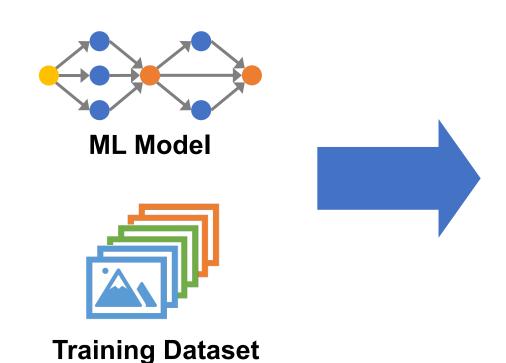
Lecture 25: Parallel Deep Learning (Model & Pipeline Parallelism)

Parallel Computer Architecture and Programming

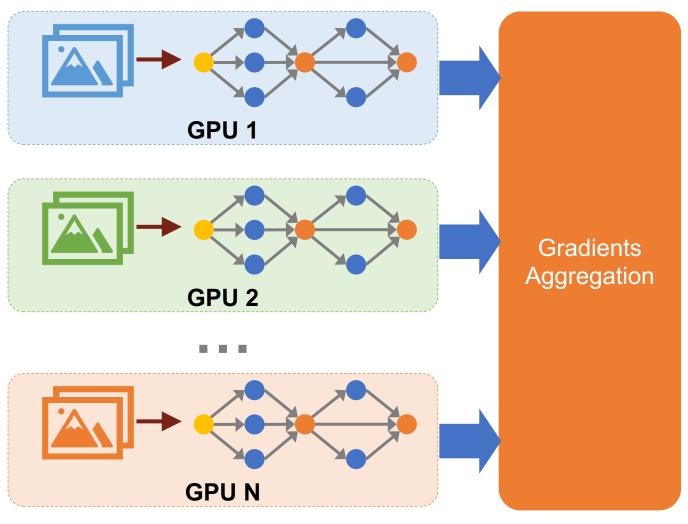
CMU 15-418/15-618, Fall 2023

Recap: Data Parallelism



1. Partition training data into batches

 $w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n}$

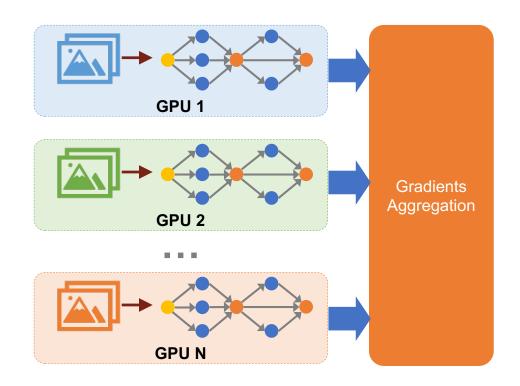


2. Compute the gradients of each batch on a GPU

3. Aggregate gradients across GPUs

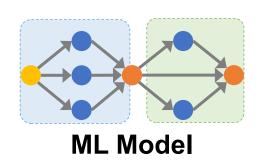
Recap: An Issue with Data Parallelism

- Each GPU saves a replica of the entire model
- Cannot train large models that exceed GPU device memory



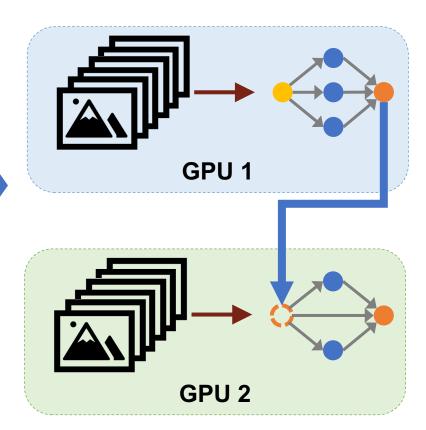
Model Parallelism

Split a model into multiple subgraphs and assign them to different devices



Training Dataset

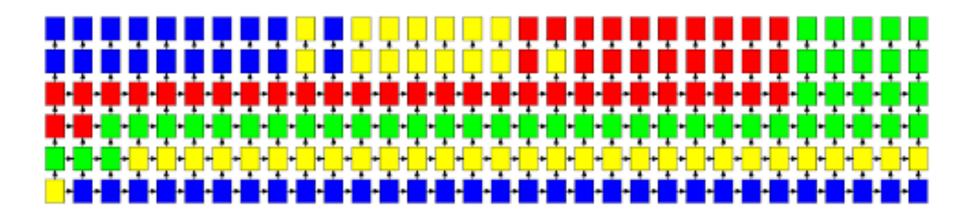
Model Parallelism



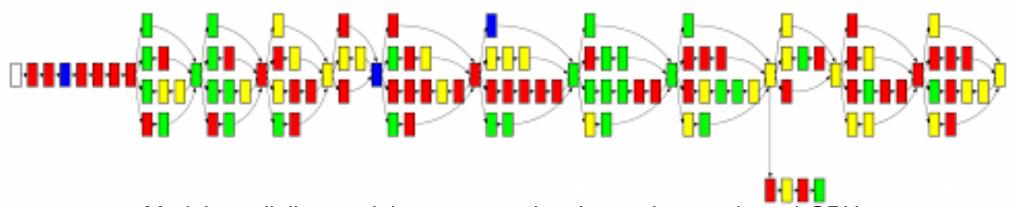
Transfer intermediate results between devices

$$w_i \coloneqq w_i - \gamma \nabla L(w_i) = w_i - \frac{\gamma}{n} \sum_{j=1}^n \nabla L_j(w_i)$$

