
 CMU 15-418/618, Fall 2023

Course so far review
(a more-or-less randomly selected collection of

topics from previous lectures)

 CMU 15-418/618, Fall 2023

Exam details
▪ Closed book, closed notes

▪ A4 paper

▪ Covers all lecture material through Lecture on Directory-based
cache coherence

▪ Must use either blue or black pen (no pencils or other pen colors)

▪ Typical question formats:

- Short answer

- Multiple choice with explanations

 CMU 15-418/618, Fall 2023

Throughput vs. latency

THROUGHPUT

LATENCY

The rate at which work gets done.
- Operations per second
- Bytes per second (bandwidth)
- Tasks per hour

The amount of time for an operation to complete
- An instruction takes 4 clocks
- A cache miss takes 200 clocks to complete
- It takes 20 seconds for a program to complete

 CMU 15-418/618, Fall 2023

Ubiquitous parallelism
▪ What motivated the shift toward multi-core parallelism in

modern processor design?
- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

Is the new performance focus
on throughput, or latency?

 CMU 15-418/618, Fall 2023

Techniques for exploiting independent operations in
applications

1. superscalar
execution

What is it? What is the bene!t?
Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallel on a
super-scalar processor.

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

A chip contains multiple (mainly) independent processing cores, each
capable of executing independent instruction streams.

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.

 CMU 15-418/618, Fall 2023

1. superscalar
execution

Who is responsible for mapping?
Usually not a programmer responsibility:
ILP automatically detected by processor hardware or by compiler (or both)
(But manual loop unrolling by a programmer can help)

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

In simple cases, data parallelism is automatically detected by the compiler, (e.g.,
assignment 1 saxpy). In practice, programmer explicitly describes SIMD execution
using vector instructions or by specifying independent execution in a high-level
language (e.g., ISPC gangs, CUDA)

Programmer de!nes independent threads of control.
e.g., pthreads, ISPC tasks, openMP #pragma

Programmer de!nes independent threads of control. But programmer
must create more threads than processing cores.

Techniques for exploiting independent operations in
applications

 CMU 15-418/618, Fall 2023

Frequently discussed processor examples
▪ Intel Core i9 CPU

- 8 cores
- Each core:

- Supports 2 threads (“Hyper-Threading”)
- Can issue 8-wide SIMD instructions (AVX instructions) or 4-wide SIMD instructions (SSE)
- Can execute multiple instructions per clock (superscalar)

▪ NVIDIA GTX 980 GPU
- 16 “cores” (called SMM core by NVIDIA)
- Each core:

- Supports up to 64 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock

▪ Intel Xeon Phi
- 61 cores
- Each core: supports 4 threads, issues 16-wide SIMD instructions

 CMU 15-418/618, Fall 2023

Multi-threaded, SIMD execution on GPU
= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

▪ Describe how CUDA threads are mapped to the execution resources on this GTX 980 GPU?
- e.g., describe how the processor executes instructions each clock

 CMU 15-418/618, Fall 2023

Decomposition: assignment 1, program 3
▪ You used ISPC to parallelize the Mandelbrot generation
▪ You created a bunch of tasks. How many? Why?

uniform int rowsPerTask = height / 2;

// create a bunch of tasks

launch[2] mandelbrot_ispc_task(
 x0, y0, x1, y1,
 width, height,
 rowsPerTask,
 maxIterations,
 output);

 CMU 15-418/618, Fall 2023

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assumes N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

ISPC Keywords:
programCount: number of simultaneously
executing instances in the gang (uniform value)

programIndex: id of the current instance in the
gang. (a non-uniform value: “varying”)

uniform: A type modi!er. All instances have the
same value for this variable. Its use is purely an
optimization. Not needed for correctness.

sin(x) in ISPC
“Interleaved” assignment of array elements to program instances

 CMU 15-418/618, Fall 2023

sin(x) in ISPC: version 2
“Blocked” assignment of elements to instances

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 uniform int count = N / programCount;
 int start = programIndex * count;
 for (uniform int i=0; i<count; i++)
 {

 int idx = start + i;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (j+3) * (j+4);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

 CMU 15-418/618, Fall 2023

Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential
▪ Max speedup on P processors given by:

speedup

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 CMU 15-418/618, Fall 2023

Thought experiment
▪ Your boss gives your team a piece of code for which 25% of the operations

are inherently serial and instructs you to parallelize the application on a six-
core machines in GHC 3000. He expects you to achieve 5x speedup on this
application.

