Lecture 13:

Virtual Memory

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2024

Today: All About Virtual Memory

The virtual memory subsystem:

- Fundamentals

- How hardware supports virtual memory

- Techniques to alleviate address translation latency

- Translation coherence

CMU 15-418/618,
Fall 2024

Virtual memory in the real world

© B Data I |nstructions

‘fn 20%-

Q

:>j~15%-

—

g 10%-

()

S 5%

(al

o/ . |
0% 4KB 2MB 1GB 4KB 2MB 4KB 2MB 4KB 2MB
Web Cache A Cache B Ads

3 (MU 15-418/618,
Fall 2024

Image from: Zhao et al, “Contiguitas: The Pursuit of Physical Memory Contiguity in Datacenters.” In Proceedings of ISCA‘23.

Example

int array[10]

Where does a value live in memory?
How does the processor find it?

CMU 15-418/618,
Fall 2024

Physical addressing

Found in “simple” systems like embedded microcontrollers

Limited programmability

Core

~

J

Physical Address
(PA)

16

Main Memor

—

M-1

(MU 15-418/618,
Fall 2024

Virtual Addressing

Found in all modern systems! Servers, laptops, phones, tablets
One of the great ideas in computer science

Main Memor

Virtual Address Physical Address

s N (VA) ~ ™ (PA)
Core MMU —_—
N Y 1300 \ Y 16

M-1

Efficient memory usage -> DRAM caches part of the VA space

Programmability = Each process gets a linear address space
Security Isolation => Separate processes, kernel-userspace ,,,.;..o:::

Fall 2024

Virtual Memory Abstraction

Virtual Address (VA)

|

Application

]

-

-

Operating System

~

J

Physical Address (PA)

Hardware

CMU 15-418/€18,
Fall 2024

Virtual Memory Abstraction

|

Application

]

/

o

Operating System

\

J

Hardware

CMU 15-418/é18,
Fall 2024

Virtual Memory Abstraction

Page Tables Main Memory

4)
[Application]//—) \\-
-

CMU 15-418/818,
Fall 2024

Virtual Memory Abstraction

« Split the physical address space into pages
* Use page tables to map virtual-to-physical mappings at page granularity
* Page fault: Page is not in memory - OS handled fetching the page and updated the entry

Page Tables Main Memory

[Application]</—) o

L ><\\
N y)
If Present bit is cleared ->Page Fault! u-

_—

Storage

Page fault: In this case we are discussing a major page fault.

A minor page fault the page is in memory but not yet mapped

to the address space of the process. Both handled by the OS. (MU 15-418/618,
Fall 2024

Virtual Memory Abstraction

« Split the physical address space into pages
* Use page tables to map virtual-to-physical mappings at page granularity
* Page fault: Page is not in memory - OS handled fetching the page and updated the entry

Page Tables Main Memory
/
Application
— o
N

P

t

®)
=
Q)
Q
D

Page fault: In this case we are discussing a major page fault.

A minor page fault the page is in memory but not yet mapped

to the address space of the process. Both handled by the OS. CMU 15-418/618,
Fall 2024

Virtual Memory Abstraction

« Split the physical address space into pages
* Use page tables to map virtual-to-physical mappings at page granularity
* Page fault: Page is not in memory - OS handled fetching the page and updated the entry

Application

—

Page Tables

Main Memory

/

\

Page Table Entry

CMU 15-418/638,
Fall 2024

Virtual Memory Abstraction

Sp“t tha nhyviciral adArace enara intAn Nnanac

Use
Page

Applic

Table 4-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0(P) Present; must be 1 to map a 4-KByte page

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (U/S) gsse)r/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (Q) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

119 lgnored

(M-1):12 Physical address of the 4-KByte page referenced by this entry

5T:M Reserved (must be 0)

58:52 lgnored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page's access rights (see Section 4.6.2);
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFERNXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by

this entry; see Section 4.6); otherwise, reserved (must be 0)

CMU 15-418/638,

Fall 2024

Virtual Memory in Hardware

How hardware supports virtual memory?

What we will cover next:
- TLB

- Page walks

- Interaction with caches

14 (MU 15-418/618,
Fall 2024

Virtual Memory Abstraction

|

Application

]

Main Memori

Page Tables

CMU 15-418/628,
Fall 2024

How to Find Translations?

