
Lecture 8:

Instruction-Level
Parallelism

15-418 Parallel Computer Architecture and Programming

CMU 15-418/15-618, Fall 2023

CMU 15-418/15-618, Fall 2023

Many kinds of processors

Why so many? What differentiates these processors?

CPU GPU FPGA Etc.

CMU 15-418/15-618, Fall 2023

Why so many kinds of processors?

Each processor is designed for different kinds of programs

§ CPUs
§ “Sequential” code – i.e., single / few threads

§ GPUs
§ Programs with lots of independent work è “Embarrassingly parallel”

§ Many others: Deep neural networks, Digital signal processing, Etc.

TODAY

CMU 15-418/15-618, Fall 2023

Parallelism pervades architecture

§ Speeding up programs is all about parallelism
§ 1) Find independent work
§ 2) Execute it in parallel
§ 3) Profit

§ Key questions:
§ Where is the parallelism?
§ Whose job is it to find parallelism?

CMU 15-418/15-618, Fall 2023

Where is the parallelism?

Different processors take radically different approaches

§ CPUs: Instruction-level parallelism
§ Implicit
§ Fine-grain

§ GPUs: Thread- & data-level parallelism
§ Explicit
§ Coarse-grain

CMU 15-418/15-618, Fall 2023

Whose job to find parallelism?

Different processors take radically different approaches

§ CPUs: Hardware dynamically schedules instructions
§ Expensive, complex hardware è Few cores (tens)
§ (Relatively) Easy to write fast software

§ GPUs: Software makes parallelism explicit
§ Simple, cheap hardware è Many cores (thousands)
§ (Often) Hard to write fast software

CMU 15-418/15-618, Fall 2023

CMU 15-418/15-618, Fall 2023

Visualizing these differences

§ Pentium 4
“Northwood” (2002)

CMU 15-418/15-618, Fall 2023

Visualizing these differences

§ Pentium 4
“Northwood” (2002)

§ Highlighted areas
actually execute
instructions

è Most area spent
on scheduling
(not on executing the
program)

CMU 15-418/15-618, Fall 2023

Visualizing these differences

§ AMD Fiji (2015)

CMU 15-418/15-618, Fall 2023

Visualizing these differences

§ AMD Fiji (2015)

§ Highlighted areas
actually execute
instructions

è Most area
spent executing
the program
§ (Rest is mostly

I/O & memory,
not scheduling)

Today you will learn…

How CPUs exploit ILP to speed up sequential code

§ Key ideas:
§ Pipelining & Superscalar: Work on multiple instructions at once
§ Out-of-order execution: Dynamically schedule instructions

whenever they are “ready”
§ Speculation: Guess what the program will do next to discover

more independent work, “rolling back” incorrect guesses

§ CPUs must do all of this while preserving the illusion that
instructions execute in-order, one-at-a-time

CMU 15-418/15-618, Fall 2023

CMU 15-418/15-618, Fall 2023

In other words… Today is about:

Buckle up!

…But please ask questions!

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation

int poly(int *coef,

 int terms, int x) {

 int power = 1;

 int value = 0;

 for (int j = 0; j < terms; j++) {

 value += coef[j] * power;

 power *= x;

 }

 return value;

}

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Compiling on ARM

int poly(int *coef,

 int terms, int x) {

 int power = 1;

 int value = 0;

 for (int j = 0; j < terms; j++) {

 value += coef[j] * power;

 power *= x;

 }

 return value;

}

poly:
 cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
.L3:
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 pop {r4, r5}
 bx lr
.L4:
 movs r0, #0
 bx lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Compiling on ARM

int poly(int *coef,

 int terms, int x) {

 int power = 1;

 int value = 0;

 for (int j = 0; j < terms; j++) {

 value += coef[j] * power;

 power *= x;

 }

 return value;

}

poly:
 cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
.L3:
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 pop {r4, r5}
 bx lr
.L4:
 movs r0, #0
 bx lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

Pr
ea

m
bl

e
Ite

ra
tio

n
Fi

ni

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Compiling on ARM

 for (int j = 0; j < terms; j++) {

 value += coef[j] * power;

 power *= x;

 }

.L3:
 ldr r5, [r3], #4 // r5 <- coef[j]; j++ (two operations)
 cmp r1, r3 // compare: j < terms?
 mla r0, r4, r5, r0 // value += r5 * power (mul + add)
 mul r4, r2, r4 // power *= x
 bne .L3 // repeat?