Device Placement for Model Parallelism is Challenging

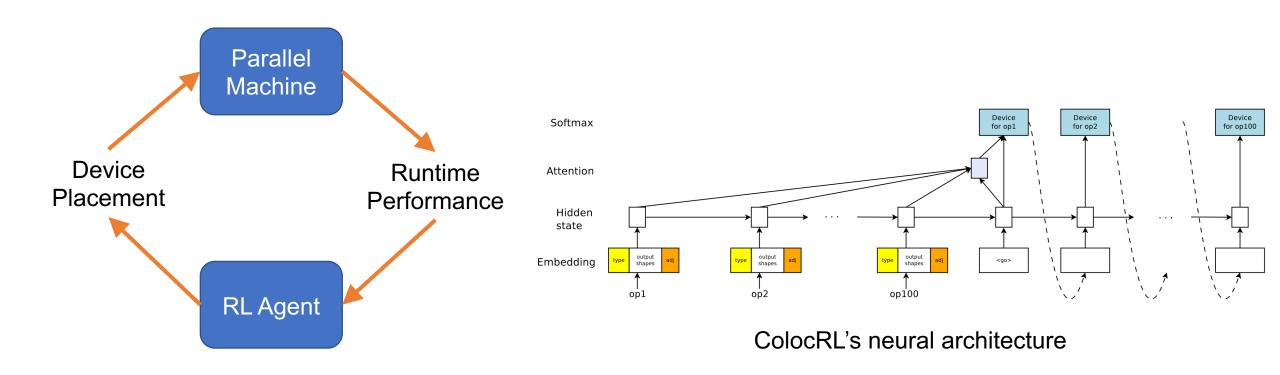


Model parallelism: training a recurrent neural network on 4 GPUs

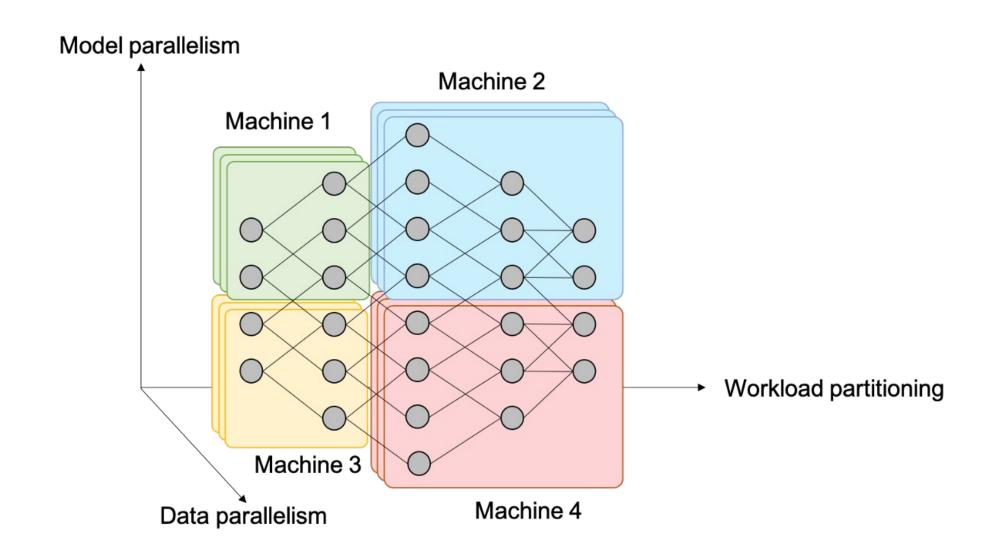


Model parallelism: training a conventional neural network on 4 GPUs

Using ML to Optimize Device Placement for ML

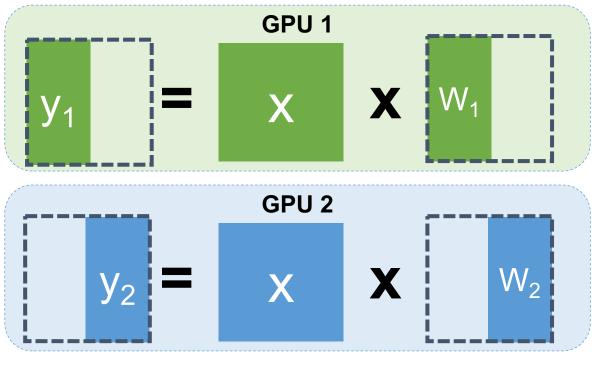


Combine Data and Model Parallelism

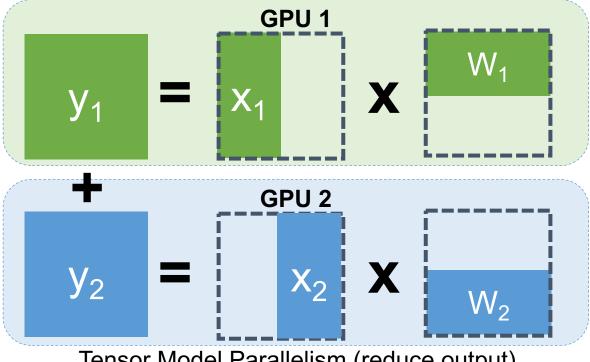


Tensor Model Parallelism

Partition parameters/gradients within a layer



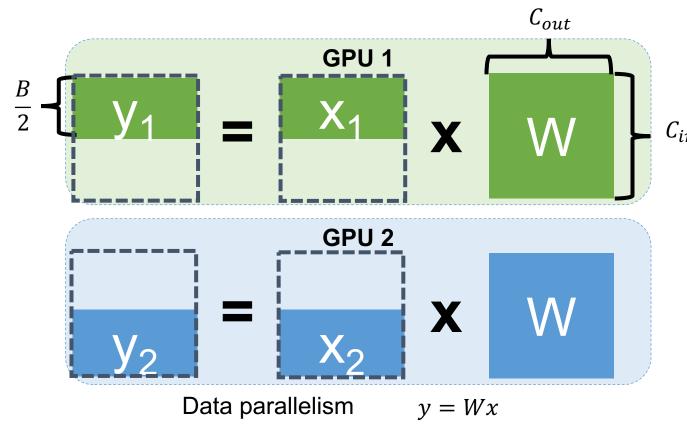
Tensor Model Parallelism (partition output)



