
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2024

Lecture 18:

Heterogeneous Parallelism
and Hardware Specialization

 CMU 15-418/618, Fall 2024

Learning Objectives
▪ Describe the heterogeneous characteristics of parallel

programs

▪ Explain how hardware design exploits parallel program
characteristics

▪ Identify the benefits from heterogeneous execution

▪ Analyze shortcomings in Amdahl’s Law based calculations

 CMU 15-418/618, Fall 2024

You need to buy a
new computer…

 CMU 15-418/618, Fall 2024

You need to buy a computer system

Core Core

Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.
Which do you pick?

 CMU 15-418/618, Fall 2024

Amdahl’s law revisited

f = fraction of program that is parallelizable

n = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto n processors of equal capability

speedup(f, n) =
1

(1� f) + f
n

 CMU 15-418/618, Fall 2024

Rewrite Amdahl’s law in terms of resource limits

f = fraction of program that is parallelizable
n = total processing resources (e.g., transistors on a chip)
r = resources dedicated to each processing core,
 each of the n/r cores has sequential performance perf(r)

Two examples where n=16
rA = 4
rB = 1

Relative to processor with 1 unit of resources, n=1.
Assume perf(1) = 1

[Hill and Marty 08]

More general form of
Amdahl’s Law in terms
of f, n, r

speedup(f, n, r) =
1

1�f
perf(r) +

f
perf(r)·nr

 CMU 15-418/618, Fall 2024

Speedup (relative to n=1)

X-axis = r (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload
Each graph plots performance as resource allocation changes, but total chip
resources kept the same (constant n per graph)

perf(r) modeled as

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Figure credit: Hill and Marty 08]

11

 CMU 15-418/618, Fall 2024

Asymmetric set of processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example: n=16
One core: r = 4
Other 12 cores: r = 1

(of heterogeneous processor with n
recourses, relative to uniprocessor with
one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

[Hill and Marty 08]

speedup(f, n, r) =
1

1�f
perf(r) +

f
perf(r)+(n�r)

 CMU 15-418/618, Fall 2024

Speedup (relative to n=1)

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r = 1)

X-axis for symmetric architectures gives r for all cores (many small cores to left, few “fat” cores to right)

(chip from prev. slide)

[Source: Hill and Marty 08]

 CMU 15-418/618, Fall 2024

Heterogeneous processing
Observation: most “real world” applications have complex
workload characteristics *

They have components that can
be widely parallelized.

And components that are
difficult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control flow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

* You will likely make a similar observation during your projects

Idea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job”)

 CMU 15-418/618, Fall 2024

CPUs, GPUs, TPUs are all heterogeneous
processors

 CMU 15-418/618, Fall 2024

Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

4 CPU cores + graphics cores + media accelerators

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics + media
Shared LLC

System
Agent

(display,
memory,

I/O
controllers)

 CMU 15-418/618, Fall 2024

Intel “Skylake" (2015)
(6th Generation Core i7 architecture)

▪ CPU cores and graphics cores
share same memory system

▪ Also share LLC (L3 cache)

- Enables, low-latency, high-
bandwidth communication
between CPU and integrated
GPU

▪ Graphics cores cache coherent
with CPU

CPU
core

CPU
core

CPU
core

CPU
core

Integrated
Gen9 GPU

graphics +
media

Shared LLC

System
Agent

(display,
memory,

I/O)

 CMU 15-418/618,
Fall 2024

Revisit GPU Architecture: NVIDIA GTX 980
NVIDIA Maxwell GM204 architecture SMM unit (one “core”)

= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector
“Shared” memory

(96 KB)

Warp execution
contexts
(max 64)
(256 KB)

Warp 0
Warp 1
Warp 2

. . .

L1 cache

L1 cache

. . .

