Lecture 8:

Instruction-Level
Parallelism

15-418 Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2023

Many kinds of processors

CPU GPU FPGA Etc.

Why so many? What differentiates these processors®

CMU 15-418/15-618, Fall 2023

Why so many kinds of processors?

Each processor is designed for different kinds of programs

7
O
04 b

= CPUs

" “Sequential” code —i.e., single / few threads

= GPUs

" Programs with lots of independent work =» “Embarrassingly parallel”

" Many others: Deep neural networks, Digital signal processing, Etc.

CMU 15-418/15-618, Fall 2023

Parallelism pervades architecture

= Speeding up programs is all about parallelism
= 1) Find independent work

= 2) Execute it in parallel
= 3) Profit

= Key questions:
= Where is the parallelism?

" Whose job is it to find parallelism?

Where is the parallelism?

Different processors take radically different approaches

= CPUs: Instruction-level parallelism
= Implicit

® Fine-grain

®* GPUs: Thread- & data-level parallelism
= Explicit

= Coarse-grain

Whose job to find parallelism?

Different processors take radically different approaches

= CPUs: Hardware dynamically schedules instructions
" Expensive, complex hardware =» Few cores (tens)

= (Relatively) Easy to write fast software

= GPUs: Software makes parallelism explicit
» Simple, cheap hardware = Many cores (thousands)

= (Often) Hard to write fast software

Visualizing these differences

.
" Pentium 4

“Northwood” (2002)

|"||||_||=l |
!lllllil[‘.‘

-256-kByte | || 1 = |- 256 kByte -
L2 Cache [[fwigg = & 5825 & L2 Cache
__Block M femsmasms == | Block __

- & o
sllaisislalsliia s lnlalsleinle wwmh; uu_z-ubhmmmm l&%}ﬂl’h&gg&b@b

Visualizing these differences

= Pentium 4
“Northwood” (2002)

= Highlighted areas
actually execute
instructions

=» Most area spent
on scheduling

(not on executing the
program)

Visualizing these differences

= AMD Fiji (2015)

Visualizing these differences

= AMD Fiji (2015)

= Highlighted areas
actually execute
instructions

=>» Most area
spent executing
the program

= (Rest is mostly
/O & memory,
not scheduling)

Today you will learn...

How CPUs exploit ILP to speed up sequential code

= Key ideas:
" Pipelining & Superscalar: Work on multiple instructions at once

" Qut-of-order execution: Dynamically schedule instructions
whenever they are “ready”

» Speculation: Guess what the program will do next to discover
more independent work, “rolling back” incorrect guesses

= CPUs must do all of this while preserving the illusion that
instructions execute in-order, one-at-a-time

In other words... Today is about:

!';'Mt s
:1 - 3‘ :" s ‘ g‘}‘-
oot 41 g

ﬂ fﬁ]k I

e

b o
’

HFTE :
TEP. MMXE SSilsva

‘“;‘.‘ ar—ﬂm 1‘)

mﬁm g: :I

T 5'-‘ ;

» - L
D e A TSR m\u&u&b‘o‘; B e S T T e e '

Buckle up!

...But please ask questionsl!

Example:
Polynomial evaluation

int poly(int *coef,
int terms, int x) {
int power = 1;
int value = 0;
for (int j = 0; j < terms; j++) {
value += coef[j] * power;
power *= X;
}

return value;

Example:
Polynomial evaluation
= Compiling on ARM poly:
cmp
ble
int poly(int *coef, push
. . mov
int terms, int x) { ~dd
int power = 1; movs
int value = 0; LQOVS
for (int j = 0; j < terms; j++) { ' 1ar
value += coef[j] * power; cmp
. i mla
power *= X; U
} bne
return value; pop
bx
¥ L4:
movs

bx

ro:
rl:
re:
r3:
r4:
r5:

value

&coef[terms]