Tensor Model Parallelism (reduce output)

$$y = y1 + y2$$

 C_{out}



		Gradients Sync
0	0	$2*C_{out}*C_{in}$

Communication Cost of Data Parallelism

Forward

Processing

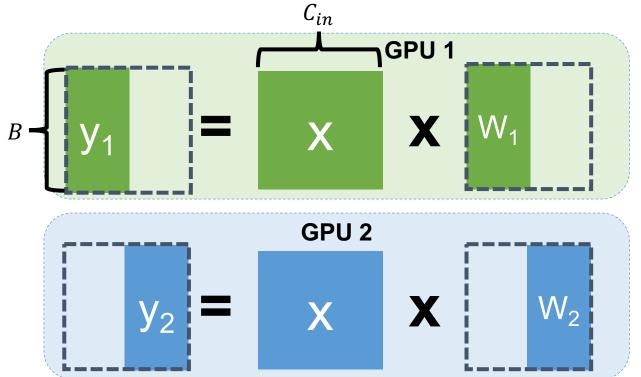
 $B * C_{in}$

 C_{out}

Gradients

0

Sync



Communication	Cost of	Tensor	Model	Parallelisn	n

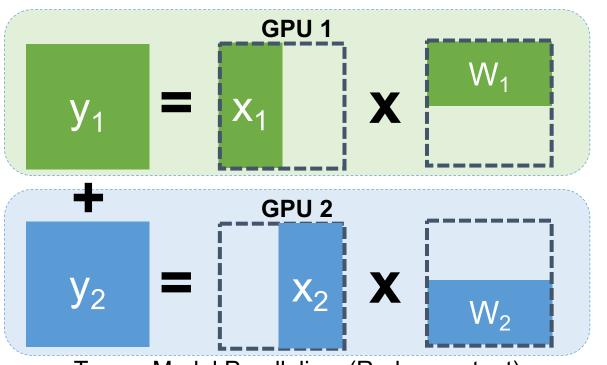
 $B * C_{in}$

Backward

Propagation

Tensor Model Parallelism (partition output)

 C_{out}



		Gradients Sync
$2*B*C_{out}$	0	0

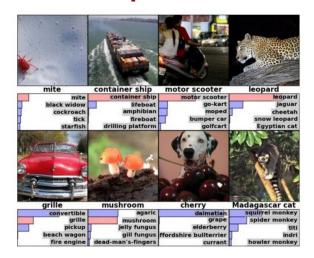
Communication Cost of Tensor Model Parallelism

Tensor Model Parallelism (Reduce output)

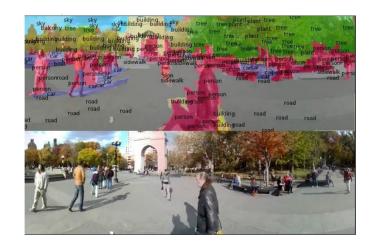
$$y = y1 + y2$$

- Data parallelism: $C_{out} * C_{in}$
- Tensor model parallelism (partition output): $B * C_{in}$
- Tensor model parallelism (reduce output): $B * C_{out}$
- The best strategy depends on the model and underlying machine

Example: Convolutional Neural Networks



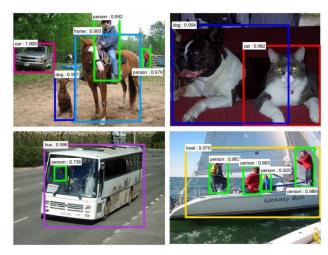
Classification



Segmentation

Retrieval

Self-Driving

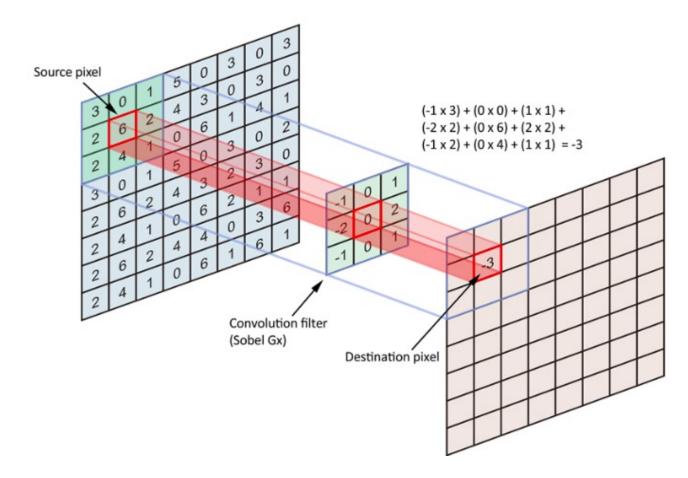


Detection

Synthesis

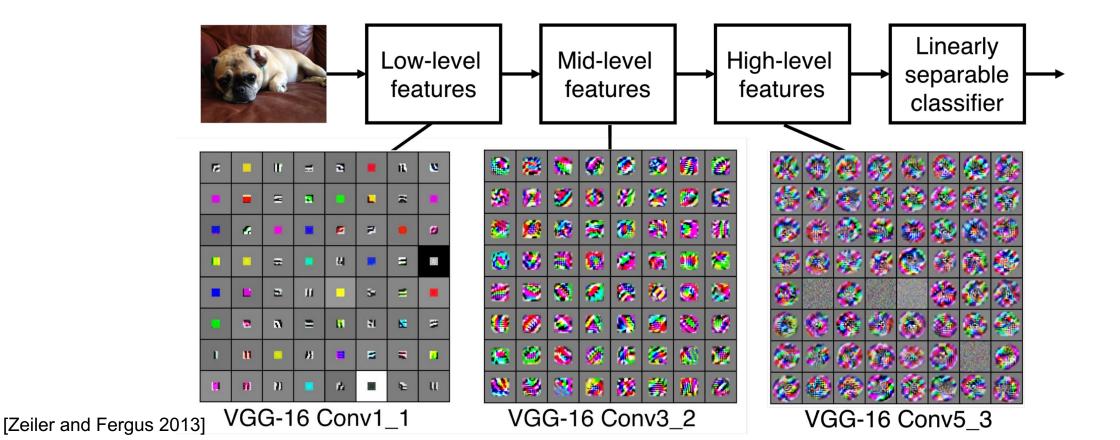
Convolution

 Convolve the filter with the image: slide over the image spatially and compute dot products



