
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2023

Lecture 16:

Implementing
Synchronization

CMU 15-418/618,
Fall 2023

Today’s topic: efficiently implementing
synchronization primitives

▪ Primitives for ensuring mutual exclusion
- Locks
- Atomic primitives (e.g., atomic_add)
- Transactions

▪ Primitives for event signaling
- Barriers
- Flags

CMU 15-418/618,
Fall 2023

Three phases of a synchronization event
1. Acquire method
- How a thread attempts to gain access to protected resource

2. Waiting algorithm
- How a thread waits for access to be granted to shared resource

3. Release method
- How thread enables other threads to gain resource when its

work in the synchronized region is complete

CMU 15-418/618,
Fall 2023

Busy waiting

▪ Busy waiting (a.k.a. “spinning”)
while (condition X not true) {}

logic that assumes X is true

▪ In classes like 15-213 or in operating systems, you have
certainly also talked about synchronization
- You might have been taught busy-waiting is bad: why?

CMU 15-418/618,
Fall 2023

“Blocking” synchronization
▪ Idea: if progress cannot be made because a resource cannot

be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)
if (condition X not true)

 block until true; // OS scheduler de-schedules thread
 // (let’s another thread use the processor)

▪ pthreads mutex example
pthread_mutex_t mutex;

pthread_mutex_lock(&mutex);

CMU 15-418/618,
Fall 2023

Busy waiting vs. blocking

▪ Busy-waiting can be preferable to blocking if:
- Scheduling overhead is larger than expected wait time
- Tail latency effects

- Processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-intensive programs running at the same time)

- Clarification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

▪ Examples:
int lock;

OSSpinLockLock(&lock); // OSX spin lock

pthread_spinlock_t spin;

pthread_spin_lock(&spin);

CMU 15-418/618,
Fall 2023

Implementing Locks

CMU 15-418/618,
Fall 2023

Warm up: a simple, but incorrect, lock

lock:

unlock:

ld R0, mem[addr] // load word into R0
cmp R0, #0 // compre R0 to 0
bnz lock // if nonzero jump to top
st mem[addr], #1

st mem[addr], #0 // store 0 to address

Problem: data race because LOAD-TEST-STORE is not atomic!
Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

CMU 15-418/618,
Fall 2023

Test-and-set based lock

Atomic test-and-set instruction:
ts R0, mem[addr] // load mem[addr] into R0

 // if mem[addr] is 0, set mem[addr] to 1

lock:

unlock:

ts R0, mem[addr] // load word into R0
bnz R0, lock // if 0, lock obtained

st mem[addr], #0 // store 0 to address

CMU 15-418/618,
Fall 2023

Test-and-set lock: consider coherence traffic
Processor 0 Processor 1

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 2

Invalidate lineT&S

[P0 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)

Invalidate line

= thread has lock

CMU 15-418/618,
Fall 2023

Test-and-set lock: consider coherence traffic
Processor 0 Processor 1

BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 2

Invalidate lineT&S

[P0 is holding lock...]

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Attempt to update (t&s fails)

Invalidate line

T&SBusRdX
Update line in cache (set to 1)

Invalidate line
BusRdX
Update line in cache (set to 0)

Invalidate line

= thread has lock

CMU 15-418/618,
Fall 2023

Test-and-set lock performance

Benchmark executes:
lock(L);
critical-section(c)
unlock(L);

Ti
m

e (
us

)

Number of processors

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

Bus contention increases amount of
time to transfer lock (lock holder must
wait to acquire bus to release)

Not shown: bus contention also slows
down execution of critical section

Figure credit: Culler, Singh, and Gupta

CMU 15-418/618,
Fall 2023

Desirable lock performance characteristics
▪ Low latency

- If lock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

▪ Low interconnect traffic
- If all processors are trying to acquire lock at once, they should acquire the lock in

succession with as little traffic as possible
▪ Scalability

- Latency / traffic should scale reasonably with number of processors

▪ Low storage cost
▪ Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int),
no provisions for fairness

CMU 15-418/618,
Fall 2023

Test-and-test-and-set lock
void Lock(int* lock) {
 while (1) {

 while (*lock != 0);

 if (test_and_set(*lock) == 0)
 return;
 }
}

void Unlock(volatile int* lock) {
 *lock = 0;
}

// while another processor has the lock...