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ...

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ...

J=
0

ite
ra

tio
n

Pr
ea

m
bl

e

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ...

...
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 pop {r4, r5}
 bx lr

J=
0

ite
ra

tio
n

Pr
ea

m
bl

e

J=
1

ite
ra

tio
n

J=
2

ite
ra

tio
n

Fi
ni

CMU 15-418/15-618, Fall 2023

Example:
Polynomial evaluation
§ Executing poly(A, 3, x)

cmp r1, #0
 ble .L4
 push {r4, r5}
 mov r3, r0
 add r1, r0, r1, lsl #2
 movs r4, #1
 movs r0, #0
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ...

...
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 ldr r5, [r3], #4
 cmp r1, r3
 mla r0, r4, r5, r0
 mul r4, r2, r4
 bne .L3
 pop {r4, r5}
 bx lr

J=
0

ite
ra

tio
n

J=
1

ite
ra

tio
n

J=
2

ite
ra

tio
n

Pr
ea

m
bl

e

Fi
ni

CMU 15-418/15-618, Fall 2023

The software-hardware boundary

§ The instruction set architecture (ISA) is a functional
contract between hardware and software
§ It says what each instruction does, but not how
§ Example: Ordered sequence of x86 instructions

§ A processor’s microarchitecture is how the ISA is
implemented

Arch : 𝜇Arch :: Interface : Implementation

CMU 15-418/15-618, Fall 2023

Simple CPU model

§ Execute instructions in program order

§ Divide instruction execution into stages, e.g.:
§ 1. Fetch – get the next instruction from memory
§ 2. Decode – figure out what to do & read inputs
§ 3. Execute – perform the necessary operations
§ 4. Commit – write the results back to registers / memory

§ (Real processors have many more stages)

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

1. Read “ldr r5, [r3] #4”
from memory

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

2. Decode “ldr r5, [r3] #4”
and read input regs

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

3. Load memory at r3 and
compute r3 + 4

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

4. Write values
into regs r5 and r3

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
simple CPU model

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1 ns

Throughput = 1 instr / 4 ns
CMU 15-418/15-618, Fall 2023

Simple CPU is very wasteful

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

TIME
1 ns

Idle
Hardware

CMU 15-418/15-618, Fall 2023

Pipelining

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mul mla cmp ldr

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

bne mul mla cmp

CMU 15-418/15-618, Fall 2023

Pipelining keeps CPU busy through
instruction-level parallelism
§ Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr bne mul mla

CMU 15-418/15-618, Fall 2023

Evaluating polynomial on the
pipelined CPU

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1 ns

Throughput = 1 instr / ns
4X speedup!CMU 15-418/15-618, Fall 2023

Speedup achieved through
pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME
Processor works on 4
instructions at a time

CMU 15-418/15-618, Fall 2023

Limitations of pipelining

§ Parallelism requires independent work

§Q: Are instructions independent?

§ A: No! Many possible hazards limit parallelism…

CMU 15-418/15-618, Fall 2023

Data hazards

ldr ra, [rb], #4 // ra ß Memory[rb]; rb ß rb + 4
cmp rc, rd // rc ß rd + re

Q: When can the CPU pipeline the cmp behind ldr?

