Lecture 16:

Implementing
Synchronization

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2024

Today's topic: efficiently implementing
synchronization primitives

Primitives for ensuring mutual exclusion
- Locks

- Atomic primitives (e.g., atomic_add)

- Transactions

Primitives for event signaling

- Barriers

- Flags

CMU 15-418/618,
Fall 2024

Three phases of a synchronization event

1. Acquire method

- How a thread attempts to gain access to protected resource
2. Waiting algorithm

- How a thread waits for access to be granted to shared resource
3. Release method

- How thread enables other threads to gain resource when its
work in the synchronized region is complete

CMU 15-418/618,
Fall 2024

Busy waiting

Busy waiting (a.k.a. “spinning”)
while (condition X not true) {}

logic that assumes X is true

In classes like 15-213 or in operating systems, you have
certainly also talked about synchronization

- You might have heen taught busy-waiting is bad: why?

CMU 15-418/618,
Fall 2024

“Blocking” synchronization

Idea: if progress cannot be made because a resource cannot
be acquired, it is desirable to free up execution resources for
another thread (preempt the running thread)

if (condition X not true)
block until true; // 0S scheduler de-schedules thread

// (let’s another thread use the processor)

pthreads mutex example

pthread mutex t mutex;

pthread_mutex_lock(&mutex);

CMU 15-418/618,
Fall 2024

Busy waiting vs. blocking

Busy-waiting can be preferable to blocking if:

- Scheduling overhead is larger than expected wait time
- Tail latency effects

- Processor’s resources not needed for other tasks

- This is often the case in a parallel program since we usually don’t oversubscribe
a system when running a performance-critical parallel app (e.g., there aren’t
multiple CPU-intensive programs running at the same time)

- (larification: be careful to not confuse the above statement with the value of
multi-threading (interleaving execution of multiple threads/tasks to hiding
long latency of memory operations) with other work within the same app.

Examples:

pthread spinlock t spin; int lock;
pthread _spin_lock(&spin); OSSpinLockLock(&lock); // 0OSX spin lock

CMU 15-418/618,
Fall 2024

Implementing Locks

CMU 15-418/618,
Fall 2024

Warm up: a simple, but incorrect, lock

lock: ld RO, mem[addr] // load word into RO
cmp RO, #0 // compre RO to ©
bnz 1lock // if nonzero jump to top

st mem[addr], #1

unlock: st mem[addr], #0 // store O to address

Problem: data race because LOAD-TEST-STORE is not atomic!

Processor 0 loads address X, observes 0
Processor 1 loads address X, observes 0
Processor 0 writes 1 to address X
Processor 1 writes 1 to address X

CMU 15-418/618,
Fall 2024

Test-and-set based lock

Atomic test-and-set instruction:

ts RO, mem[addr] // load mem[addr] into RO
// if mem[addr] 1is O, set mem[addr] to 1

lock: ts RO, mem[addr] // load word into RO
bnz RO, lock // if 0, lock obtained

unlock: st mem[addr], #0 // store O to address

CMU 15-418/618,
Fall 2024

Test-and-set lock: consider coherence traffic

Processor 0

Invalidate line

'

Invalidate line

[P0 is holding lock...]

BusRdX l
Update line in cache (set to 0)

Invalidate line

= thread has lock

Processor 1

BusRdX 1es
Attempt to update (t&s fails)
Invalidate line
- BusRdX 1
- Attempt to update (t&s fails)
Invalidate line
BusRdX 1

Processor 2
Invalidate line
BusRdX 1
Attempt to update (t&s fails)
Invalidate line
BusRdX T8s;

Attempt to update (t&s fails)

Invalidate line

CMU 15-

418/618,
Fall 2024

Test-and-set lock: consider coherence traffic

Processor 0 Processor 1 Processor 2

-~ BusRdX 145 ~ Invalidate line Invalidate line

Invalidate line

[P0 is holding lock...]

BusRdX ! . .
Updatelinein cache (setto0) Invalidate line
Invalidate line BusRdX 1
Update line in cache (setto1)
= thread has lock CMU 15-418/618,

Fall 2024

Test-and-set lock performance

Benchmark: execute a total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

20 —

Benchmark executes:
lock(L);

18 Iy :
critical-section(c)
unlock(L);

16 |-

14

Time (us)
I

AV Bus contention increases amount of
5l time to transfer lock (lock holder must
wait to acquire bus to release)
6
. Not shown: bus contention also slows

down execution of critical section

2
0 / | | | 1 | 1 1 | 1 [1 | 1 |

3 S 7 9 11 13 15

Number of processors

CMU 15-418/618,

Figure credit: Culler, Singh, and Gupta Fall 2024

Desirable lock performance characteristics

Low latency

- Iflock is free and no other processors are trying to acquire it, a processor should
be able to acquire the lock quickly