Warp 63

A warp is a set of 32 threads
executing the same instruction

 CMU 15-418/618, Fall 2024

Example: NVIDIA A100 Architecture

▪ Tensor Cores for Matrix
Multiplication

 CMU 15-418/618, Fall 2024

GPU’s are heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in assignment 2
Graphics-specific, fixed-

function compute resources

 CMU 15-418/618, Fall 2024

TPU’s Heterogeneous Architecture
▪ Google’s TPU v4 Architecture with

4 chips

▪ Each v4 TPU chip contains two
TensorCores.

▪ Each TensorCore has four MXUs, a
vector unit, and a scalar unit.

 CMU 15-418/618, Fall 2024

Modern Heterogeneous Platforms

High-end discrete GPU
(AMD or NVIDIA)

PCIe x16 bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/UI

Memory controllerL3 cache (8 MB)

Ring interconnect

DDR3 Memory

CPU Core 0 CPU Core 3… Gen9 Graphics

 CMU 15-418/618, Fall 2024

Mobile heterogeneous processors

Apple A9
Dual Core 64 bit CPU
GPU PowerVR GT6700 (6 “core”) GPU

NVIDIA Tegra X1
Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
One Maxwell SMM (256 “CUDA” cores)

A9 image credit Chipworks, obtained from
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

 CMU 15-418/618, Fall 2024

Supercomputers use heterogeneous processing
Los Alamos National Laboratory: Roadrunner
Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS
Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as “accelerator” to achieve desired compute density)

- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatt (about 2,400 average US homes)

Why no GPUs?

 CMU 15-418/618, Fall 2024

GPU-accelerated supercomputing
▪ Oak Ridge Summit (world’s #4)
▪ Overall Throughput: 200 PFLOPS
▪ 9,216 POWER9 22-core CPUs
▪ 27,648 NVIDIA Tesla V100 GPUs
▪ 250 PB Storage
▪ Estimated Cost: 325 million USD

Summit’s architecture

 CMU 15-418/618, Fall 2024

Heterogeneous architectures for supercomputing
Source: Top500.org Spring 2022 rankings

GPU

GPU

GPU

GPU

GPU

 CMU 15-418/618, Fall 2024

Green500: most energy efficient supercomputers

Source: Green500 Spring 2022 rankings

Efficiency metric: GFLOPS per Watt

 CMU 15-418/618, Fall 2024

Energy-constrained computing

▪ Supercomputers are energy constrained
- Due to shear scale
- Overall cost to operate (power for machine and for cooling)

▪ Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

▪ Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

 CMU 15-418/618, Fall 2024

Limits on chip power consumption
▪ General in mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 14 battery: 12 watt-hours
9.7in iPad Pro battery: 41 watt-hours
15in Macbook Pro: 84 watt-hours

 CMU 15-418/618, Fall 2024

Efficiency benefits of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU...

▪ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

- Assuming code is compute bound and
and is not floating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

 CMU 15-418/618, Fall 2024

Hardware specialization increases efficiency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance
as one CPU core with ~ 1/1000th
the chip area.

GPU cores: ~ 5-7 times more area
efficient than CPU cores.

ASIC delivers same performance
as one CPU core with only ~
1/100th the power.

 CMU 15-418/618, Fall 2024

Benefits of increasing efficiency
▪ Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

▪ Run at a fixed level of performance for longer
- e.g., video playback

- Achieve “always-on” functionality that was previously impossible

Moto X:
Always listening for “ok, google now”
Device contains ASIC for detecting this audio pattern.

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

 CMU 15-418/618, Fall 2024

Example: iPad Air (2013)

DRAMFlash memory

Dual-core 64-bit ARM CPU

Imagination
PowerVR

GPU

Video
Encode/Decode

Image
Processor

4MB L3

Core Core

Motion co-processor
(accelerometer, gyro, compass, etc.)