X

&coef[j]

power
coef[j]

rl,
.L4
{r4
r3,
rl,
r4,
ro,

rs,
rl,
ro,
r4,
.L3
{r4
Ir

ro,
1r

#0

, 5}

ro
ro, ril,
#1
#0

[r3], #4
r3

r4, r5,
r2, r4

, 5}

#0

1s1 #2

ro

Example:
Polynomial evaluation
. Compiling on ARM poly:
cmp
ble
int poly(int *coef, push
int terms, int x) { mov
add
int power = 1; Mmovs
int value = 0; LQOVS
for (int j = 0; j < terms; j++) { ' 1&r
value += coef[j] * power; cmp
- mla
power *= X; mu
} bne

CMU 15-418/15-618, Fall 2023

ro: value
rl: &coef[terms]
r2: X
r3: &coefl[j]
r4: power
r5: coef[j]
9
rl, #0 -g
.L4 S
{r4, r5} A
r3, ro
rl, rO, rl, 1sl #2
r4, #1
ro, #0
r5, [r3], #4 s
rl, r3 =
ro, r4, r5, rO 5
r4, r2, ré4 =
.L3

Example:
Polynomial evaluation

ro:

r:
r3:
r4:
rs5:

value

: &coef[terms]
X

&coef[j]
power
coef[j]

= Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= X;

| ::

.L3:
1dr r5, [r3], #4 // r5 <- coef[j]; j++
cmp rl, r3 // compare: j < terms?
mla ro, r4, r5, rO // value += r5 * power
mul rd, r2, r4 // power *= X
bne .L3 // repeat?

CMU 15-418/15-618, Fall 2023

(two operations)

(mul + add)

Example:
Polynomial evaluation

= Executing poly (A, 3, x)

cmp rl, #0

ble .L4

push {r4, r5}

mov r3, ro

add rl, rO, rl, 1sl1 #2
movs r4, #1

movs ro, #0

T1dr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5, roO
mul r4, r2, r4

bne L3

Example:
Polynomial evaluation

= Executing poly (A, 3, x)

rl, #0 a
.L4 =
{r4, r5} E
r3, ro

rl, rO, rl, 1sl #2
r4, #1

ro, #0

r5, [r3], #4 S
rl, r3 =
r0, r4, r5, r0 @
rd, r2, r4 o
.L3 -

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation

= Executing poly (A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla

rl, #O0

.L4

{r4, r5}
r3, ro

rl, rO, ril,
r4, #1

ro, #0

r5, [r3], #4
rl, r3

ro, r4, r5,
rd, r2, r4

.L3

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne
pop
bx

Preamble

1s1 #2

ro

CMU 15-418/15-618, Fall 2023

rs,
rl,
ro,
r4,
.L3
rs5,
rl,
ro,
r4,
.L3
{r4,

[r3], #4
r3

r4, r5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

r5}

ro

ro

1 iteration

2 iteration J

J

Fini

Example:
Polynomial evaluation

= Executing poly (A, 3, x)

cmp
ble
push
mov
add
movs
movs
Tdr
cmp
mla
mu 1
bne

rl, #O0

.L4

{r4, r5}
r3, ro

rl, rO, ril,
r4, #1

ro, #0

r5, [r3], #4
rl, r3

ro, r4, r5,
rd, r2, r4

.L3

Preamble
f—
o
=

1s1 #2

ro

CMU 15-418/15-618, Fall 2023

rs,
rl,
ro,
r4,
.L3
rs5,
rl,
ro,
r4,
.L3
{r4,

[r3], #4
r3

r4, r5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

r5}

ro

ro

1 iteration

2 iteration J

J

Fini

The software-hardware boundary

" The instruction set architecture (ISA) is a functional
contract between hardware and software

" [t says what each instruction does, but not how

=" Example: Ordered sequence of x86 instructions

= A processor’s microarchitecture is how the ISA is
implemented

Arch : Arch :: Interface : Implementation

Simple CPU model

= Execute instructions in program order

= Divide instruction execution into stages, e.g.:
= 1. Fetch — get the next instruction from memory
= 2. Decode — figure out what to do & read inputs
= 3. Execute — perform the necessary operations

» 4. Commit — write the results back to registers / memory

= (Real processors have many more stages)