Low interconnect traffic

- If all processors are trying to acquire lock at once, they should acquire the lock in
succession with as little traffic as possible

Scalability

- Latency/ traffic should scale reasonably with number of processors
Low storage cost

Fairness

- Avoid starvation or substantial unfairness

- One ideal: processors should acquire lock in the order they request access to it

Simple test-and-set lock: low latency (under low contention), high traffic, poor scaling, low storage cost (one int),

no provisions for fairness CMU 15-418/618
Fall 2024

Test-and-test-and-set lock

void Lock(int* lock) {
while (1) {

while (*lock != 0); // while another processor has the lock...

if (test _and set(*lock) == @) // when lock is released, try to acquire it
return;

}
}

void Unlock(volatile int* lock) {
*lock = 0;
}

CMU 15-418/618,
Fall 2024

Test-and-test-and-set lock: coherence traffic

Processor 1 Processor 2 Processor 3

BusRdX 1&s Invalidate line Invalidate line

V'

BusRd BusRd
[P1is holding lock...] [Many reads from local cache] [Many reads from local cache]

BusRdX | |

Update line in cache (set to 0) Invalidate line Invalidate line

Invalidate line BusRd BusRd
BusRdX T&S

Update linein cache (setto1)
Invalidate line ;BustX roc
Attempt to update (t&s fails)
= thread has lock R CLEERRTTTT AR EERERRRPPTRRRS CMU-15-418/618,

Fall 2024

Test-and-test-and-set lock: coherence traffic

Processor 1 Processor 2 Processor 3

BusRdX T&SE Invalidate line Invalidate line

'

BusRd BusRd

[P1 is holding lock...] [Many reads from local cache] [Many reads from local cache]

|

BusRdX |

Update line in cache (set to 0) Invalid e

Invalidate line Bushd
BusRd
Updat
Invalid 1o

ydate (t&s fails)
= thread has lock MOl CMU-15-418/618,

Fall 2024

Test-and-test-and-set characteristics

Slightly higher latency than test-and-set in uncontended case

- Must test... then test-and-set
Generates much less interconnect traffic

- Oneinvalidation, per waiting processor, per lock release (O(P) invalidations)

- This is 0(P?) interconnect traffic if all processors have the lock cached

- Recall: test-and-set lock generated one invalidation per waiting processor per test

More scalable (due to less traffic)

Storage cost unchanged (one int)
Still no provisions for fairness

CMU 15-418/618,
Fall 2024

Test-and-set lock with back off

Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* 1) {
int amount = 1;
while (1) {
if (test_and_set(*1l) == 0)
return;
delay(amount);
amount *= 2;

}
}

Same uncontended latency as test-and-set, but potentially higher latency under
contention. Why?

Generates less traffic than test-and-set (not continually attempting to acquire lock)
Improves scalability (due to less traffic)

Storage cost unchanged (still one int for lock)
Exponential back-off can cause severe unfairness

— Newer requesters back off for shorter intervals

CMU 15-418/618,
Fall 2024

Ticket lock

Main problem with test-and-set style locks: upon release,
all waiting processors attempt to acquire lock using test-
and-set

struct lock {
volatile int next_ ticket;
volatile int now_serving;

}s

void Lock(lock* 1) {
int my_ ticket = atomic increment(&l->next ticket); // take a “ticket”

while (my_ticket != 1l->now_serving); // wait for number
} // to be called

void unlock(lock* 1) {
1->now_serving++;

}

No atomic operation needed to acquire the lock (only a read)
Result: only one invalidation per lock release (O(P) interconnect traffic)

CMU 15-418/618,
Fall 2024

Array-based lock

Each processor spins on a different memory address
Utilizes atomic operation to assign address on attempt to acquire

struct lock {
volatile padded int status|[P]; // padded to keep off same cache line
volatile int head;

}s
int my_element;

void Lock(lock* 1) {
my element = atomic circ _increment(&l->head); // assume circular increment

while (1->status[my_element] == 1);
}

void unlock(lock* 1) {
1->status[my_element] = 1;
1->status[circ_next(my _element)] = 0; // next() gives next index

}
0(1) interconnect traffic per release, but lock requires space linear in P

Also, the atomic circular increment is a more complex operation (higher overhead)

CMU 15-418/618,
Fall 2024

X86 cmpxchg

Compare and exchange (atomic when used with lock prefix)

lock cmpxchg dst, src

T

often a memory address
lock prefix (makes operation atomic)
1 X86 accumulator register e.g., eax
if dst == accumulator
ZF =1 - flag register |. Does the dst have the value we think it has?
dst = src 2. Then make the update
else
ZF = 0

accumulator = dst
3. |If not return the current value

CMU 15-418/618,
Fall 2024

Queue-based Lock (MCS lock)