// when lock is released, try to acquire it

CMU 15-418/618,
Fall 2023

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd
BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

CMU 15-418/618,
Fall 2023

Test-and-test-and-set lock: coherence traffic
Processor 1 Processor 2

BusRdX

Update line in cache (set to 1)

[P1 is holding lock...]

BusRdX

Update line in cache (set to 0)

Invalidate line

Invalidate line

BusRd

[Many reads from local cache]

Invalidate line
BusRd
BusRdX

Update line in cache (set to 1)

Invalidate line

Processor 3
Invalidate line

BusRd

[Many reads from local cache]

Invalidate line

BusRd

BusRdX

Attempt to update (t&s fails)

T&S

T&S

T&S

= thread has lock

CMU 15-418/618,
Fall 2023

Test-and-test-and-set characteristics
▪ Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set

▪ Generates much less interconnect traffic
- One invalidation, per waiting processor, per lock release (O(P) invalidations)

- This is O(P2) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

▪ More scalable (due to less traffic)
▪ Storage cost unchanged (one int)
▪ Still no provisions for fairness

CMU 15-418/618,
Fall 2023

Test-and-set lock with back off
Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* l) {
 int amount = 1;
 while (1) {
 if (test_and_set(*l) == 0)
 return;
 delay(amount);
 amount *= 2;
 }
}

▪ Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

▪ Generates less traffic than test-and-set (not continually attempting to acquire lock)
▪ Improves scalability (due to less traffic)
▪ Storage cost unchanged (still one int for lock)
▪ Exponential back-off can cause severe unfairness
- Newer requesters back off for shorter intervals

CMU 15-418/618,
Fall 2023

Ticket lock
Main problem with test-and-set style locks: upon release,
all waiting processors attempt to acquire lock using test-
and-set

struct lock {
 volatile int next_ticket;
 volatile int now_serving;
};

void Lock(lock* l) {
 int my_ticket = atomic_increment(&l->next_ticket); // take a “ticket”
 while (my_ticket != l->now_serving); // wait for number
} // to be called

void unlock(lock* l) {
 l->now_serving++;
}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

CMU 15-418/618,
Fall 2023

Array-based lock
Each processor spins on a different memory address
Utilizes atomic operation to assign address on attempt to acquire

struct lock {
 volatile padded_int status[P]; // padded to keep off same cache line
 volatile int head;
};

int my_element;

void Lock(lock* l) {
 my_element = atomic_circ_increment(&l->head); // assume circular increment
 while (l->status[my_element] == 1);
}

void unlock(lock* l) {
 l->status[my_element] = 1;
 l->status[circ_next(my_element)] = 0; // next() gives next index
}

O(1) interconnect traffic per release, but lock requires space linear in P
Also, the atomic circular increment is a more complex operation (higher overhead)

CMU 15-418/618,
Fall 2023

x86 cmpxchg
▪ Compare and exchange (atomic when used with lock prefix)
lock cmpxchg dst, src

if dst == accumulator
 ZF = 1
 dst = src
else
 ZF = 0
 accumulator = dst

often a memory address

x86 accumulator register e.g., eax

flag register

lock prefix (makes operation atomic)

1. Does the dst have the value we think it has?
2. Then make the update

3. If not return the current value

CMU 15-418/618,
Fall 2023

Queue-based Lock (MCS lock)
▪ Create a queue of waiters

- Each thread allocates a local space on which to wait

▪ Pseudo-code:
- glock – global lock (tail of queue)
- mlock – my lock (state, next pointer)

AcquireQLock(*glock, *mlock)
{
 mlock->next = NULL;
 mlock->state = UNLOCKED;
 ATOMIC();
 prev = glock
 *glock = mlock
 END_ATOMIC();
 if (prev == NULL)
 return;
 mlock->state = LOCKED;
 prev->next = mlock;
 while (mlock->state == LOCKED) ;
 // SPIN
}