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0

mul r4, r2, r4

bne L3 1. Read “Idr r5, [r3] #4”

from memory

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 ldr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne L3 2. Decode “Idr r5, [r3] #4”

and read input regs

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 1dr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne L3 3. Load memory at r3 and

compute r3 + 4

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

-1dr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
T1dr r5, [r3], #4 T1dr
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

4. Write values
into regs r5 and r3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4 cmp
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

rS,
rl,
ro,

.L3
rS,
ro,

r4,
.L3

[r3], #4
r3

r4, r5,
r2, r4

[r3], #4
r3

r4, r5,
r2, r4

ro

CPU
Decode Execute Commit
ro

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

How fast is this processor?

1 ns Latency? Throughput?
L ghp
Fetch | ldr cmp mla

Decode 1dr cmp mla
Execute 1dr cmp
Commit ldr cmp

\ J J |

Y Y
Latency = 4 ns / instr Throughput = 1 instr / 4 ns

CMU 15-418/15-618, Fall 2023

Simple CPU is very wasteful

1 ns
L

CMU 15-418/15-618, Fall 2023

Pipelining

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, rO

mu r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 1dr

cmp rl, r3

mla rO, r4, r5, rO

mul r4, r2, r4 \\ ,/

bne L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, rO

mu r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 cmp 1dr

cmp rl, r3

mla rO, r4, r5, rO

mul r4, r2, r4 \\ ,/

bne L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, rO

mul r4d, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mla cmp ldr

cmp rl, r3

mla rO, r4, r5, rO

mul r4, r2, r4 \\ ,/

bne L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

T1dr r5, [r3], #4

cmp rl, r3 - D
mla rO0, r4, r5, roO

mu rd, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 mu'l mla cmp Tdr
cmp rl, r3

mla rO0, r4, r5, roO

mu r4d, r2, r4 Q ” 4

bne L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 // \\
mla rO, r4, r5, rO

mul r4d, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 bne mu mla cmp
cmp rl, r3

mla rO0, r4, r5, roO

mul r4, r2, r4 \\ ,/

bne L3

Pipelining keeps CPU busy through
instruction-level parallelism

" |dea: Start on the next instr’n immediately

Tdr r5, [r3], #4

cmp rl, r3 @ N
mla rO0, r4, r5, roO

mu r4, r2, r4

bne L3 Fetch Decode Execute Commit
1dr r5, [r3], #4 1dr bne mu mla
cmp rl, r3

mla rO0, r4, r5, roO

mul r4, r2, r4 \\ ,/

bne L3

Evaluating polynomial on the

pipelined CPU

1 ns

How fast is this processor?

Latency? Throughput?

—
Fetch | Idr|cmp |mla|mul |bne| ldr|cmp|mla|mul|bne
Decode Idr|{cmp [mla|mul |bne | ldr |cmp |mla|mul
Execute Idr|{cmp|mla|mul |bne| Idr|cmp|mla
Commit Idr|{cmp|mla|mul |bne | ldr|cmp

Latency = 4 ns / instr
CMU 15-418/15-618, Fall 2023

Throughput = 1 instr / ns

4X speedup!

Speedup achieved through
pipeline parallelism

) TIME

Processor works on 4

instructions at a time

Fetch | ldr|cmp |mla|mul |bne| ldr mla [mul | bne
Decode ldr |cmp |mla |mul | bne cmp |mla|mul
Execute Idr|{cmp|mla|mul Idr | cmp |mla
Commit Idr | cmp|mla bne | 1dr | cmp

CMU 15-418/15-618, Fall 2023

Limitations of pipelining

" Parallelism requires independent work

" Q: Are instructions independent?

= A: No! Many possible hazards limit parallelism...

Data hazards

1dr ra,
cmp rc,

rd

[rb]l, #4 // ra & Memory[rb]; rb € rb + 4
// rc € rd + re

Q: When can the CPU pipeline the cmp behind 1dr?