Fetch ldr cmp … … … …

Decode ldr cmp … … …

Execute ldr cmp … …

Commit ldr cmp …

§ A: When they use
different registers
§ Specifically, when
cmp does not read
any data written
by ldr

§ E.g., rb != rd

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

§ Cannot pipeline cmp (ldr writes r3)

CMU 15-418/15-618, Fall 2023

§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

??

CMU 15-418/15-618, Fall 2023

§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

CMU 15-418/15-618, Fall 2023

§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Inject a “bubble” (NOP)
into the pipeline

CMU 15-418/15-618, Fall 2023

§ Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards:
Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmpmul

cmp proceeds once ldr
has committed

CMU 15-418/15-618, Fall 2023

Stalling degrades performance

§ But stalling is sometimes unavoidable
§ E.g., long-latency instructions (divide, cache miss)

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne ldr

…

TIME
Processor works on 3
instructions at a time

CMU 15-418/15-618, Fall 2023

Dealing with data hazards:
Forwarding data
§Wait a second… data is available after Execute!

§ Forwarding eliminates many (not all) pipeline stalls

CPU
Fetch Decode Execute Commit

mla cmp ldrmul
r3+4r3

r1

CMU 15-418/15-618, Fall 2023

Speedup achieved through
pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME
Processor works on 4

instructions at a time J

CMU 15-418/15-618, Fall 2023

Pipelining is not free!

§Q: How well does forwarding scale?
§ A: Not well… many forwarding paths in deep &

complex pipelines

CPU
Fetch Decode Execute Commit

Mem

Execute

CMU 15-418/15-618, Fall 2023

Control hazards + Speculation

§ Programs must appear to execute in program order
è All instructions depend on earlier ones

§Most instructions implicitly continue at the next…
§ But branches redirect execution to new location

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

bne mul mla cmp

Static instruction sequence
(i.e., program layout in memory)

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

pop bne mul mla

Static instruction sequence
(i.e., program layout in memory)

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

bx pop bne mul

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!
(Loop not finished)

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Flushing the pipeline
§What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

ldr bne

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!
(Loop not finished)

(Next loop

iteration)

CMU 15-418/15-618, Fall 2023

Pipeline flushes destroy
performance

§ Penalty increases with deeper pipelines

Fetch ldr cmp mla mul bne ldr cmp mla

Decode ldr cmp mla mul bne ldr cmp

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne

…

TIME
Processor works on 2 or 3

instructions at a time

CMU 15-418/15-618, Fall 2023

Dealing with control hazards:
Speculation!
§ Processors do not wait for branches to execute

§ Instead, they speculate (i.e., guess) where to go next
+ start fetching

§Modern processors use very sophisticated
mechanisms
§ E.g., speculate in Fetch stage—before processor even

knows instrn is a branch!
§ >95% prediction accuracy
§ Still, branch mis-speculation is major problem

CMU 15-418/15-618, Fall 2023

Pipelining Summary

§ Pipelining is a simple, effective way to improve
throughput
§ 𝑁-stage pipeline gives up to 𝑁× speedup

§ Pipelining has limits
§ Hard to keep pipeline busy because of hazards
§ Forwarding is expensive in deep pipelines
§ Pipeline flushes are expensive in deep pipelines

è Pipelining is ubiquitous, but tops out at 𝑁 ≈ 15

CMU 15-418/15-618, Fall 2023

Software Takeaways

§ Processors with a simple “in-order” pipeline are very
sensitive to running “good code”
§ Compiler should target a specific model of CPU
§ Low-level assembly hacking

§…But very few CPUs are in-order these days
§ E.g., embedded, ultra-low-power applications

§ Instead, ≈all modern CPUs are “out-of-order”
§ Even in classic “low-power domains” (like mobile)

CMU 15-418/15-618, Fall 2023

Out-of-Order Execution

CMU 15-418/15-618, Fall 2023

Increasing parallelism via
dataflow
§ Parallelism limited by many false dependencies,

particularly sequential program order

§Dataflow tracks how instructions actually depend on
each other
§ True dependence: read-after-write