Fetching each translation on a load would be expensive!
How about locality? Translations cover pages but we operate on cache lines

E.g., 4KB translations > Enough for 64 cache lines of 64 bytes

[Application

\

J

-

_

Core

~

J

Issue LD VA 1

|1
Cache

L2
Cache

L3
Cache

Main Memori

Page Tables

CMU 15-418/48,
Fall 2024

Translation Lookaside Buffer

Fetching each translation on a load would be expensive!
How about locality? Translations cover pages but we operate on cache lines

E.g., 4KB translations > Enough for 64 cache lines of 64 bytes

TLB = Caches recent translations

[Application

\

J

-

_

Core

~

J

Issue LD VA 1

L1

Cache

TLB

L2
Cache

J

TLB Miss!

L3
Cache

Main Memori

Page Tables

CMU 15-418/618,
Fall 2024

How to Fill the TLB? Page Walk

Fetching each translation on a load would be expensive!
How about locality? Translations cover pages but we operate on cache lines
E.g., 4KB translations > Enough for 64 cache lines of 64 bytes

Main Memor
TLB > Caches recent translations —

Page walk: On a TLB miss fetch the entry from the page table

|

\

Application Page Tables
> J - N 4 N 7) J

core | L 2 3
\ || | Cache Cache Cache
ssue LDVA1 | N 7N g

TLB
9
_ J

TLB Miss - “Page Walk” = Fetch entry from page table

CMU 15-418/618,
Fall 2024

TLB Hit

Fetching each translation on a load would be expensive!
How about locality? Translations cover pages but we operate on cache lines
E.g., 4KB translations > Enough for 64 cache lines of 64 bytes

TLB = Caches recent translations

Page walk: On a TLB miss fetch the entry from the page table

[Application

\

J

-

_

Core

~

J

Issue LD VA 1

Main Memor

Page Tables
N N\)
L1 L2 L3
Cal;he Cache Cache
g AN Y
.
TILB

J

The TLB can provide substantial coverage!
Both spatial and temporal locality at
page granularity

CMU 15-418/618,
Fall 2024

TLB Interaction with Caches

Virtual Address Physical Address
Space Space

Main Memori

Use Virtual or Physical addresses?

[[
[[
[[
[[
[[

' |
l |
: |
) [

[Application): | Page Tables
% \: Y
Core 4| ‘IF

\§ /| / :
Issue LD VA 1 : |
[
[[
[[
[[
[[

If cache uses physical addresses = Need to translate before cache lookup!
Alternative: use virtual address tag = Complications due to aliasing, need to track/flush conflicts

CMU 15-418/618,
Fall 2024

TLB Interaction with Caches

Virtual Address

47 ... e 12 11...0
Address A Virtual Page Number (VPN) Page Offset
Valid | Dirty Tag Physical Page Number (PPN)
] 77N\
TLB Hit «<———F——11{=)< VvPNA PPN X
Physical Page Number (PPN) Page Offset
: Physical Address
Physical Address Tag Cache Block Byte
Index Offset Offset

Data

Cache Hit Data

CMU 15-418/618,
Fall 2024

TLB Interaction with Caches

Virtual Address

47 ... e 12 11...0
Address A Virtual Page Number (VPN) Page Offset
Valid | Dirty Tag Physical Page Number (PPN)
] 77N\
TLB Hit «<———F——11{=)< VvPNA PPN X
Physical Page Number (PPN) Page Offset
Physical Address
Physical Address Tag Cache Block Byte Y
\ Index /Offset Offset

\\'/
Data If cache index only from page offset
* Virtually indexed physically tagged (VIPT)

 No need to wait for translation
 Limit on cache size!

Alternatives?
Physically index physically tagged (PIPT)
 (Cannot access cache before TLB!

Data Virtually index virtually tagged (VIVT)
* Synonyms!