Fetch | ldr | cmp
Decode 1dr | cmp
Execute Tdr | cmp
Commit Idr | cmp

CMU 15-418/15-618, Fall 2023

= A: When they use

different registers
= Specifically, when
cmp does not read

any data written
by 1dr

=" E.g., rb != rd

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

1dr r5,,.[r3], #4
II‘P > (T

cmp rl, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
Tdr r5, [r3], #4

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

Tdr r5,([r3], #4

cmp rl,r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute
1dr r5, [r3], #4 ldr

cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne .L3

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

r5,,.[r3], #4
rl,(rB

1dr

ro,
r4,
.L3

rs,
rl,
ro,
r4,
L3

r4, r5,
r2, r4

[r3], #4
r3

rd, r5,
r2, r4

ro CPU
Decode Execute
cmp T1dr
ro

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

Tdr r5,([r3], #4
cmp ri, r3
-m'la ro, r4, r5, roO CPU
mul r4, r2, r4
bne .L3 Decode Execute Commit
1dr r5, [r3], #4 cmp O 1dr
cmp rl, r3
mla ro, r4, r5, roO
mul r4, r2, r4

bne .L3 Inject a “bubble” (NOP)
into the pipeline

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Stalling the pipeline

= Cannot pipeline cmp (1dr writes r3)

Tdr r5,([r3], #4

cmp ri, r3

mla ro, r4, r5, r0 CPU

mul r4, r2, r4

bne .L3 Decode Execute Commit
1dr r5, [r3], #4 mla cmp O
cmp rl, r3

mla ro, r4, r5, roO

mul r4, r2, r4

bne L3 cmp proceeds once 1dr
has committed

CMU 15-418/15-618, Fall 2023

Stalling degrades performance

Processor works on 3
instructions at a time

Fetch | ldr Idr | cmp [mla |mul] bne
Decode bne | 1dr | cmp | mlaj} mul
Execute mla|mul | bne | 1dr

Commit cmp |mla|mul | bne| 1dr

= But stalling is sometimes unavoidable

= E.g., long-latency instructions (divide, cache miss)

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Forwarding data

" Wait a second... data is available after Execute!

CPU

Decode Execute Commit
r3
1dr

" Forwarding eliminates many (not all) pipeline stalls

CMU 15-418/15-618, Fall 2023

Speedup achieved through

pipeline parallelism

Processor works on 4

instructions at a time ©

Fetch | Idr | cmp |mla Idr | cmp [mla |mul | bne
Decode l1dr | cmp bne | 1dr | cmp |mla|mul
Execute ldr mul | bne | 1dr | cmp |mla
Commit mla|mul | bne | 1dr | cmp

CMU 15-418/15-618, Fall 2023

Pipelining is not free!

" Q: How well does forwarding scale?

= A: Not well... many forwarding paths in deep &
complex pipelines

a

Execute Execute Commit

Fetch Decode

D
2
) m—

N -~

Control hazards + Speculation

" Programs must appear to execute in program order
=>» All instructions depend on earlier ones

" Most instructions implicitly continue at the next...

" But branches redirect execution to new location

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

Tdr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5, rO
mul r4, r2, r4

- bne .L3

]

Static instruction sequence

CPU
Decode Execute
mul mla

CMU 15-418/15-618, Fall 2023

(i.e., program layout in memory)

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

T1dr r5, [r3], #4
cmp rl, r3

mla rO r4, r5, r0
mu 1 r2, r4

bne

"_

CPU
Decode Execute
bne mul

CMU 15-418/15-618, Fall 2023

Static instruction sequence
(i.e., program layout in memory)

Dealing with control hazards:
Flushing the pipeline

" What if we always fetch the next instruction?

T1dr r5, [r3], #4
cmp rl, r3

mla rO r4, r5, r0
mu 1 r2, r4

bne

->_

CPU
Decode Execute Commit
pop bne mu

(i.e., program layout in memory) Whoops! We fetched the

Static instruction sequence

wrong instructions!
(Loop not finished)

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Flushing the pipeline

\Ne)d \OOP
reration)

X " What if we always fetch the next instruction?