Touchscreen
controllers

Image Credit: ifixit.com

Apple A7
Processor

 CMU 15-418/618, Fall 2024

Original iPhone touchscreen controller

From US Patent Application 2006/0097991

Separate digital signal processor to interpret raw signal from capacitive touch sensor (do not burden main CPU)

 CMU 15-418/618, Fall 2024

Example: image processing on Nikon D7000

Process 16 MPixel RAW data from sensor to obtain JPG image:
On camera: ~ 1/6 sec per image
Adobe Lightroom on a quad-core Macbook Pro laptop: 1-2 sec per image

This is a older camera: much, much faster image processing performance on a
modern smart phone (burst mode)

 CMU 15-418/618, Fall 2024

Trading Efficiency and Programmability
▪ Improved energy efficiency often comes at a cost

- Programmability (e.g., consider debugging on a CPU v.s.
GPU)

- Applications (general-purpose v.s. domain-specific)

 CMU 15-418/618, Fall 2024

GPU’s are heterogeneous multi-core processors

GPU

GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources your CUDA programs used in assignment 2
Graphics-specific, fixed-

function compute resources

 CMU 15-418/618, Fall 2024

Rasterization:
Determining what pixels a triangle overlaps

Example graphics tasks performed in fixed-function HW
Texture mapping:

Warping/filtering images to apply detail to surfaces

Geometric tessellation:
computing fine-scale geometry
from coarse geometry

 CMU 15-418/618, Fall 2024

FPGAs (Field Programmable Gate Arrays)
▪ Middle ground between an ASIC and a processor
▪ FPGA chip provides array of logic blocks, connected by interconnect
▪ Programmer-defined logic implemented directly by FGPA

Programmable lookup table (LUT)
Flip flop (a register)

Image credit: Bai et al. 2014

 CMU 15-418/618, Fall 2024

Project Catapult
▪ Microsoft Research investigation of use of

FPGAs to accelerate datacenter workloads

▪ Demonstrated offload of part of Bing Search’s
document ranking logic

▪ Now widely used to accelerate DNNs across
Microsoft services

acceleration, we used web search to drive its requirements,
due to both the economic importance of search and its size
and complexity. We set a performance target that would be a
significant boost over software—2x throughput in the number
of documents ranked per second per server, including portions
of ranking which are not offloaded to the FPGA.

One of the challenges of maintaining such a fabric in the
datacenter is resilience. The fabric must stay substantially
available in the presence of errors, failing hardware, reboots,
and updates to the ranking algorithm. FPGAs can potentially
corrupt their neighbors or crash the hosting servers during
bitstream reconfiguration. We incorporated a failure handling
protocol that can reconfigure groups of FPGAs or remap ser-
vices robustly, recover from failures by remapping FPGAs,
and report a vector of errors to the management software to
diagnose problems.

We tested the reconfigurable fabric, search workload, and
failure handling service on a bed of 1,632 servers equipped
with FPGAs. The experiments show that large gains in search
throughput and latency are achievable using the large-scale
reconfigurable fabric. Compared to a pure software imple-
mentation, the Catapult fabric achieves a 95% improvement in
throughput at each ranking server with an equivalent latency
distribution—or at the same throughput, reduces tail latency by
29%. The system is able to run stably for long periods, with a
failure handling service quickly reconfiguring the fabric upon
errors or machine failures. The rest of this paper describes the
Catapult architecture and our measurements in more detail.

2. Catapult Hardware
The acceleration of datacenter services imposes several strin-
gent requirements on the design of a large-scale reconfigurable
fabric. First, since datacenter services are typically large and
complex, a large amount of reconfigurable logic is necessary.
Second, the FPGAs must fit within the datacenter architecture
and cost constraints. While reliability is important, the scale
of the datacenter permits sufficient redundancy that a small
rate of faults and failures is tolerable.