Cache Hit

CMU 15-418/618,
Fall 2024

TLB Hit

Fetching each translation on a load would be expensive!
How about locality? Translations cover pages but we operate on cache lines

E.g., 4KB translations > Enough for 64 cache lines of 64 bytes
TLB - Caches recent translations

Page walk: On a TLB miss fetch the entry from the page table

[Application

\

J

-

_

Core

~

J

Issue LD VA 1

L1

L2

L3

Cal;he

Cache

TLB

Cache

Main Memor

Page Tables

(MU 15-418/618,
Fall 2024

The Address Translation Wall

—Memory Capacity —TLB Entries

—_—

100s of GBs

10s of GBs 2-3K ent(ies

Relative Capacity
= N W S 01 OO N 0O © O

Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

24 CMU 15-418/618,

Image from: Zhao et al, “Contiguitas: The Pursuit of Physical Memory Contiguity in Datacenters.” In Proceedings of ISCA‘23. Fall 2024

Page Tables and Translation Latency

Page table structure of modern processors

How to reduce the address translation latency?
- Multi-level TLBs

- Page Walk Caches (PWC)

- Caching translation in data caches

- Larger Translations

o5 (MU 15-418/618,
Fall 2024

Multi-level Radix Page Tables

[Application Page Tables
> J - N 4 N\ [)
Core] |1 L2 L3
Cal;he Cache Cache
1\ J _ J 9) Y
Issue LD VA 1 g N
TILB

CMU 15-418/618,
Fall 2024

Multi-level Radix Page Tables

Xx86-64 Radix Page Tables

CMU 15-418248,
Fall 2024

Multi-level Radix Page Tables

* Each page table is 4KB and each entry is 8 bytes = 512 entries per page
* We need 9 bits for index
* Base page size 4KB > Page offset |2 bits

Xx86-64 Radix Page Tables

Virtual Address

47 ... 39 38...30 29 ... 21 20 ... 12 11...0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset
A

CR3) pgd

& A
ud
é) pmd A T,
PGD & pte . TLB Entry |
pop] N NI []
PMD
PTE

PGD: Page Global Directory
PGD: Page Upper Directory
PGD: Page Middle Directory

PTE: Page Table Entry (MU 15-418/618,

Fall 2024

Multi-level Radix Page Tables

* Each page table is 4KB and each entry is 8 bytes = 512 entries per page

* We need 9 bits for index
* Base page size 4KB > Page offset |2 bits

Xx86-64 Radix Page Tables

Virtual Address
‘ 47 ... 39 38...30 29 ... 21 20...12 1 ...0

Address A 9-bits 9-bits 9-bits 9-bits Page Offset
A
AR

CR3) pgd

ud A
7 i (+) pmd A
PGD O pte . TLB Entry |
pup) | N\
PMD
PTE

512GB IGB 2MB 4KB

Why”? sparsely populated address space
(VA space >> PA space)

PGD: Page Global Directory
PGD: Page Upper Directory
PGD: Page Middle Directory
PTE: Page Table Entry

CMU 15-418/618,
Fall 2024

Multi-level Radix Page Tables

« Radix page tables: Tree hierarchy of page tables
« Benefit: Easy to support sparsely populated address space (VA space >> PA space)

- Drawback: Page walk becomes a pointer chasing process
Main Memori

[Application Radix Page Tables
4) 4) 4 N\ (A
core | L1 L2 L3

\ || | Cache Cache Cache

ssue LDVA1 | S ah g

TLB
9
\§ J

TLB Miss - “Page Walk” = Fetch entry from radix page table

CMU 15-418/618,
Fall 2024

Multi-level Radix Page Tables

« Radix page tables: Tree hierarchy of page tables
« Benefit: Easy to support sparsely populated address space (VA space >> PA space)

- Drawback: Page walk becomes a pointer chasing process!
Main Memori

[Application) Radix Page Tables
s N s N 4 N ([A 500)
core | L1 L2 L3
\ IR Cache) Cache Cache
ssue LDVA1 | S ah g
| TLB
| pgd

| J

TLB Miss - “Page Walk” = Fetch entry from radix page table

CMU 15-418%18,
Fall 2024

Multi-level Radix Page Tables

« Radix page tables: Tree hierarchy of page tables
« Benefit: Easy to support sparsely populated address space (VA space >> PA space)

- Drawback: Page walk becomes a pointer chasing process!
Main Memori

[Application) Radix Page Tables
4) 4) 4 N ([A @u
core L] L1 L2 L3
\ IR Cache) Cache Cache
ssue LDVA1 | S ah g
TLB
g pud
\§ J