CNNs

 A sequence of convolutional layers, interspersed by pooling, normalization, and activation functions



18

Parallelizing Convolutional Neural Networks

- Convolutional layers
 - 90-95% of the computation
 - 5% of the parameters
 - Very large intermediate activations
- Fully-connected layers
 - 5-10% of the computation
 - 95% of the parameters
 - Small intermediate activations

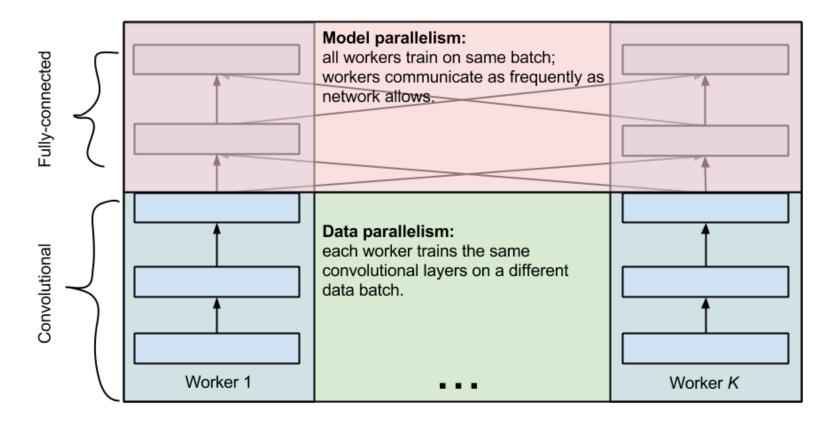
Discussion: how to parallelize CNNs?

Data parallelism

Tensor model parallelism

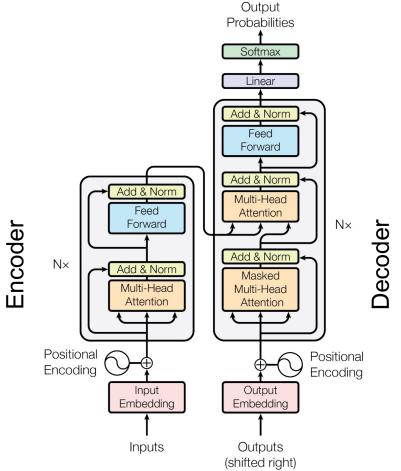
Parallelizing Convolutional Neural Networks

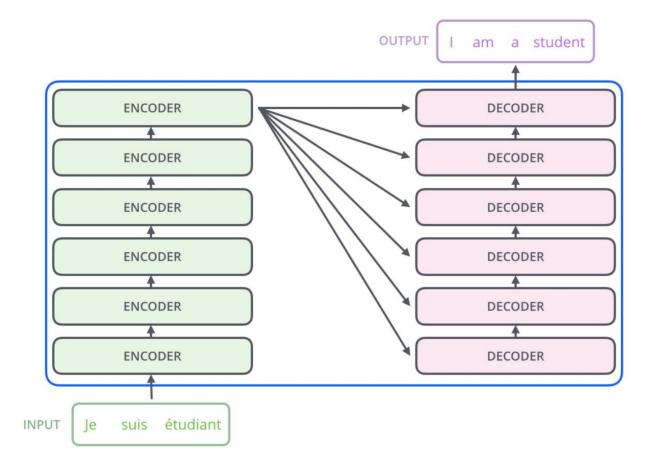
- Data parallelism for convolutional layers
- Tensor model parallelism for fully-connected layers