ReleaseQLock(*glock, *mlock)
{
 do {
 if (mlock->next == NULL) {
 x = CMPXCHG(glock, mlock, NULL); **
 if (x == mlock) return;
 }
 else
 {
 mlock->next->state = UNLOCKED;
 return;
 }
 } while (1);
}

**Note the semantics of cmpxchg from previous slide

Atomic Swap

More details: Figure 5 Algorithms for Scalable Synchronization on Shared Memory Multiprocessor

CMU 15-418/618,
Fall 2023

Quiz Time

CMU 15-418/618,
Fall 2023

Implementing Barriers

CMU 15-418/618,
Fall 2023

Implementing a centralized barrier
(Based on shared counter)

Does it work? Consider:
do stuff ...
Barrier(b, P);
do more stuff ...
Barrier(b, P);

struct Barrier_t {
 LOCK lock;
 int counter; // initialize to 0
 int flag; // the flag field should probably be padded to
 // sit on its own cache line. Why?
};

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
 lock(b->lock);
 if (b->counter == 0) {
 b->flag = 0; // first thread arriving at barrier clears flag
 }
 int num_arrived = ++(b->counter);
 unlock(b->lock);

 if (num_arrived == p) { // last arriver sets flag
 b->counter = 0;
 b->flag = 1;
 }
 else {
 while (b->flag == 0); // wait for flag
 }
}

CMU 15-418/618,
Fall 2023

Correct centralized barrier
struct Barrier_t {
 LOCK lock;
 int arrive_counter; // initialize to 0 (number of threads that have arrived)
 int leave_counter; // initialize to P (number of threads that have left barrier)
 int flag;
};

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
 lock(b->lock);
 if (b->arrive_counter == 0) { // if first to arrive...
 if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
 b->flag = 0; // first arriving thread clears flag
 } else {
 unlock(lock);
 while (b->leave_counter != P); // wait for all threads to leave before clearing
 lock(lock);
 b->flag = 0; // first arriving thread clears flag
 }
 }
 int num_arrived = ++(b->arrive_counter);
 unlock(b->lock);

 if (num_arrived == p) { // last arriver sets flag
 b->arrive_counter = 0;
 b->leave_counter = 1;
 b->flag = 1;
 }
 else {
 while (b->flag == 0); // wait for flag
 lock(b->lock);
 b->leave_counter++;
 unlock(b->lock);
 }
}

Main idea: wait for all processes to
leave first barrier, before clearing
flag for entry into the second

CMU 15-418/618,
Fall 2023

Centralized barrier with sense reversal
struct Barrier_t {
 LOCK lock;
 int counter; // initialize to 0
 int flag; // initialize to 0
};

int local_sense = 0; // private per processor. Main idea: processors wait for flag
 // to be equal to local sense

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
 local_sense = (local_sense == 0) ? 1 : 0;
 lock(b->lock);
 int num_arrived = ++(b->counter);
 if (num_arrived == p) { // last arriver sets flag
 unlock(b->lock);
 b->counter = 0;
 b->flag = local_sense;
 }
 else {
 unlock(b->lock);
 while (b.flag != local_sense); // wait for flag
 }

Sense reversal optimization results in one spin instead of two

CMU 15-418/618,
Fall 2023

Centralized barrier: traffic
▪ O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1 transactions to read updated flag

▪ But there is still serialization on a single shared lock
- So span (latency) of entire operation is O(P)

- Can we do better?

CMU 15-418/618,
Fall 2023

Combining tree implementation of barrier

▪ Combining trees make better use of parallelism in interconnect topologies
- lg(P) span (latency)

- Strategy makes less sense on a bus (all traffic still serialized on single shared bus)
▪ Barrier acquire: when processor arrives at barrier, performs increment of parent counter

- Process recurses to root

▪ Barrier release: beginning from root, notify children of release

Centralized Barrier Combining Tree Barrier

High contention!
(e.g., single barrier

lock and counter)