TLB Miss - “Page Walk” = Fetch entry from radix page table

CMU 15-418238,
Fall 2024

Multi-level Radix Page Tables

« Radix page tables: Tree hierarchy of page tables
« Benefit: Easy to support sparsely populated address space (VA space >> PA space)

- Drawback: Page walk becomes a pointer chasing process!
Main Memori

[Application) Radix Page Tables
4) 4) 4 N ([) ol
core L] L1 L2 L3
\ IR Cache) Cache Cache
ssue LDVA1 | S ah g
TLB
9
pmd
\§ J

TLB Miss - “Page Walk” = Fetch entry from radix page table

33

CMU 15-418/618,
Fall 2024

Reducing Translation Overhead
How to reduce the address translation latency?

Techniques we will cover next:

- Multi-level TLBs

- Page Walk Caches (PWC)

- Caching translation in data caches
- Larger Translations

34 (MU 15-418/618,
Fall 2024

Multilevel TLBs

How to avoid the cost of page walks?

Separate Instruction and Data TLBs
Larger TLBs - L2 TLB (mixed |+D)

Main Memori

N
[Application) Radix Page Tables
> . e N a N —
Core L1 L2 L3
Cache Cache Cache
- J - J
\- | AN J
d 4 B
L1 TLB " PR
12 TLB Benefit: Leverage locality in TLBs
~ Drawback: Extra hardware
g J
— - Note: Very helpful for workloads
Characteristic Instruction TLB Data DLB Second-level TLB .]
Entries 128 64 1536 with access locality
Associativity 8-way 4-way 12-way 35
Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU Intel |7 TLB structures
Access latency I cycle I cycle 8 cycles
Miss 9 cycles 9 cycles Hundreds of cycles to access
page table
(MU 15-418/618,

Fall 2024

Page Walk Cache

How to avoid the cost of page walks?

« Separate Instruction and Data TLBs

 Larger TLBs = L2 TLB (mixed [+D)

 Memory Management Unit Cache (MMU) - Locality at higher levels!

Main Memor

[Application
4 < 4 4
Core L1 L2
Cache Cache Cache
\§ J \§
N\ .
4 PWC
L1 TLB ['
L Benefit: Shorten page walk
L2 TLB Drawback: Extra hardware
MMU \ Note: Very helpful upper levels of

the tree cover a large space and 36
exhibit good locality

CMU 15-418/618,
Fall 2024

Translations in Data Caches

How to avoid the cost of page walks?
« Separate Instruction and Data TLBs
 Larger TLBs = L2 TLB (mixed [+D)

* Memory Management Unit Cache (MMU) - Locality at higher levels! Main Memor
» Cache translations in data caches = Avoid expensive DRAM accesses—

[

[Application) Radix Page Tables
4 N\ N A pod \“PUC - —
Core C;_C1he ach —)\ pre
\ R BAC - i -)
r N |]
L1TLB)| Benefit: Leverage cache locality for translations
> < L2 TLB Drawback: Contention with regular data
Note: Very helpful when translations
MMU \ / ooy

exhibit reuse captured by the larger
caches = avoids DRAM access.

37

CMU 15-418/618,
Fall 2024

Larger Translations (Huge Pages)

How to avoid the cost of page walks?
« Separate Instruction and Data TLBs
 Larger TLBs = L2 TLB (mixed I+D)

« Memory Management Unit Cache (MMU) - Locality at higher levels! Main Memor‘
« (Cache translations in data caches = Avoid expensive DRAM accesse
 Huge pages > Map a larger PA to a VA range

[

[Application) Radix Page Tables
> L e ™ pod (pUT (- e
Core CaL(;Ihe ach PUD PMD oTE

\ g AT -)

r N []

L1TLB I) Benefit: Fewer TLB entries & higher hit rate
b > 12 TLB Drawback: Paging + Bloating
Note: Very helpful as TLB pressure is reduced.
MMU N J

Main challenge is to have enough contiguity. "

CMU 15-418/618,
Fall 2024

Huge Pages with Radix Page Tables

Xx86-64 Radix Page Tables

Virtual Address
‘ 47 ... 39 38...30 29 ... 21 20...12 1 ...0

Address A 9-bits 9-bits 9-bits 9-bits Page Offset
A
AR

CR3) pgd

ud A
7 i (+) pmd A
PGD & pte . TLB Entry |
pop] N NI []
PMD
PTE

512GB IGB 2MB 4KB

CMU 15-418298,
Fall 2024

Translation Coherence

OS or HW responsible for:

- Loading the TLB with entries?

