
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2024

Lecture 1:

Why Parallelism?
Why Efficiency?

CMU 15-418/618, Fall 2024

Hi!

Daniel

Jinsol

Hongzhe

Prof. Jia

Sid

Prof. Skarlatos RolandNader

CMU 15-418/618, Fall 2024

What will you be doing in this course?

CMU 15-418/618, Fall 2024

Programming Assignments
▪ Four programming assignments

- First assignment is done individually, the rest will be done in pairs
- Each uses a different parallel programming environment

Assignment 1: ISPC programming on
Intel quad-core CPU

Assignment 2: CUDA
programming on NVIDIA GPUs

Assignment 3: Parallel Programming
via a Shared-Address Space Model

Assignment 4: Parallel Programming
via a Message Passing Model

CMU 15-418/618, Fall 2024

If you are on the Wait List
▪ We will hand out Assignment 1 later this week

▪ Our algorithm for filling the K remaining slots in the class:
- the first K students on the Wait List who hand in

Assignment 1 and receive an A on it are enrolled in the class

CMU 15-418/618, Fall 2024

Exams
▪ We will have two midterm-style exams

- Each covers roughly half of the course material

▪ No final exam
- We use the final exam slot for our project poster session

CMU 15-418/618, Fall 2024

Written Assignments
▪ We will have roughly 3 written assignments

- Peer graded

▪ No programming is involved
- They are paper-and-pencil type problems

▪ Purpose:
- Practice answering exam-style questions

CMU 15-418/618, Fall 2024

Final project
▪ 6-week self-selected final project

▪ Performed in groups (by default, 2 people per group)

▪ Start thinking about your project ideas TODAY!

▪ Poster session during the final exam slot

▪ Check out previous year’s projects:

http://www.cs.cmu.edu/afs/cs/academic/class/15418-f22/www/projects.html

http://www.cs.cmu.edu/afs/cs/academic/class/15418-f22/www/projects.html

CMU 15-418/618, Fall 2024

Participation Grade: Online Mini-Quizzes
▪ During the day of a lecture, we will have a simple quiz posted

on Canvas

▪ The quizzes should be easy
- the goal is just to demonstrate that you are keeping up

with the class material

▪ They also give us feedback on what the class is understanding

CMU 15-418/618, Fall 2024

Grades

36% Programming assignments (4)
9% Written assignments + Quizzes
30% Exams (2 exams, 15% each)
25% Final project

Each student (or group) gets up to five late days on programming
assignments (see syllabus for details)

CMU 15-418/618, Fall 2024

Getting started
▪ Course Information:

- https://www.cs.cmu.edu/~418

▪ Pay attention to Piazza posts
- https://piazza.com/cmu/fall2024/15418618/home

▪ Textbook
- There is no course textbook, but please see web site for suggested references

- Canvas includes additional lecture notes

▪ Find a partner
- Assignments 2-4, Final project

https://www.cs.cmu.edu/~418
https://piazza.com/cmu/fall2024/15418618/home

CMU 15-418/618, Fall 2024

Regarding the class meeting times
▪ We meet 3 days a week (MWF) for the first 2/3 of the semester

▪ Same content as 2 days a week over a full semester, but two
major advantages this way:
- you are better prepared to do an interesting project
- more time to focus on your project

Lectures

Project

CMU 15-418/618, Fall 2024

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing

C.mmp at CMU (1971)
16 PDP-11 processors

Cray XMP (circa 1984)
4 vector processors

Thinking Machines CM-2 (circa 1987)
65,536 1-bit processors +

2048 floating-point co-processors

SGI UV 1000cc-NUMA (today)
4096 processor cores

Blacklight at the Pittsburgh
Supercomputer Center

CMU 15-418/618, Fall 2024

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing

▪ Another Driving Application (starting in early ‘90s): Databases

Sun Enterprise 10000 (circa 1997)
16 UltraSPARC-II processors

Oracle Supercluster M6-32 (today)
32 SPARC M2 processors

CMU 15-418/618, Fall 2024

Today: Parallel Computing for ML

TPU v4 Cluster Google (2023)
4096 Chips per Pod

TPU v4 Chip (2023)
275 TeraFlops

▪ Current Focus: “Supercomputers” for Machine Learning

Optically-Reconfigurable Network (2023)

CMU 15-418/618, Fall 2024

Setting Some Context
▪ Before we continue our multiprocessor story, let’s pause to consider:

- Q: what had been happening with single-processor performance?

