediction 
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Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr

Execute ldr

Commit ldr

TIME

CMU 15-418/15-618, Fall 2023



Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr cmp

Execute ldr cmp

Commit ldr cmp

TIME
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Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla

Execute ldr cmp mla

Commit ldr cmp mla

TIME
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Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul

Execute ldr cmp mla mul

Commit ldr cmp mla mul

TIME
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Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul bne

Execute ldr cmp mla mul bne

Commit ldr cmp mla mul bne

TIME
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Example: OoO polynomial 
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME
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Example: OoO polynomial 
evaluation pipeline diagram

§Wait a minute… this isn’t OoO… or even faster 
than a simple pipeline!

§Q: What went wrong?
§ A: We’re throughput-limited: can only exec 1 instrn

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME
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High-level Superscalar OoO 
microarchitecture
§Must increase pipeline width to increase ILP > 1

CPU

Fetch Decode

Execute

Commit

Execute Execute

      Instruction    Buffer

In-order In-orderOut-of-order

Fetch Decode Commit
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Focus on Execution, not Fetch & 
Commit
§Goal of OoO design is to only be limited by 

dataflow execution
§ Fetch and commit are over-provisioned so that they 

(usually) do not limit performance
è Programmers can (usually) ignore fetch/commit

§ Big Caveat: Programs with inherently unpredictable 
control flow will often be limited by fetch stalls 
(branch misprediction)
§ E.g., branching based on random data
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr

cmp

Execute

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3

Example: Superscalar OoO 
polynomial evaluation
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

mul

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp

mla

mul

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne

mla

mul ldr

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
ldr     r5, [r3], #4
cmp     r1, r3
mla     r0, r4, r5, r0
mul     r4, r2, r4
bne     .L3
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

Observe:
§ Front-end & 

commit in-order 
(i.e., left-to-right)

§ Execute
out-of-order
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Example: Superscalar OoO 
polynomial evaluation

Fetch &
Decode 

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Execute

ldr cmp bne mul ldr cmp bne mul ldr cmp

mla mla mla mla mla

mul ldr cmp bne mul ldr cmp bne mul

Commit

ldr cmp mla bne cmp mla bne cmp mla bne cmp mla

mul ldr mul ldr mul ldr mul

TIME

One loop iteration / 3 cycles!CMU 15-418/15-618, Fall 2023



Structural hazards: Other 
throughput limitations
§ Execution units are specialized

§ Floating-point (add/multiply)
§ Integer (add/multiply/compare)
§ Memory (load/store)

§ Processor designers must choose which execution 
units to include and how many

§ Structural hazard: Data is ready, but instr cannot 
issue because no hardware is available
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Example: Structural hazards can 
severely limit performance

Fetch &
Decode 

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Mem 
Execute

ldr ldr ldr ldr ldr ldr

Int 
Execute

cmp bne cmp bne cmp bne cmp bne cmp bne cmp

Mult 
Execute

mla mul mla mul mla mul

Commit

ldr cmp mla mul ldr mla mul ldr mla

bne cmp bne cmp

One loop iteration / 5 cycles LCMU 15-418/15-618, Fall 2023



Throughput Bound

§ Ingredients:
§ Number of operations to perform (of each type)
§ Number & issue rate of “execution ports”/“functional 

units” (of each type)

§ Throughput bound = ops / issue rate
§ E.g., (1 mla + 1 mul) / (2 + 3 cycles)

§ Again, a real CPU might not exactly meet this bound
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Software Takeaway

§OoO is much less sensitive to “good code”
§ Better performance portability
§ Of course, compiler still matters, but much less

§OoO makes performance analysis much simpler
§ Throughput bound: Availability of execution ports
§ Latency bound: “Critical path” latency
§ Slowest gives good approximation of program perf
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Scaling Instruction-Level 
Parallelism
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Recall from last time:
ILP & pipelining tapped out… why?
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Superscalar scheduling is complex 
& hard to scale
§Q: When is it safe to issue two instructions?
§ A: When they are independent

§ Must compare all pairs of input and output registers

§ Scalability: 𝑂(𝑊!) comparisons where 𝑊 is “issue 
width” of processor
§ Not great!
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Limitations of ILP

§ Programs have limited ILP
§ Even with perfect scheduling, >8-wide issue doesn’t help

§ 4-wide superscalar × 20-stage pipeline = 80 instrns in flight
§ High-performance OoO buffers hundreds of instructions

§ Pipelines can only go so deep
§ Branch misprediction penalty grows
§ Frequency (GHz) limited by power

§ Dynamic scheduling overheads are significant
§ Out-of-order scheduling is expensive
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Limitations of ILP è Multicore

§ ILP works great! …But is complex + hard to scale

§ From hardware perspective, multicore is much more 
efficient, but…

§ Parallel software is hard!
§ Industry resisted multicore for as long as possible
§ When multicore finally happened, CPU 𝜇arch simplified 
è more cores

§ Many program(mer)s still struggle to use multicore 
effectively
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