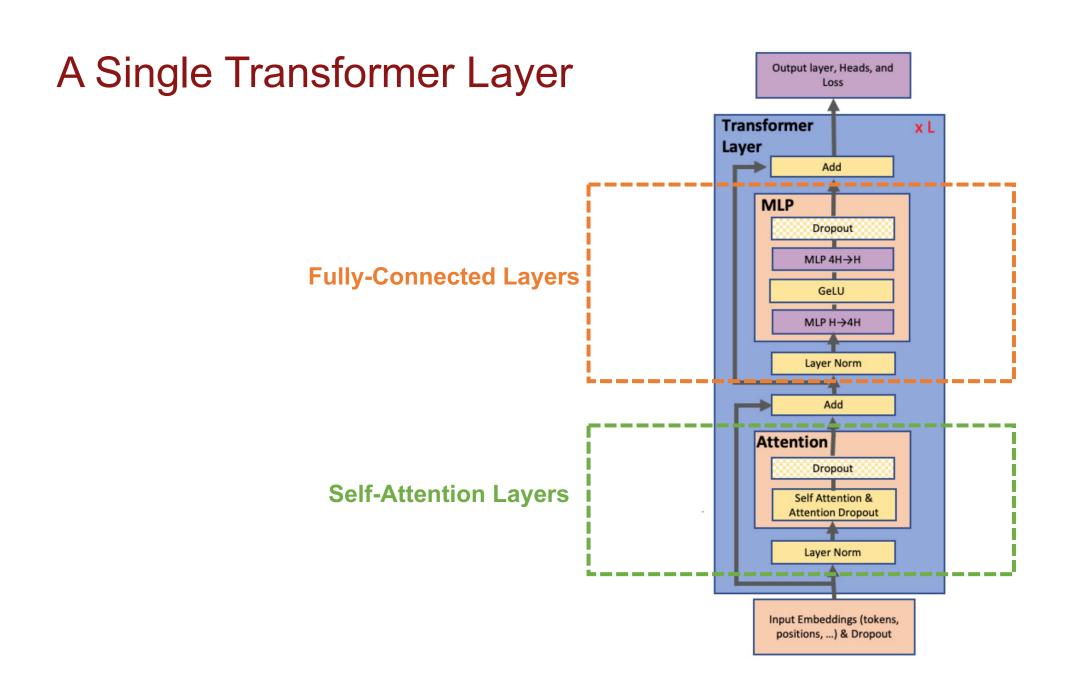
Example: Parallelizing Transformers

Transformer: attention mechanism for language understanding

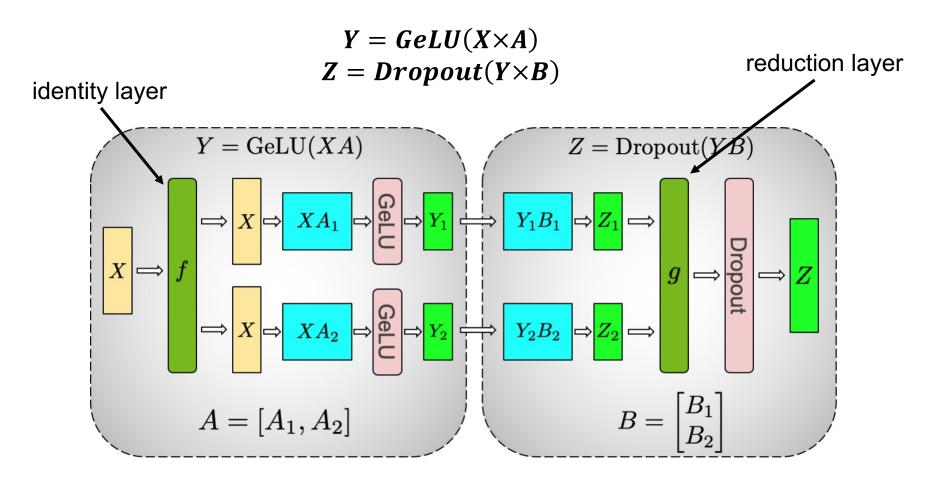




Ashish Vaswani et. al. Attention is all you need.



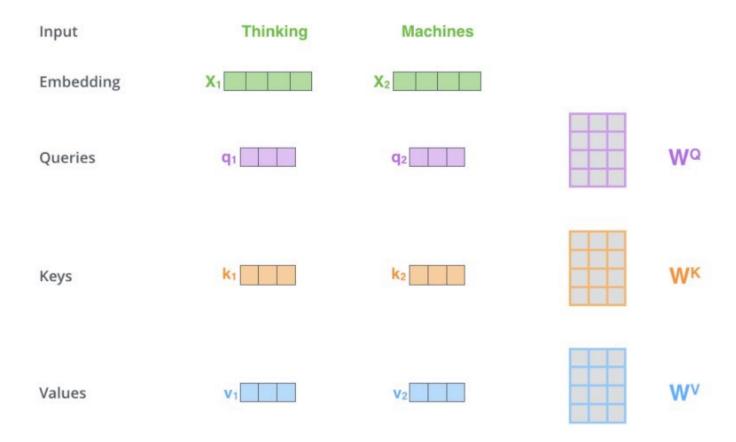
Parallelizing Fully-Connected Layers in Transformers



Tensor model parallelism (partition output)

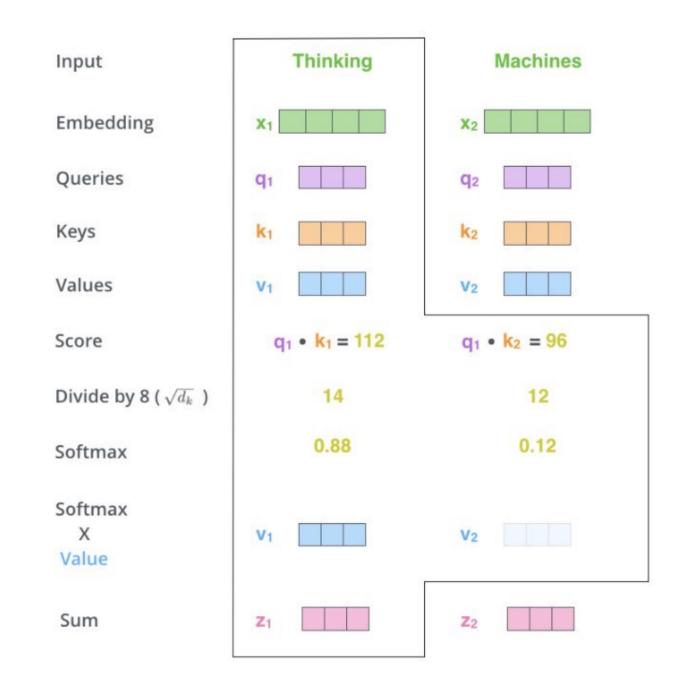
Tensor model parallelism (reduce output)