=) 1dr rs, [r3], #4

cmp rl, r3

mla rO, r4, r5, rO
mul r4, r2, r4

bne .L3

—

Static instruction sequence

CPU
Decode Execute Commit
e e |

Whoops! We fetched the
wrong instructions!
(Loop not finished)

(i.e., program layout in memory)

CMU 15-418/15-618, Fall 2023

Pipeline flushes destroy
performance

) TivE 2

Processor works on 2 or 3
instructions at a time

Fetch | Ildr|cmp |mla|mul | bne
Decode Idr|{cmp |[mla |mul
Execute 1dr | cmp [mla
Commit Idr | cmp

" Penalty increases with deeper pipelines

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Speculation!

® Processors do not wait for branches to execute

" [nstead, they speculate (i.e., guess) where to go next
+ start fetching

" Modern processors use very sophisticated
mechanisms

" E.g., speculate in Fetch stage—before processor even
knows instrn is a branch!

" >05% prediction accuracy
= Still, branch mis-speculation is major problem

Pipelining Summary

= Pipelining is a simple, effective way to improve
throughput
= N-stage pipeline gives up to NX speedup

® Pipelining has limits
" Hard to keep pipeline busy because of hazards
" Forwarding is expensive in deep pipelines
" Pipeline flushes are expensive in deep pipelines

=» Pipelining is ubiquitous, but tops out at N = 15

Software Takeaways

" Processors with a simple “in-order” pipeline are very
sensitive to running “good code”

= Compiler should target a specific model of CPU
= low-level assembly hacking

= ...But very few CPUs are in-order these days
= E.g., embedded, vltra-low-power applications

" Instead, ~all modern CPUs are “out-of-order”
= Even in classic “low-power domains” (like mobile)

Out-of-Order Execution

Increasing parallelism via
dataflow

" Parallelism limited by many false dependencies,
particularly sequential program order

=" Dataflow tracks how instructions actually depend on
each other

" True dependence: read-after-write

Dataflow increases parallelism by eliminating
unnecessary dependences

Example: Dataflow in polynomial

evaluation

Tdr r5,.[r3], #4

cmp riﬁ(&%ﬁ‘

mla ro, r4,*r5, r0
<mu1 r4d, r2, r4

bne .L3

Tdr r5, [r3], #4

cmp rl, r3

mla rO, r4, r5, r0

mul r4d, r2, r4

bne .L3

=

Loop iteration

S

evaluation

1dr r5,/71r3], #4
cmp rlf r3

mla rQ, r4, r5,
mul /rl', r2, r4
bne /.L3

1dr r5, [r3], #4
cmp rl, r3

mla rO, r4, r5,
mul r4d, r2, r4
bne .L3

ro

ro

Tdr

Loop iteration

Example: Dataflow polynomial
execution

= Execution only, with perfect scheduling & unlimited
execution units
= 1dr, mul execute in 2 cycles
= cmp, bne execute in 1 cycle

= mla executes in 3 cycles
" QQ: Does dataflow speedup execution? By how much?

" Q: What is the performance bottleneck?