▪ Your friend shouts at your boss, “that is %#*$(%*!@ impossible”!
▪ Your boss shouts back, “I want employees with a can-do attitude! You

haven’t thought hard enough.”

▪ Who is right?

 CMU 15-418/618, Fall 2023

Work assignment Problem to solve

Subproblems
(“tasks”)

Threads
(or processors)

Decomposition

Assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

Assignment of subproblems to processors is determined before (or right
at the start) of execution. Assignment does not dependent on execution
behavior.

Assignment of subproblems to processors is determined as the program runs.

Good: very low (almost none) run-time overhead
Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue

 CMU 15-418/618, Fall 2023

Balancing the workload
Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they !nish their portion of the work at the same time)

Load imbalance can signi!cantly reduce overall speedup
Time P1 P2 P3 P4

 CMU 15-418/618, Fall 2023

Dynamic assignment using work queues

Worker threads:
Pull data from work queue
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems
(aka “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

 CMU 15-418/618, Fall 2023

Decomposition in assignment 2
▪ Most solutions decomposed the problem in several ways

- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”

 CMU 15-418/618,
Fall 2023

Grid, Block, and Thread
▪ gridDim: The dimensions of the

grid
▪ blockIdx: The block index within

the grid
▪ blockDim: The dimensions of

the block
▪ threadIdx: The thread index

within the block

 CMU 15-418/618,
Fall 2023

Basic CUDA syntax

Each thread computes its overall grid thread id
from its position in its block (threadIdx) and its
block’s position in the grid (blockIdx)

Bulk launch of many CUDA threads
“launch a grid of CUDA thread blocks”
Call returns when all threads have terminated

“Host” code : serial execution
Running as part of normal C/C++
application on CPU

SPMD execution of device kernel function:

const int Nx = 12;
const int Ny = 6;

dim3 threadsPerBlock(4, 3, 1);
dim3 numBlocks(Nx/threadsPerBlock.x,
 Ny/threadsPerBlock.y, 1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will trigger execution of 72 CUDA threads:
// 6 thread blocks of 12 threads each
matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

Regular application thread running on CPU (the “host”)

// kernel definition
__global__ void matrixAdd(float A[Ny][Nx],
 float B[Ny][Nx],
 float C[Ny][Nx])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;

 C[j][i] = A[j][i] + B[j][i];
}

CUDA kernel de!nition
“CUDA device” code: kernel function (__global__
denotes a CUDA kernel function) runs on GPU

 CMU 15-418/618,
Fall 2023

CUDA synchronization constructs
▪ __syncthreads()

- Barrier: wait for all threads in the block to arrive at this point

▪ Atomic operations
- e.g., float atomicAdd(float* addr, float amount)
- Atomic operations on both global memory and shared memory variables

▪ Host/device synchronization
- Implicit barrier across all threads at return of kernel

 CMU 15-418/618, Fall 2023

Programming model abstractions

1. shared
address space

Communication?

Implicit: loads and stores to
shared variables

2. message
passing

3. data-parallel

Sync?

Synchronization primitives
such as locks and barriers

Structure?

Multiple processors
sharing an address
space.

Multiple processors,
each with own memory
address space.

Explicit: send and receive
messages

Build synchronization out
of messages.

Rigid program
structure: single logical
thread containing
map(f, collection)
where “iterations” of
the map can be
executed concurrently

Typically not allowed
within map except
through special built-in
primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

Implicit barrier at the
beginning and end of
the map.

 CMU 15-418/618, Fall 2023

Cache coherence
Why cache coherence?
Hand-wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space
1. A read by processor P to address X that follows a write by P to address X, should return the value of the

write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are su"ciently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
 precisely when it is propagated is not de!ned by de!nition of coherence.

Condition 3: write serialization

 CMU 15-418/618, Fall 2023

Implementing cache coherence
Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
!nd sharers and communicates with these nodes using point-to-point
messages.

Good: simple, low latency
Bad: broadcast tra"c limits scalability

Good: coherence tra"c scales with number of sharers, and number of
sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path

 CMU 15-418/618, Fall 2023

Artifactual vs. inherent communication

ARTIFACTUAL
COMMUNICATION

INHERENT
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor
reads/writes only from its local data.

 CMU 15-418/618, Fall 2023

MSI state transition diagram

S
(Shared)

M
(Modi!ed)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / #ush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / #ush

BusRd / --