More details: Figure 5 Algorithms for Scalable Synchronization on Shared Memory Multiprocessor

Create a queue of waiters

- Each thread allocates a local space on which to wait

Pseudo-code:
- glock — global lock (tail of queue)

- mlock — my lock (state, next pointer)

AcquireQLock(*glock, *mlock)
{
mlock->next = NULL;
mlock->state = UNLOCKED;
ATOMIC();]
prev = glock
*glock = mlock
END ATOMIC(); -
if (prev == NULL)
return;
mlock->state = LOCKED;
prev->next = mlock;
while (mlock->state == LOCKED) ;
// SPIN

— Atomic Swap

} **Note the semantics of cmpxchg from previous slide

ReleaseQLock(*glock, *mlock)
{
do {
if (mlock->next == NULL) {

X = CMPXCHG(glock, mlock, NULL); **

if (x == mlock) return;

}

else

{

mlock->next->state = UNLOCKED;

return;

}
} while (1);

}

CMU 15-418/618,
Fall 2024

Implementing Barriers

CMU 15-418/618,
Fall 2024

Implementing a centralized barrier

(Based on shared counter)

struct Barrier_t {
LOCK lock;

}s

// barrier for p processors

int counter;
int flag;

// initialize to ©
// the flag field should probably be padded to
// sit on its own cache line. Why?

void Barrier(Barrier_t* b, int p) {
lock(b->lock);
if (b->counter == 0) {
// first thread arriving at barrier clears flag

}

}

b->flag = 0;

int num_arrived = ++(b->counter);
unlock(b->lock);

if (num_arrived ==

b->counter = 0;

b->flag = 1;
}
else {

while (b->flag ==
}

p) { // last arriver sets flag

0);

// wait for flag

Does it work? Consider:
do stuff ...
Barrier(b, P);

do more stuff ...
Barrier(b, P);

CMU 15-418/618,

Fall 2024

Correct centralized barrier

struct Barrier_t {
LOCK lock;
int arrive_counter; // initialize to © (number of threads that have arrived)
int leave counter; // initialize to P (number of threads that have left barrier)
int flag;

}s

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
lock(b->1lock);

if (b->arrive _counter == 0) { // if first to arrive...
if (b->leave_counter == P) { // check to make sure no other threads “still in barrier”
b->flag = 0; // first arriving thread clears flag
} else {
unlock(lock);
while (b->leave_counter != P); // wait for all threads to leave before clearing
lock(lock);
b->flag = 0; // first arriving thread clears flag
}
}

int num_arrived = ++(b->arrive_counter);
unlock(b->lock);

if (numarrived == p) { // last arriver sets f1z Main idea: wait for all processes to

b->arrive_counter

b->Leave_counter - 1; leave first barrier, before clearing
) flag for entry into the second
else {

while (b->flag == 0); // wait for flag
lock(b->1lock);

b->leave_ counter++;

unlock(b->lock);

} CMU 15-418/618,
Fall 2024

Centralized barrier with sense reversal

struct Barrier_t {
LOCK lock;
int counter; // initialize to ©
int flag; // initialize to ©

}s

int local sense = 0; // private per processor. Main idea: processors wait for flag
// to be equal to local sense

// barrier for p processors
void Barrier(Barrier_t* b, int p) {
local sense = (local sense == 0) ? 1 : 0O;
lock(b->lock);
int num_arrived = ++(b->counter);
if (num_arrived == p) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = local sense;
}
else {
unlock(b->lock);
while (b.flag != local sense); // wait for flag

}

Sense reversal optimization results in one spin instead of two

CMU 15-418/618,
Fall 2024

Centralized barrier: traffic

O(P) traffic on interconnect per barrier:

- All threads: 2P write transactions to obtain barrier lock and update counter
(O(P) traffic assuming lock acquisition is implemented in O(1) manner)

- Last thread: 2 write transactions to write to the flag and reset the counter
(O(P) traffic since there are many sharers of the flag)

- P-1transactions to read updated flag

But there is still serialization on a single shared lock

- So span (latency) of entire operation is O(P)
- (Canwedo better?

CMU 15-418/618,
Fall 2024

Combining tree implementation of barrier

High contention!
(e.g., single barrier\A O

4\@ o
O Q\Q O 6‘ 5(\Q

Centralized Barrier Combining Tree Barrier

Combining trees make better use of parallelism in interconnect topologies
- lg(P) span (latency)

- Strategy makes less sense on a bus (all traffic still serialized on single shared bus)
Barrier acquire: when processor arrives at barrier, performs increment of parent counter

- Process recurses to root

Barrier release: beginning from root, notify children of release

CMU 15-418/618,
Fall 2024