- Removing entries from the TLB?
- Create/update page tables?

How to maintain coherence across TLBs?

40 (MU 15-418/618,
Fall 2024

Hardware Responsibilities

Hardware is responsible for:
* Perform page walks and locate translations - Raise exception on error (e.g., Page fault)
 Load TLB and replace TLB entries due to conflicts

 But no cache coherence between TLBs and Caches Main Memor
* What are the implications? What if permissions of page change? d

Application -
i Operating \
. System Radix Page Tables
e N N N\ () pod (pUT (- —
Core L1 L2 L3
Cache Cache Cache PR | pre
> S SN VAN Y
4)
TLB
\§ J

41 (MU 15-418/618,
Fall 2024

OS Responsibilities

OS is responsible for:
* Creating page tables entries = Mapping of memory to the address space
« Update page tables entries > When? Permissions, page movement, updates, paging...

 Maintain translation coherence across TLBs! Main Memori

Application -
i Operating \
. System Radix Page Tables
e N N N\ () pod (pUT (- —
Core L1 L2 L3
Cache Cache Cache "R\ pre
S S SN J Y
4)
TLB
\§ J

42 (MU 15-418/618,
Fall 2024

How Propagate PT Changes?

! A o Main Memory
Core 0O Change permissions to read-only
- Y,
4 R
Core 1
- y,
No Caches or TLBs
4 R
Core 2
- Y,
4 R
Core N
> /+» Updates to the page tables in shared memory could be read by other threads

« But this would be a very slow system! Why?

43 CMU 15-418/618,
Fall 2024

How Propagate PT Changes?

Change permissions to read-only

Core 0

Core 1

Core 2

Core N

L2 $

-~

L2 $

J

TLB N

-

L2 $

v

TLB Shootdown:
- OS intervenes and flushes relevant entries from the TLBs!

L2 $

o

L3 $

~

Main Memory

J

44 CMU 15-418/618,
Fall 2024

TLB Shootdown Steps

1. OS on initiating core the page table entry (PTE)

2. OS generates that may be using this PTE

3. Initiating core sends Inter-Processor Interrupt (IPI) to other cores
- Requesting that they their corresponding TLB entry

4. Initiating core entry; waits for acks

5. Other cores receive interrupts; execute interrupt handler
- Invalidate TLBs
back to the initiating core
6. Once initiating core

45 CMU15-418/618,
Fall 2024

1. Lock Page Table Entry

OS

Core 0

Core 1

Core 2

-~

Core N

T~

L3 $

~

Main Memory

Radix Paoe-Jables
()
poc | o (e et

PUD

PMD

PTE

46 CMU 15-418/618,
Fall 2024

2. Generate list of cores

OS

Core 0

: {1,2,...N}

(

Core 1

TLB O

\

Core 2

L2 $

Core N

L2 $

L2 $

L2 $

L3 $

Main Memory

Radix Page Tables
) e o) @

PUD

PMD PTE

47 CMU15-418/618,
Fall 2024

IPI

IPl: Inter-Processor Interrupts

3. Send IPIs to Other Cores

OS

Core 0

: {1,2,...N}

-

Core 1

TLB O

~

~

-

Core 2

L2 $

Core N

L2 $

L2 $

L2 $

L3 $

Main Memory

Radix Page Tables

pgd

()
pud

PUD

s

PMD

pte

PTE

48 CMU 15-418/618,

Fall 2024

IPI

4. Invalidate local TLB

OS

Core 0

Core 1

: {1,2,...N}

~

-

Core 2

L2 $

Core N

L2 $

L2 $

L2 $

L3 $

Main Memory

Radix Page Tables
) I o)