—

O 00 N 060 0 M WO N

T1dr

Tdr
cmp
mla
mu
bne

CMU 15-418/15-618, Fall 2023

r5,
rl,
ro,

.L3

[r3], #4
r3

r4, r5,
r2, r4

ro

—

O 00 N 060 0 M WO N

T1dr

cmp

Tdr
cmp
mla
mu
bne

CMU 15-418/15-618, Fall 2023

r5, Ar3], #4
rl, r3

rO, r4, r5,
rd, r2, r4
.L3

ro

—

O 00 N 060 0 M WO N

T1dr

cmp

mla

Tdr
cmp
mla
mu
bne

CMU 15-418/15-618, Fall 2023

r5, [r3], #4

ro, r

r4,
.L3

r,

’ r51

r4

ro

—

O 00 N 060 0 M WO N

T1dr

cmp

mla

Tdr
cmp
mla
mu
bne

CMU 15-418/15-618, Fall 2023

r5,
rl,
ro,

.L3

mul

[r3], #4
r3

r4, r5,
r2, r4

ro

—

O 00 N 060 0 M WO N

T1dr

cmp

bne mla

Tdr
cmp
mla

<:nm1
bne

CMU 15-418/15-618, Fall 2023

r5,
rl,
ro,

.L3

mul

[r3], #4

r3
r4,
r,

rs5,
r4

ro

—

O 00 N 060 0 M WO N

T1dr

T1dr

cmp ~_

cmp

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

bne mla

bne '
mla

r5,_[r3], #4

rk{lr3

rd, r4, r5, roO

rd, r2, r4

L3

r5.-[r3], #

rl, rs>

ro, r4, r5, r0

rd, r2, r4

.L3

CMU 15-418/15-618, Fall 2023

mul

mul

—

O 00 N 060 0 M WO N

1dr mu |
g cmp — y
1dr mu |
\\\\‘ bne mla
—]
cmp
1dr - ¥ mu |
bne
I -
| ciiip mla
—
biia
mla

CMU 15-418/15-618, Fall 2023

—

O 00 N 060 0 M WO N

T1dr

T1dr

T1dr

T1dr

T1dr

/

mul

mul

mul

mul

mul

CMU 15-418/15-618, Fall 2023

cmp
\\\\‘ bne mla
—]
cmp | .
bne ’
-
| ciiip mla
biia
icmp_
_bne mla
Lcmp_
bne
| cmp mla
\\\\‘ bne|
- | PIIE |
cmp |

Example: Dataflow polynomial
execution

" QQ: Does dataflow speedup execution? By how much?

" Yes! 3 cycles / loop iteration

" |nstructions per cycle (IPC) = 5/3 = 1.67
(vs. 1 for perfect pipelining)

" Q: What is the performance bottleneck?
= mla: Each mTa depends on previous mla & takes 3 cycles
* =» This program is latency-bound

Latency Bound

" What is the “critical path” of the computation?
" Longest path across iterations in dataflow graph
= E.g., mla in last slide (but could be multiple ops)

= Critical path limits maximum performance

=" Real CPUs may not achieve latency bound, but
useful mental model + tool for program analysis

Out-of-order (OoQ) execution uses
dataflow to increase parallelism

" |dea: Execute programs in dataflow order, but give
the illusion of sequential execution

High-level OoO microarchitecture

CPU

Instruction Buffer

Decode Commit
Execute

| Y |
In-order Out-of-order In-order

CMU 15-418/15-618, Fall 2023

Oo00 is hidden behind

in-order frontend & commit

CPU

Instruction Buffer

Decode Commit
Execute

" Instructions only enter & leave instruction buffer in
program order; all bets are off in between!

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation

" Q: Does Oo0 speedup execution? By how much?
" Q: What is the performance bottleneck?

= Assume perfect forwarding & branch prediction

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch &
Decode

1dr

Execute Tdr

Commit 1dr

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch & S
mp
Decode
Execute 1dr cmp
Commit 1dr | cmp

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch &
Decode

T1dr [cmp | mla

Execute 1dr cmp mla

Commit 1dr | cmp mla

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch &
Decode

Tdr | cmp | mTa | mul

Execute Tdr cmp mla mul

Commit 1dr | cmp mla mu’l

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch &
Decode

1dr | cmp | mla | mul | bne

Execute 1dr cmp mla mu' bne

Commit 1dr | cmp mla mul | bne

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch

& 1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr
Decode
Execute Tdr cmp mla mul bne Tdr cmp mla
Commit Tdr | cmp mla mul | bne Tdr | cmp

Example: OoO polynomial
evaluation pipeline diagram

) TIvE

Fetch &

1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr | cmp | mla | mul | bne | 1dr
Decode
Execute Tdr cmp mla mul bne Tdr cmp mla
Commit Tdr | cmp mla mul | bne Tdr | cmp

" Wait a minute... this isn't OoO... or even faster
than a simple pipeline!

" Q: What went wrong?