Mapping a query and a set of key-value pairs to an output

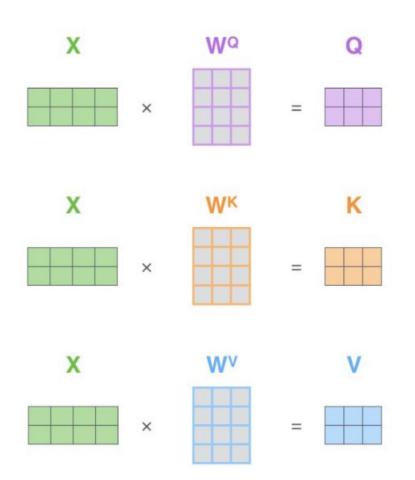


Slide credit: Jay Allamar

 Mapping a query and a set of key-value pairs to an output

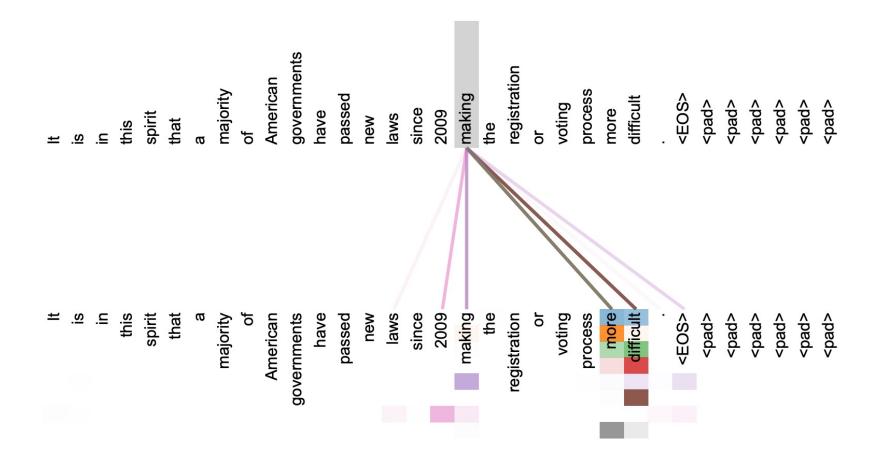


Slide credit: Jay Allamar



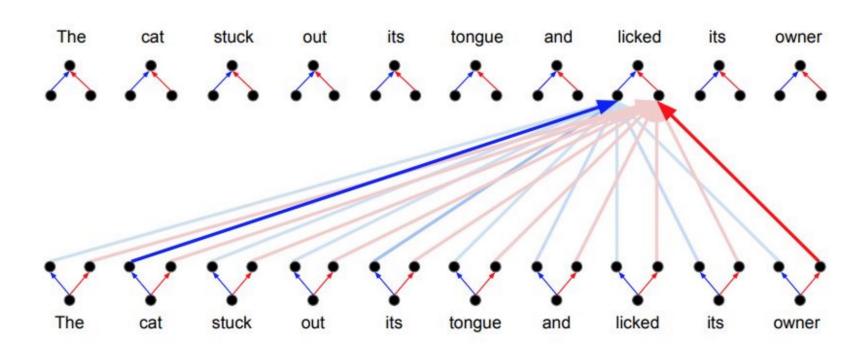
$$A(Q, K, V) = softmax \left(\frac{QK^{T}}{\sqrt{d}}\right)V$$

Slide credit: Jay Allamar

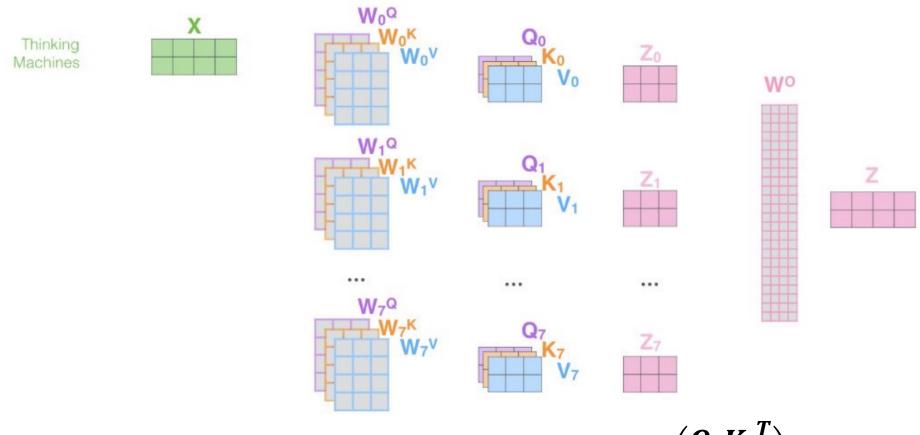


Multi-Head Self-Attention

- Parallelize attention layers with different linear transformations on input and output
- Benefits: more parallelism, reduced computation cost



Multi-Head Self-Attention

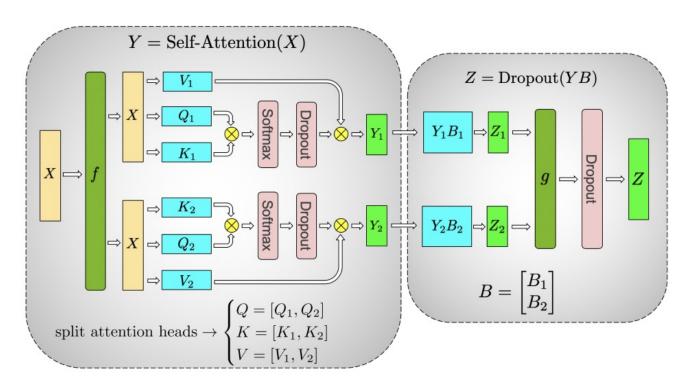


$$Z_{i} = A(Q_{i}, K_{i}, V_{i}) = softmax \left(\frac{Q_{i}K_{i}^{T}}{\sqrt{d}}\right)V_{i}$$

$$Z = MultiHead(Q, K, V) = Concat(Z_{0}, ..., Z_{7})W^{o}$$

Parallelizing Self-Attention Layers in Transformers
$$Y_i = A(Q_i, K_i, V_i) = softmax \left(\frac{Q_i K_i}{\sqrt{d}}\right) V_i$$

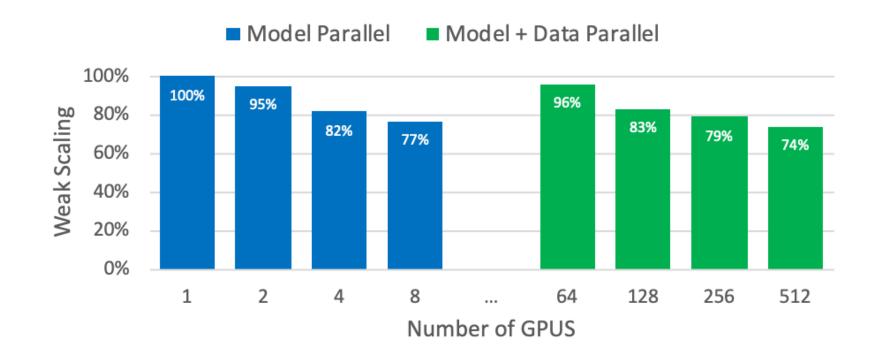
$$Z = MultiHead(Q, K, V) = Concat(Y_0, ..., Y_h) W^o$$



Parallelizing across attention heads

Tensor model parallelism (reduce output)