PUD

PMD PTE

49 CMU 15-418/618,
Fall 2024

5. Interrupt Handler Invalidate TLBs

0S| {12..N
- N N N N N Main Memory
oo @ s H s P
IPI _ VRN /L J Y,
os |
4 N\ [N [)
Core 1 ® L1 $ 12$
AN /L J L Y,
I 0s |, . ., . L3 % Radix Page Tables
pgd pud pm AN |
Core 2 T@ L1 $ L2 $. pte |
N\ /L J /L Y, i PTE
0S J—— ¢ \
Core N ® L1$ L2 $
O\ VRN J O\ J \ /

50 C(MU15-418/618,
Fall 2024

6. Receive all acks and unlock PTE

- 0s |{12.N}
- N N N N N Main Memory
oo HE@ | rs 1 cos N
\§ J /L /L /
0OS l Acks
N\ [N\ [)
Core 1 L1 $ L2 $
J /L J L Y,
I os | / N, ., § L3 $ Radix Page Tables
pgd pud pm AN |
Core 2 Ti L1 $ 12 $. pte |
\- J L J J i PTE
os |} N N
Core N ® L1$ L2 $
O\ VRN O\l J \ /

51 C(MU15-418/618,
Fall 2024

Cores

Timeline of TLB Shootdown

Trigger PTE Page Table
Modification Update

MEE o Restore Flush
v Wait .1
Invalidate Context| Pipeline
Ack

Save LB Restore Flush

Fipeline EContext" NValdEes) "Conte Xt Pipeline
IPI Ack
Flush Save LB Restore Flush
Pipeline FContext NIValdats] Context| Pipeline

Flush Save Calculate | Send

Pipeline [EContext: Victim Set Bl
|PI

Process A Process A

(@
S

Process A: Thread B Process A

Process A

Process A: Tread C

Time

Substantial performance impact on multithreaded applications

59 C(MU15-418/618,
Fall 2024

Performance of TLB Shootdown

60 .
Windows
Linux
50 Barrelfish
o)
O
O 40
X
(V)
@
o O
s
9
Q 20
-+
O
—
10

O 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

cores

* EXpensive operation
- e.g., over 10,000 cycles on 8 or more cores
« (Gets more expensive with increasing number of cores

53 (MU 15-418/618,
Image from: Baumann et al,“The Multikernel: a New OS Architecture for Scalable Multicore Systems.” In Proceedings of SOSP ‘09. Fall 2024

Further reading

https://dl.acm.org/doi/pdf/10.1145/36206.36181

ASPLOS 11 - 1987

Machine-Independent Virtual Memory Management
for Paged Uniprocessor and Multiprocessor Architectures

Richard Rashid, Avadis Tevanian, Michael Young, David Golub,
Robert Baron, David Black, William Bolosky, and Jonathan Chew

Department of Computer Science
Carnegie Mellon University
Pitisburgh, Pennsylvania 15213

Abstract

This paper describes the design and implementation of vir-
tual memory management within the CMU Mach Operating
System and the experiences gained by the Mach kernel group
in porting that system to a variety of architectures. As of this
writing, Mach runs on more than half a dozen uniprocessors
and multiprocessors including the VAX family of uniproces-
sors and multiprocessors, the IBM RT PC, the SUN 3, the
Encore MultiMax, the Sequent Balance 21000 and several
experimental computers. Although these systems vary con-
siderably in the kind of hardware support for memory
management they provide, the machine-dependent portion of
Mach virtual memory consists of a single code module and its
related header file. This separation of software memory
management from hardware support has been accomplished
without sacrificing system performance. In addition to im-
proving portability, it makes possible a relatively unbiased
examination of the pros and cons of various hardware
memory management schemes, especially as they apply to the
support of multiprocessors.

1. Introduction

While software designers are increasingly able to cope with
variations in instruction set architectures, operating system
portability continues to suffer from a proliferation of memory
structures. UNIX systems have traditionally addressed the
problem of VM portability by restricting the facilities
provided and basing implementations for new memory
management architectures on versions already done for pre-
vious systems. As a result, existing versions of UNIX, such
as Berkeley 4.3bsd, offer little in the way of virtual memory
management other than simple paging support. Versions of
Berkeley UNIX on non-VAX hardware, such as SunOS on
the SUN 3 and ACIS 4.2 on the IBM RT PC, actually simu-
late internally the VAX memory mapping architecture -- in
effect treating it as a machine-independent memory manage-
ment specification.