▪ A: since forever, they had been getting exponentially faster
- Why?

Image credit: Olukutun and Hammond, ACM Queue 2005

Re
la

tiv
e P

er
fo

rm
an

ce

CMU 15-418/618, Fall 2024

A Brief History of Processor Performance
▪ Wider data paths

- 4 bit → 8 bit → 16 bit → 32 bit → 64 bit

▪ More efficient pipelining

- e.g., 3.5 Cycles Per Instruction (CPI) → 1.1 CPI

▪ Exploiting instruction-level parallelism (ILP)
- “superscalar” processing: e.g., issue up to 4 instructions/cycle

▪ Faster clock rates

- e.g., 10 MHz → 200 MHz → 3 GHz

▪ During the 80s and 90s: large exponential performance gains
- and then…

CMU 15-418/618, Fall 2024

A Brief History of Parallel Computing
▪ Initial Focus (starting in 1970s): “Supercomputers” for Scientific Computing

▪ Another Driving Application (starting in early ‘90s): Databases

▪ Inflection point in 2004: Intel hits the Power Density Wall

Pat Gelsinger, ISSCC 2001

CMU 15-418/618, Fall 2024

From the New York Times
Intel's Big Shift After Hitting Technical Wall

The warning came first from a group of hobbyists that tests the speeds of computer chips. This
year, the group discovered that the Intel Corporation's newest microprocessor was running
slower and hotter than its predecessor.

What they had stumbled upon was a major threat to Intel's longstanding approach to dominating
the semiconductor industry - relentlessly raising the clock speed of its chips.

Then two weeks ago, Intel, the world's largest chip maker, publicly acknowledged that it had hit
a "thermal wall" on its microprocessor line. As a result, the company is changing its product
strategy and disbanding one of its most advanced design groups. Intel also said that it would
abandon two advanced chip development projects, code-named Tejas and Jayhawk.

Now, Intel is embarked on a course already adopted by some of its major rivals: obtaining more
computing power by stamping multiple processors on a single chip rather than straining to
increase the speed of a single processor.
… John Markoff, New York Times, May 17, 2004

CMU 15-418/618, Fall 2024

ILP tapped out + end of frequency scaling

No further benefit from ILP

Processor clock rate stops
increasing

Image credit: “The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

= Transistor density
= Clock frequency

= Instruction-level parallelism (ILP)
= Power

CMU 15-418/618, Fall 2024

Programmer’s Perspective on Performance
Question: How do you make your program run faster?

Answer before 2004:
- Just wait 6 months, and buy a new machine!
- (Or if you’re really obsessed, you can learn about parallelism.)

Answer after 2004:
- You need to write parallel software.

CMU 15-418/618, Fall 2024

Power Consumption of Datacenters

50% Increase!

CMU 15-418/618, Fall 2024

Parallel Machines Today
Examples from Apple’s product line:

Mac Pro
24 Apple M2 cores

(images from apple.com)

MacBook Pro 14”
12 Apple M2 cores

iPad Pro
8 A12X cores

(4 fast +
4 low-power)

iPhone XS
6 A12 cores

(2 fast +
4 low-power)

http://apple.com

CMU 15-418/618, Fall 2024

Intel Alder Lake-S (2021)

16 CPU cores (8 performance + 8 efficiency)

CMU 15-418/618, Fall 2024

Laptops: Apple M1 Pro (2021)

▪ 10 CPU Cores (8 performance + 2 efficiency)

▪ 16 GPU Cores

CMU 15-418/618, Fall 2024

Phones: Apple A16 (iPhone 14)

▪ 6 CPU Cores:
- 2 performance (everest) and 4 efficiency (sawtooth)

▪ 5 GPU Cores

▪ Neural Engine

CMU 15-418/618, Fall 2024

NVIDIA Hopper Architecture (H100 2023)
▪ 144 major programming blocks (SMs)

▪ 18432 CUDA cores (details in upcoming class)

CMU 15-418/618, Fall 2024

Supercomputing
▪ Today: clusters of multi-core CPUs + GPUs
▪ Oak Ridge Lab’s Frontier (fastest supercomputer in the world)

- CPU nodes: 9,472 AMD Epyc 7A53s "Trento" 64 core 2 GHz
- GPU nodes: 37,888 Radeon Instinct MI250X GPUs
- Grand total: 606,208 CPU cores + 8,335,360 GPU cores

CMU 15-418/618, Fall 2024

What is a parallel computer?