Dataflow increases parallelism by eliminating
unnecessary dependences

CMU 15-418/15-618, Fall 2023

Example: Dataflow in polynomial
evaluation

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

at
io

n

CMU 15-418/15-618, Fall 2023

CMU 15-418/15-618, Fall 2023

Example: Dataflow in polynomial
evaluation

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

at
io

n

ldr

cmp mla

mul

bne

ldr mul

cmp

bne

Example: Dataflow polynomial
execution
§ Execution only, with perfect scheduling & unlimited

execution units
§ ldr, mul execute in 2 cycles
§ cmp, bne execute in 1 cycle
§ mla executes in 3 cycles

§Q: Does dataflow speedup execution? By how much?

§Q: What is the performance bottleneck?

CMU 15-418/15-618, Fall 2023

ldr
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr

cmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr mul

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr mul

cmp

mlabne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr mul

ldr
cmp

mla
mul

bne

cmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mlacmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

CMU 15-418/15-618, Fall 2023

ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

CMU 15-418/15-618, Fall 2023

Example: Dataflow polynomial
execution
§Q: Does dataflow speedup execution? By how much?

§ Yes! 3 cycles / loop iteration
§ Instructions per cycle (IPC) = 5/3 ≈ 1.67

(vs. 1 for perfect pipelining)

§Q: What is the performance bottleneck?
§ mla: Each mla depends on previous mla & takes 3 cycles
§ è This program is latency-bound

CMU 15-418/15-618, Fall 2023

Latency Bound

§What is the “critical path” of the computation?
§ Longest path across iterations in dataflow graph
§ E.g., mla in last slide (but could be multiple ops)

§ Critical path limits maximum performance
§ Real CPUs may not achieve latency bound, but

useful mental model + tool for program analysis

CMU 15-418/15-618, Fall 2023

Out-of-order (OoO) execution uses
dataflow to increase parallelism
§ Idea: Execute programs in dataflow order, but give

the illusion of sequential execution

CMU 15-418/15-618, Fall 2023

High-level OoO microarchitecture

CPU

Fetch Decode Commit

Execute

 Instruction Buffer

In-order In-orderOut-of-order

CMU 15-418/15-618, Fall 2023

CPU

OoO is hidden behind
in-order frontend & commit

§ Instructions only enter & leave instruction buffer in
program order; all bets are off in between!

Fetch Decode Commit

Execute

 Instruction Buffer

ABC

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation
§Q: Does OoO speedup execution? By how much?

§Q: What is the performance bottleneck?

§ Assume perfect forwarding & branch prediction

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr

Execute ldr

Commit ldr

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr cmp

Execute ldr cmp

Commit ldr cmp

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla

Execute ldr cmp mla

Commit ldr cmp mla

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul

Execute ldr cmp mla mul

Commit ldr cmp mla mul

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul bne

Execute ldr cmp mla mul bne

Commit ldr cmp mla mul bne

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram
Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

CMU 15-418/15-618, Fall 2023

Example: OoO polynomial
evaluation pipeline diagram

§Wait a minute… this isn’t OoO… or even faster
than a simple pipeline!

§Q: What went wrong?
§ A: We’re throughput-limited: can only exec 1 instrn

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

CMU 15-418/15-618, Fall 2023

High-level Superscalar OoO
microarchitecture
§Must increase pipeline width to increase ILP > 1

CPU

Fetch Decode

Execute

Commit

Execute Execute

 Instruction Buffer

In-order In-orderOut-of-order

Fetch Decode Commit

CMU 15-418/15-618, Fall 2023

Focus on Execution, not Fetch &
Commit
§Goal of OoO design is to only be limited by

dataflow execution
§ Fetch and commit are over-provisioned so that they

(usually) do not limit performance
è Programmers can (usually) ignore fetch/commit