= A: We're throughput-limited: can only exec 1 instrn

High-level Superscalar OoO
microarchitecture

" Must increase pipeline width to increase ILP > 1

CPU

: Execute Execute Execute
\

J | J
| | |

In-order Out-of-order In-order

CMU 15-418/15-618, Fall 2023

Focus on Execution, not Fetch &
Commit

" Goal of OoO design is to only be limited by
dataflow execution

" Fetch and commit are over-provisioned so that they
(usually) do not limit performance
=» Programmers can (usually) ignore fetch/commit

" Big Caveat: Programs with inherently unpredictable
control flow will often be limited by fetch stalls
(branch misprediction)

= E.g., branching based on random data

Example: Superscalar OoO
polynomial evaluation

) TivE 2

Forch & ldr Tdr r5, [r3], #4
Decode cmp rl, r3
cmp mla rO, r4, r5, rO
mul r4, r2, r4
bne .L3
Tdr r5, [r3], #4
Execute cmp rl, r3
mla rO, r4, r5, rO
mul r4, r2, r4
bne .L3
Commit

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

) TivE 2

T 1dr | mla | bne | cmp | mul -Idr r5’ [r3]’ #4
Decode cmp rl, r3
cmp | mul | 1dr [mla | bne mla rO, r4, r5, ro
mul r4, r2, r4
bne L3
T1dr r5, [r3], #4
Execute cmp rl » T 3
mla rO, r4, r5, rO
mul r4, r2, r4
bne L3
Commit

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
Fetch &
Decode
cmp | mul | Tdr | mTla | bne
Tdr
Execute
Commit

CMU 15-418/15-618, Fall 2023

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r 1.,%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

Fetch &
Decode

1dr

mla | bne | cmp

mul

cmp

mul | 1dr | mla

bne

Execute

Commit

T1dr

mul

CMU 15-418/15-618, Fall 2023

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r 1.,%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr

mla | bne | cmp

mul

Fetch &
Decode
cmp | mul | Tdr | mTla | bne
-~
Tdr cmp

BL;

Execute mla
mu’l

Commit

CMU 15-418/15-618, Fall 2023

Tdr
cmp
mla
mul
bne
Tdr
cmp
mla
mul
bne

rS,e[r3], #4
r 1.,%\r
<::r0, rd, 5, roO

rd, r2, r4

.L3

r5, [r3], #4
rl, r3

ro, r4, r5, r0
rd, r2, r4

.L3

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
e T1dr rS,e[r3], #4
Decode cmp FLH=r

cmp | mul | 1dr [mla | bne mla ro, r4, 5, ro

s mul rd, r2, r4
Tdr cmp | bne bne ‘ Lg
\ Tdr r5.-[r3], #4
Execute mla cmp rL,nrs
mla rOo, r4, r5, roO
mul r4, r2, r4
mul 1dr bne L3

Commit

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
e T1dr rS,e[r3], #4
Decode cmp FLH=r

cmp | mul | 1dr [mla | bne mla ro, r4, 5, ro

s mul rd, r2, r4
Tdr cmp | bne mul bne A - Lg
\ ! Tdr r5.-[r3], #4
Execute nla mla cmp rl ’ r3
/ | mla ro, r4, r5, r0
| = mul r4, r2, r4
mu’l Tdr cmp | bne bne . |_3

Commit

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
E Tdr rS,e[r3], #4
Decode cmp FUET
cmp | mul | 1dr [mla | bne mla ro, r4, 5, ro
1 mul rd, r2, r4
~TA ~)
Tdr cmp | bne mul bne - Lg
\) Tdr r5.-[r3], #4
v ocut / : cmp rl, r>
nla mla
xecue Y/ mla r0o, r4, 'r5, rO
[A A mu r4, r2, r4
mu’l Tdr cmp | bne bne . |_3
Tdr | cmp mla [bne | cmp | mla | bne
Commit
mul | 1dr mul

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr | mla | bne | cmp | mul
Fetch& [y A\ I~ N ”
Decode v =
cmp | mul | Tdr | mTla | bne
1d e m

Execute

Commit

).

mu

Observe:

" Front-end &
commit in-order
(i.e., left-to-right)