To achieve the required capacity for a large-scale reconfig-
urable fabric, one option is to incorporate multiple FPGAs
onto a daughtercard and house such a card along with a subset
of the servers. We initially built a prototype in this fashion,
with six Xilinx Virtex 6 SX315T FPGAs connected in a mesh
network through the FPGA’s general-purpose I/Os. Although
straightforward to implement, this solution has four problems.
First, it is inelastic: if more FPGAs are needed than there are
on the daughtercard, the desired service cannot be mapped.
Second, if fewer FPGAs are needed, there is stranded capac-
ity. Third, the power and physical space for the board cannot
be accommodated in conventional ultra-dense servers, requir-
ing either heterogeneous servers in each rack, or a complete
redesign of the servers, racks, network, and power distribu-
tion. Finally, the large board is a single point of failure, whose
failure would result in taking down the entire subset of servers.

FPGA

QSPI
Flash

8GB
DRAM

w/
ECC

JTAG

A B

C

Figure 1: (a) A block diagram of the FPGA board. (b) A picture
of the manufactured board. (c) A diagram of the 1 U, half-width
server that hosts the FPGA board. The air flows from the left
to the right, leaving the FPGA in the exhaust of both CPUs.

Figure 2: The logical mapping of the torus network, and the
physical wiring on a pod of 2 x 24 servers.

The alternative approach we took places a small daughter-
card in each server with a single high-end FPGA, and connects
the cards directly together with a secondary network. Provided
that the latency on the inter-FPGA network is sufficiently low,
and that the bandwidth is sufficiently high, services requiring
more than one FPGA can be mapped across FPGAs residing
in multiple servers. This elasticity permits efficient utilization
of the reconfigurable logic, and keeps the added acceleration
hardware within the power, thermal, and space limits of dense
datacenter servers. To balance the expected per-server per-
formance gains versus the necessary increase in total cost of
ownership (TCO), including both increased capital costs and
operating expenses, we set aggressive power and cost goals.
Given the sensitivity of cost numbers on elements such as pro-
duction servers, we cannot give exact dollar figures; however,
adding the Catapult card and network to the servers did not
exceed our limit of an increase in TCO of 30%, including a
limit of 10% for total server power.

2.1. Board Design

To minimize disruption to the motherboard, we chose to in-
terface the board to the host CPU over PCIe. While a tighter
coupling of the FPGA to the CPU would provide benefits in

acceleration, we used web search to drive its requirements,
due to both the economic importance of search and its size
and complexity. We set a performance target that would be a
significant boost over software—2x throughput in the number
of documents ranked per second per server, including portions
of ranking which are not offloaded to the FPGA.

One of the challenges of maintaining such a fabric in the
datacenter is resilience. The fabric must stay substantially
available in the presence of errors, failing hardware, reboots,
and updates to the ranking algorithm. FPGAs can potentially
corrupt their neighbors or crash the hosting servers during
bitstream reconfiguration. We incorporated a failure handling
protocol that can reconfigure groups of FPGAs or remap ser-
vices robustly, recover from failures by remapping FPGAs,
and report a vector of errors to the management software to
diagnose problems.

We tested the reconfigurable fabric, search workload, and
failure handling service on a bed of 1,632 servers equipped
with FPGAs. The experiments show that large gains in search
throughput and latency are achievable using the large-scale
reconfigurable fabric. Compared to a pure software imple-
mentation, the Catapult fabric achieves a 95% improvement in
throughput at each ranking server with an equivalent latency
distribution—or at the same throughput, reduces tail latency by
29%. The system is able to run stably for long periods, with a
failure handling service quickly reconfiguring the fabric upon
errors or machine failures. The rest of this paper describes the
Catapult architecture and our measurements in more detail.

2. Catapult Hardware
The acceleration of datacenter services imposes several strin-
gent requirements on the design of a large-scale reconfigurable
fabric. First, since datacenter services are typically large and
complex, a large amount of reconfigurable logic is necessary.
Second, the FPGAs must fit within the datacenter architecture
and cost constraints. While reliability is important, the scale
of the datacenter permits sufficient redundancy that a small
rate of faults and failures is tolerable.