This rescarch was sponsored by the Defense Advanced Rescarch Projects
Agency (DOD), ARPA Order No. 4864, monitored by the Space and Naval
Warfare Systems Command under contract N00039-85-C-1034.

Permission to copy without fee all or part of this material ks granted
provided that the coples are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying Is by permission of the
Assoclation of Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

® 1987 ACM 0-89791-238-1/87/1000-0031 $00.75

31

Over the last two years CMU has been engaged in the
development of a portable, multiprocessor operating system
called Mach. One of the goals of Mach has been to explore
the relationship between hardware and software memory ar-
chitectures and to design a memory management system that
would be readily portable to multiprocessor computing en-
gines as well as traditional uniprocessors.

Mach provides complete UNIX 4.3bsd compatibility while
significantly extending UNIX notions of virtwal memory
management and interprocess communication [1]. Mach sup-
ports:

o large, sparse virtual address spaces,

® copy-on-write virtual copy operations,

® copy-on-write and read-write memory sharing
between tasks,

o memory mapped files and

o user-provided backing store objects and pagers.

This has been accomplished without patterning Mach's in-
ternal memory representation after any specific architecture.
In fact, Mach makes relatively few assumptions about avail-
able memory management hardware. The primary require-
ment is an ability to handle and recover from page faults (for
some arbitrary page size).

As of this writing, Mach runs on more than half a dozen
uniprocessors and multiprocessors including the entire VAX
family of uniprocessors and multiprocessors, the IBM RT PC,
the SUN 3, the Encore MultiMax and the Sequent Balance
21000. Implementations are in progress for several ex-
perimental computers. Despite differences between supported
architectures, the machine-dependent portion of Mach's vir-
tual memory subsystem consists of a single code module and
its related header file. All information important to the
management of Mach virtual memory is maintained in
machine-independent data structures and machine-dependent
data structures contain only those mappings necessary run-
ning the current mix of programs,

Mach’s separation of software memory management from
hardware support has been accomplished without sacrificing
system performance. In several cases overall system perfor-
mance has measurably improved over existing UNIX im-
plementations. Moreover, this approach makes possible a

(MU 15-418/618,
Fall 2024

55

https://dl.acm.org/doi/pdf/10.1145/36206.36181

From Virtual Memory to Virtual Machines

Supports isolation and security
Sharing hardware among many unrelated users

Enabled by raw speed of processors, making the overhead more
acceptable

Allows different ISAs and OS to be presented to user programs
- “System Virtual Machines”
- SVM software is called “virtual machine monitor” or “hypervisor”

- Individual virtual machines run under the monitor are called “guest VMs”

56 C(MU15-418/618,
Fall 2024

VMM Requirements

Guest software should:
- Behave on as if running on native hardware

- Not be able to change allocation of real system
resources

VMM should be able to “context switch” guests

Hardware must allow:
- System and use processor modes

- Privileged subset of instructions for allocating system
resources

57 (MU 15-418/618,
Fall 2024

Impact of VMs on Virtual Memory

Each guest OS maintains its own set of page tables

- VMM adds a level of memory between physical and virtual
memory called “real memory”

- VMM maintains shadow page table that maps guest virtual
addresses to physical addresses

- Requires VMM to detect guest’s changes to its own page
table

- Occurs naturally if accessing the page table pointer is a
privileged operation

5g C(MU15-418/618,
Fall 2024

Impact of VMs on Virtual Memory

VA e
s oCR3 .-~ e
oL, | EVA[47:39])(%GPA() nIf4
K
ol 5 gVA[38:30])é () nL,
6
A
ol ,|gVA[29:21] ¥) nlL,
11
K
ol [EVA[20:12])@l} [nLy
16
)
VA[11:0] nL nlL nL nlL{ [sPA
gPALE Q\ > Ao BT 2 5 =T A S To TLB
21 22 23 24 0
)
EPTP - > NTLB Caching () PWC Caching

59 C(MU15-418/618,
Fall 2024

Virtualization Extensions

Objectives:
- Avoid flushing TLB

- Use nested page tables instead of shadow
page tables

- Allow devices to use DMA to move data

- Allow guest OS’s to handle device
Interrupts

- For security: allow programs to manage
encrypted portions of code and data

60 (MU 15-418/618,
Fall 2024