CMU 15-418/618, Fall 2024

One common definition
A parallel computer is a collection of processing elements
that cooperate to solve problems quickly

We’re going to use multiple
processors to get it

We care about performance *
We care about efficiency

* Note: different motivation from “concurrent programming” using pthreads in 15-213

CMU 15-418/618, Fall 2024

DEMO 1
(This semester’s first parallel program)

CMU 15-418/618, Fall 2024

Speedup
One major motivation of using parallel processing: achieve a speedup

For a given problem:

speedup(using P processors) =
execution time (using 1 processor)

execution time (using P processors)

CMU 15-418/618, Fall 2024

Class observations from demo 1

▪ Communication limited the maximum speedup achieved
- In the demo, the communication was telling each other the partial sums

▪ Minimizing the cost of communication improves speedup
- Moving students (“processors”) closer together (or let them shout)

CMU 15-418/618, Fall 2024

DEMO 2
(scaling up to four “processors”)

CMU 15-418/618, Fall 2024

Class observations from demo 2

▪ Imbalance in work assignment limited speedup
- Some students (“processors”) ran out work to do (went idle),

while others were still working on their assigned task

▪ Improving the distribution of work improved speedup

CMU 15-418/618, Fall 2024

DEMO 3
(massively parallel execution)

CMU 15-418/618, Fall 2024

Class observations from demo 3

▪ The problem I just gave you has a significant amount of
communication compared to computation

▪ Communication costs can dominate a parallel
computation, severely limiting speedup

CMU 15-418/618, Fall 2024

Course theme 1:
Designing and writing parallel programs ... that scale!

▪ Parallel thinking
1. Decomposing work into pieces that can safely be performed in parallel
2. Assigning work to processors
3. Managing communication/synchronization between the processors so

that it does not limit speedup

▪ Abstractions/mechanisms for performing the above tasks
- Writing code in popular parallel programming languages

CMU 15-418/618, Fall 2024

Course theme 2:
Parallel computer hardware implementation: how parallel
computers work

▪ Mechanisms used to implement abstractions efficiently
- Performance characteristics of implementations
- Design trade-offs: performance vs. convenience vs. cost

▪ Why do I need to know about hardware?
- Because the characteristics of the machine really matter

(recall speed of communication issues in earlier demos)

- Because you care about efficiency and performance
(you are writing parallel programs after all!)

CMU 15-418/618, Fall 2024

Course theme 3:
Thinking about efficiency

▪ FAST != EFFICIENT

▪ Just because your program runs faster on a parallel computer, it does
not mean it is using the hardware efficiently
- Is 2x speedup on computer with 10 processors a good result?

▪ Programmer’s perspective: make use of provided machine capabilities

▪ HW designer’s perspective: choosing the right capabilities to put in
system (performance/cost, cost = silicon area?, power?, etc.)

CMU 15-418/618, Fall 2024

Fundamental Shift in CPU Design Philosophy
Before 2004:

- within the chip area budget, maximize performance
- increasingly aggressive speculative execution for ILP

After 2004:
- area within the chip matters (limits # of cores/chip):

- maximize performance per area
- power consumption is critical (battery life, data centers)

- maximize performance per Watt
- upshot: major focus on efficiency of cores

CMU 15-418/618, Fall 2024

Summary
▪ Today, single-thread performance is improving very slowly

- To run programs significantly faster, programs must utilize multiple
processing elements

- Which means you need to know how to write parallel code

▪ Writing parallel programs can be challenging
- Requires problem partitioning, communication, synchronization
- Knowledge of machine characteristics is important

▪ I suspect you will find that modern computers have tremendously
more processing power than you might realize, if you just use it!

▪ Welcome to 15-418!