" Execute
out-of-order

Tdr

mla

bne

cmp

mla

mul

1dr

\\/QY

mul

bne

Example: Superscalar OoO
polynomial evaluation

) TivE 2

1dr [mla | bne | cmp [mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne | cmp | mul | Tdr
Fetch &
Decode

cmp [mul | 1dr | mTa [bne | cmp | mul | 1dr [mla | bne | cmp | mul | 1dr | mla | bne [cmp

Tdr cmp | bne mul 1dr cmp | bne mul 1dr cmp

Execute mla mla mla mla mla

mul Tdr cmp | bne mu’l Tdr cmp | bne mu’l
Tdr | cmp mla | bne wcmp [mla [bney cmp [mla b? cmp | mla
Commit "4
mul | Tdr mu % / Tdr muT
N I

One loop iteration / 3 cycles!

Structural hazards: Other
throughput limitations

= Execution units are specialized
" Floating-point (add /multiply)
" Integer (add/multiply /compare)
" Memory (load/store)

" Processor designers must choose which execution
units to include and how many

= Structural hazard: Data is ready, but instr cannot
issue because no hardware is available

Example: Structural hazards can
severely limit performance

1dr [mla | bne | cmp [mul | 1dr | mla | bne | cmp | mul | 1dr | mla | bne | cmp | mul | Tdr
Fetch &
Decode
cmp [mul | 1dr | mTa [bne | cmp | mul | 1dr [mla | bne | cmp | mul | 1dr | mla | bne [cmp
Mem
Tdr 1dr Tdr 1dr Tdr Tdr
Execute
Int
cmp | bne | cmp | bne cmp | bne | cmp | bne cmp | bne | cmp
Execute
Mult
mla mu’l mla mul mla mul
Execute
Tdr | cmp | mla mul | 1dr mla mul | 1dr mla
Commit
bne‘*sm,p‘\ / e | e

One loop iteration / 5 cycles ®

Throughput Bound

® [ngredients:

*" Number of operations to perform (of each type)

* Number & issue rate of “execution ports” /“functional
units” (of each type)

* Throughput bound = ops / issue rate
" E.g., (1 mla+ 1 mul) /(2 + 3 cycles)

= Again, a real CPU might not exactly meet this bound

Software Takeaway

" 000 is much less sensitive to “good code”
= Better performance portability

= Of course, compiler still matters, but much less

" 000 makes performance analysis much simpler
" Throughput bound: Availability of execution ports
" Latency bound: “Critical path” latency

= Slowest gives good approximation of program perf

Scaling Instruction-Level
Parallelism

Recall from last time:

ILP & pipelining tapped out... why?

10,000,000

1,000,000

100,000

10,000

1,000

100

10

0

1970

(sources: Intel, Wikipedia, K. Olukotun)

Dual-Core Itanium 2 " /

Intel CPU Trends

1975 1980 1985 1990

B =Transistor density
@® =Clock frequency
A =Power

® =Instruction-level parallelism (ILP)

Processor clock rate stops
increasing

No further benefit from ILP

2000 2005 2010

CMU 15-418/15-618, Fall 2023

Superscalar scheduling is complex
& hard to scale

" Q: When is it safe to issue two instructions?

= A: When they are independent

" Must compare all pairs of input and output registers

= Scalability: O(W?) comparisons where W is “issue
width” of processor

= Not great!

Limitations of ILP

" Programs have limited ILP
= Even with perfect scheduling, >8-wide issue doesn’t help

= 4-wide superscalar X 20-stage pipeline = 80 instrns in flight

" High-performance OoQO buffers hundreds of instructions

= Pipelines can only go so deep
= Branch misprediction penalty grows
= Frequency (GHz) limited by power

" Dynamic scheduling overheads are significant

= Qut-of-order scheduling is expensive

Limitations of ILP = Multicore

= [LP works great! ...But is complex + hard to scale

" From hardware perspective, multicore is much more
efficient, but...

" Parallel software is hard!
" Industry resisted multicore for as long as possible

" When multicore finally happened, CPU uarch simplified
=» more cores

= Many program(mer)s still struggle to use multicore
effectively