Parallelizing Transformers



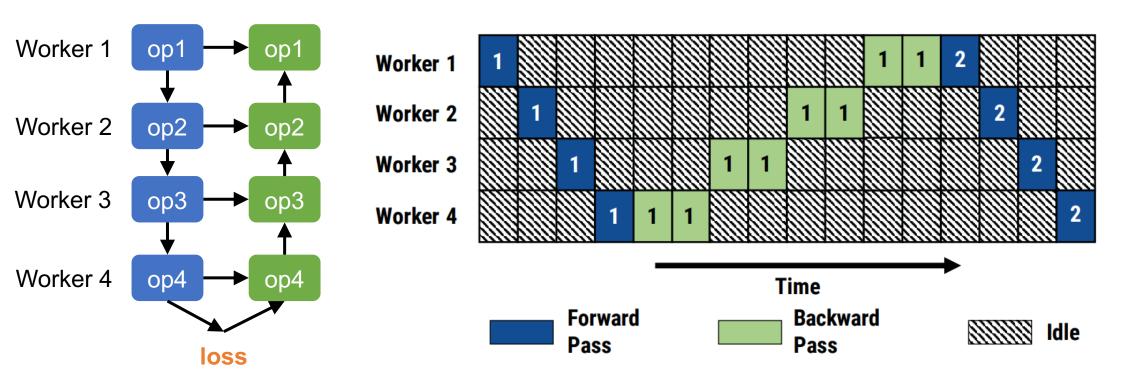
Scale to 512 GPUs by combining data and model parallelism

How to parallelize DNN Training?

- Data parallelism
- Model parallelism
- Tensor model parallelism
- Pipeline model parallelism

An Issue with Model Parallelism

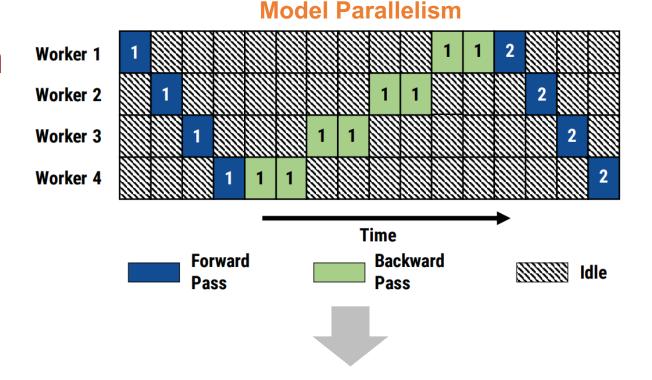
- Under-utilization of compute resources
- Low overall throughput due to resource utilization



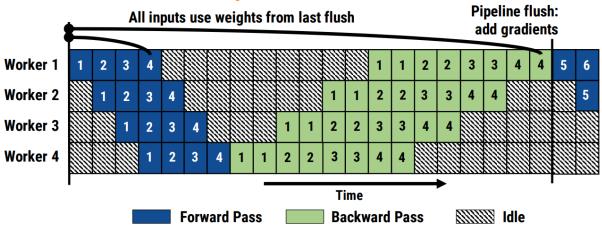
Pipeline Model Parallelism

 Mini-batch: the number of samples processed in each iteration

- Divide a mini-batch into multiple micro-batches
- Pipeline the forward and backward computations across micro-batches

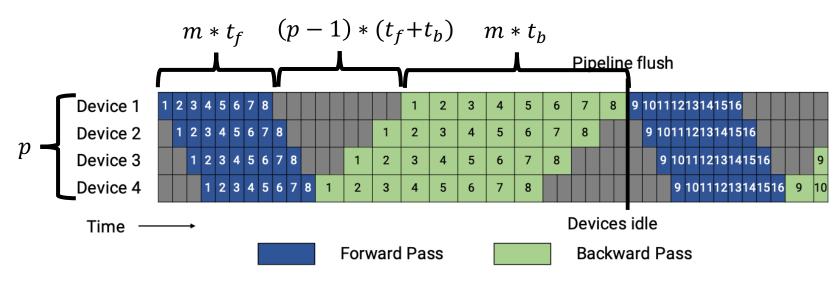


Pipeline Model Parallelism



Pipeline Model Parallelism: Device Utilization

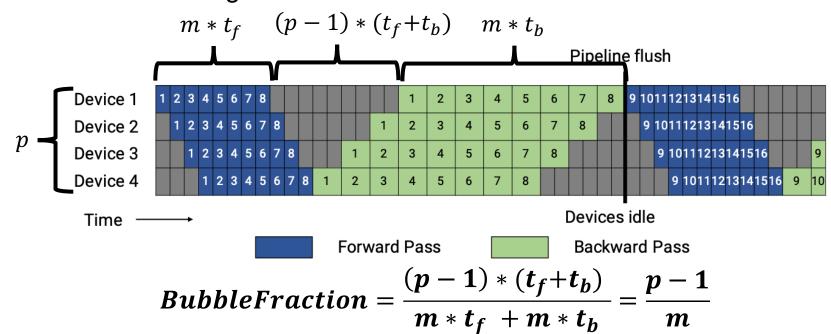
- m: micro-batches in a mini-batch
- p: number of pipeline stages
- All stages take $t_f/\ t_b$ to process a forward (backward) micro-batch



BubbleFraction =
$$\frac{(p-1)*(t_f+t_b)}{m*t_f+m*t_b} = \frac{p-1}{m}$$

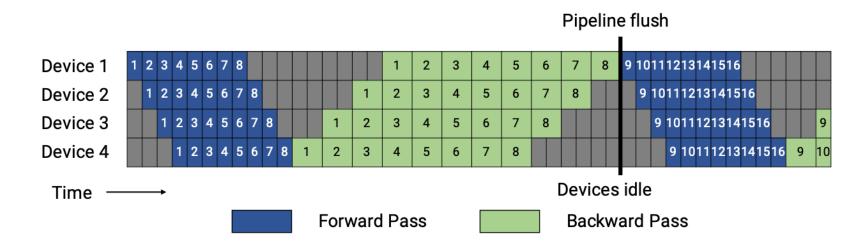
Improving Pipeline Parallelism Efficiency

- m: number of micro-batches in a mini-batch
 - Increase mini-batch size or reduce micro-batch size
 - Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
- p: number of pipeline stages
 - Decrease pipeline depth
 - Caveat: increase stage size



Pipeline Model Parallelism: Memory Requirement

 An issue: we need to keep the intermediate activations of all microbatches before back propagation

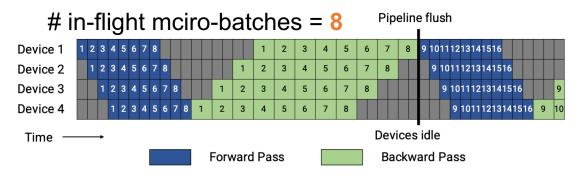


Can we improve the pipeline schedule to reduce memory requirement?