§ Big Caveat: Programs with inherently unpredictable
control flow will often be limited by fetch stalls
(branch misprediction)
§ E.g., branching based on random data

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr

cmp

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

Example: Superscalar OoO
polynomial evaluation

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp

mla

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne

mla

mul ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

Observe:
§ Front-end &

commit in-order
(i.e., left-to-right)

§ Execute
out-of-order

CMU 15-418/15-618, Fall 2023

Example: Superscalar OoO
polynomial evaluation

Fetch &
Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Execute

ldr cmp bne mul ldr cmp bne mul ldr cmp

mla mla mla mla mla

mul ldr cmp bne mul ldr cmp bne mul

Commit

ldr cmp mla bne cmp mla bne cmp mla bne cmp mla

mul ldr mul ldr mul ldr mul

TIME

One loop iteration / 3 cycles!CMU 15-418/15-618, Fall 2023

Structural hazards: Other
throughput limitations
§ Execution units are specialized

§ Floating-point (add/multiply)
§ Integer (add/multiply/compare)
§ Memory (load/store)

§ Processor designers must choose which execution
units to include and how many

§ Structural hazard: Data is ready, but instr cannot
issue because no hardware is available

CMU 15-418/15-618, Fall 2023

Example: Structural hazards can
severely limit performance

Fetch &
Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Mem
Execute

ldr ldr ldr ldr ldr ldr

Int
Execute

cmp bne cmp bne cmp bne cmp bne cmp bne cmp

Mult
Execute

mla mul mla mul mla mul

Commit

ldr cmp mla mul ldr mla mul ldr mla

bne cmp bne cmp

One loop iteration / 5 cycles LCMU 15-418/15-618, Fall 2023

Throughput Bound

§ Ingredients:
§ Number of operations to perform (of each type)
§ Number & issue rate of “execution ports”/“functional

units” (of each type)

§ Throughput bound = ops / issue rate
§ E.g., (1 mla + 1 mul) / (2 + 3 cycles)

§ Again, a real CPU might not exactly meet this bound

CMU 15-418/15-618, Fall 2023

Software Takeaway

§OoO is much less sensitive to “good code”
§ Better performance portability
§ Of course, compiler still matters, but much less

§OoO makes performance analysis much simpler
§ Throughput bound: Availability of execution ports
§ Latency bound: “Critical path” latency
§ Slowest gives good approximation of program perf

CMU 15-418/15-618, Fall 2023

Scaling Instruction-Level
Parallelism

CMU 15-418/15-618, Fall 2023

Recall from last time:
ILP & pipelining tapped out… why?

CMU 15-418/15-618, Fall 2023

Superscalar scheduling is complex
& hard to scale
§Q: When is it safe to issue two instructions?
§ A: When they are independent

§ Must compare all pairs of input and output registers

§ Scalability: 𝑂(𝑊!) comparisons where 𝑊 is “issue
width” of processor
§ Not great!

CMU 15-418/15-618, Fall 2023

Limitations of ILP

§ Programs have limited ILP
§ Even with perfect scheduling, >8-wide issue doesn’t help

§ 4-wide superscalar × 20-stage pipeline = 80 instrns in flight
§ High-performance OoO buffers hundreds of instructions

§ Pipelines can only go so deep
§ Branch misprediction penalty grows
§ Frequency (GHz) limited by power

§ Dynamic scheduling overheads are significant
§ Out-of-order scheduling is expensive

CMU 15-418/15-618, Fall 2023

Limitations of ILP è Multicore

§ ILP works great! …But is complex + hard to scale

§ From hardware perspective, multicore is much more
efficient, but…

§ Parallel software is hard!
§ Industry resisted multicore for as long as possible
§ When multicore finally happened, CPU 𝜇arch simplified
è more cores

§ Many program(mer)s still struggle to use multicore
effectively

CMU 15-418/15-618, Fall 2023