Pipeline Parallelism with 1F1B Schedule

- One-Forward-One-Backward in the steady state
- Limit the number of in-flight micro-batches to the pipeline depth
- Reduce memory footprint of pipeline parallelism
- Doesn't reduce pipeline bubble

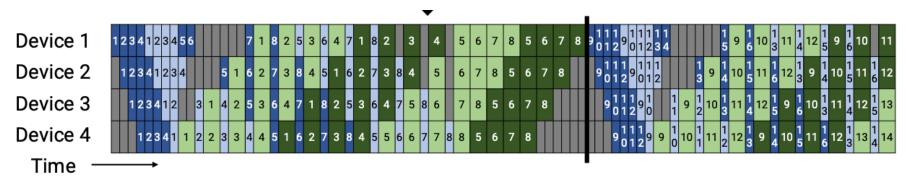
Can we reduce pipeline bubble?



Pipeline parallelism with 1F1B schedule

Pipeline Parallelism with Interleaved 1F1B Schedule

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is $\frac{t_f}{v} (\frac{t_b}{v})$



Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second chunk.

$$BubbleFraction = \frac{(p-1)*\frac{(t_f+t_b)}{v}}{m*t_f + m*t_b} = \frac{1}{v}*\frac{p-1}{m}$$

Reduce bubble time at the cost increased communication

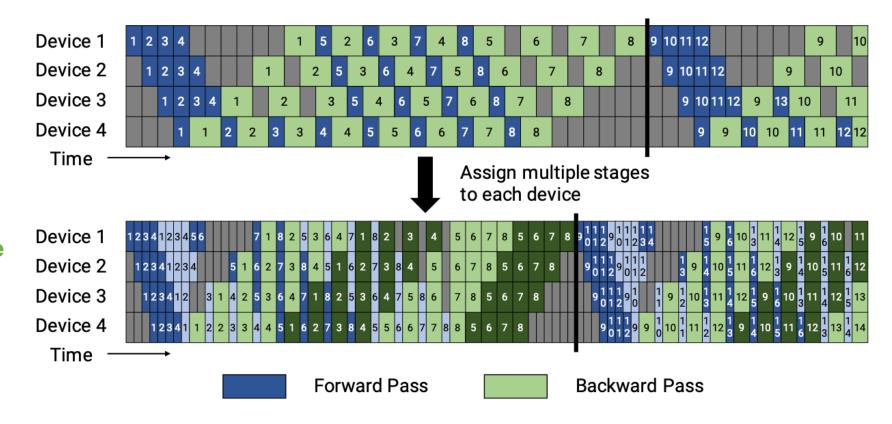
Pipeline Parallelism with Interleaved 1F1B Schedule

Pipeline parallelism with 1F1B Schedule

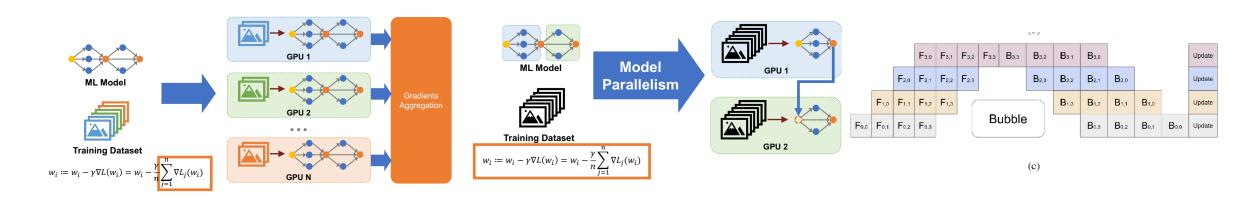
$$BubbleFraction = \frac{p-1}{m}$$

Pipeline parallelism with interleaved 1F1B Schedule

$$BubbleFraction = \frac{1}{v} * \frac{p-1}{m}$$

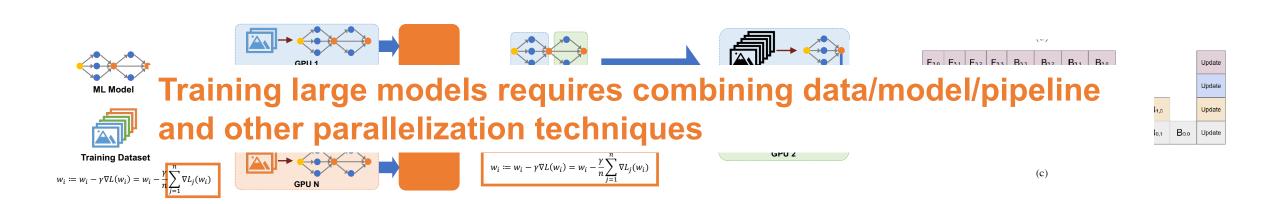


Summary: Comparing Data/Model/Pipeline Parallelism



	Data Parallelism	Model Parallelism	Pipeline Parallelism
Pros	✓ Massively parallelizable✓ Require no communication during forward/backward	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	✓ Support large-batch training✓ Efficient for deep models
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	Limited utilization: bubbles in forward/backward

Summary: Data/Model/Pipeline Parallelism



	Data Parallelism	Model Parallelism	Pipeline Parallelism
Pros	✓ Massively parallelizable✓ Require no communication during forward/backward	 ✓ Support training large models ✓ Efficient for models with large numbers of parameters 	✓ Support large-batch training
Cons	 Do not work for models that cannot fit on a GPU Do not scale for models with large numbers of parameters 	 Limited parallelizability; cannot scale to large numbers of GPUs Need to transfer intermediate results in forward/backward 	Limited utilization: bubbles in forward/backward

Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