To achieve the required capacity for a large-scale reconfig-
urable fabric, one option is to incorporate multiple FPGAs
onto a daughtercard and house such a card along with a subset
of the servers. We initially built a prototype in this fashion,
with six Xilinx Virtex 6 SX315T FPGAs connected in a mesh
network through the FPGA’s general-purpose I/Os. Although
straightforward to implement, this solution has four problems.
First, it is inelastic: if more FPGAs are needed than there are
on the daughtercard, the desired service cannot be mapped.
Second, if fewer FPGAs are needed, there is stranded capac-
ity. Third, the power and physical space for the board cannot
be accommodated in conventional ultra-dense servers, requir-
ing either heterogeneous servers in each rack, or a complete
redesign of the servers, racks, network, and power distribu-
tion. Finally, the large board is a single point of failure, whose
failure would result in taking down the entire subset of servers.

FPGA

QSPI
Flash

8GB
DRAM

w/
ECC

JTAG

A B

C

Figure 1: (a) A block diagram of the FPGA board. (b) A picture
of the manufactured board. (c) A diagram of the 1 U, half-width
server that hosts the FPGA board. The air flows from the left
to the right, leaving the FPGA in the exhaust of both CPUs.

Figure 2: The logical mapping of the torus network, and the
physical wiring on a pod of 2 x 24 servers.

The alternative approach we took places a small daughter-
card in each server with a single high-end FPGA, and connects
the cards directly together with a secondary network. Provided
that the latency on the inter-FPGA network is sufficiently low,
and that the bandwidth is sufficiently high, services requiring
more than one FPGA can be mapped across FPGAs residing
in multiple servers. This elasticity permits efficient utilization
of the reconfigurable logic, and keeps the added acceleration
hardware within the power, thermal, and space limits of dense
datacenter servers. To balance the expected per-server per-
formance gains versus the necessary increase in total cost of
ownership (TCO), including both increased capital costs and
operating expenses, we set aggressive power and cost goals.
Given the sensitivity of cost numbers on elements such as pro-
duction servers, we cannot give exact dollar figures; however,
adding the Catapult card and network to the servers did not
exceed our limit of an increase in TCO of 30%, including a
limit of 10% for total server power.

2.1. Board Design

To minimize disruption to the motherboard, we chose to in-
terface the board to the host CPU over PCIe. While a tighter
coupling of the FPGA to the CPU would provide benefits in

1U server (Dual socket CPU + FPGA connected via PCIe bus)

FPGA board

[Putnam et al. ISCA 2014]

Two 8-core Xeon CPUs, 64 GB DRAM, 4 HDDs @ 2TB, 10Gb Ethernet

 CMU 15-418/618, Fall 2024

Summary: choosing the right tool for the job

Energy-optimized CPU (GPU)

~10X more efficient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X
more efficient

Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

FPGA/Future
reconfigurable logic

~100X???
(jury still out)

Easiest to program Difficult to program
(making it easier is

active area of research)

Not programmable +
costs 10-100’s millions
of dollars to design /

verify / create

(TPU)
Throughput-oriented processors

 CMU 15-418/618, Fall 2024

Challenges of heterogeneous designs

 CMU 15-418/618, Fall 2024

Challenges of heterogeneity
▪ So far in this course:

- Homogeneous system: every processor can be used for every task
- To get best speedup vs. sequential execution, “keep all processors busy all the time”

▪ Heterogeneous system: use preferred processor for each task
- Challenge for system designer: what is the right mixture of resources to meet

performance, cost, and energy goals?
- Too few throughput-oriented resources (lower peak performance/efficiency for

parallel workloads -- should have used resources for more throughput cores)
- Too few sequential processing resources (get bitten by Amdahl’s Law)
- How much chip area should be dedicated to a specific function, like video?

(these resources are taken away from general-purpose processing)

▪ Implication: increased pressure to understand workloads
accurately at chip design time

 CMU 15-418/618, Fall 2024

Pitfalls of heterogeneous designs

Say 10% of the workload is rasterization
Let’s say you under-provision the fixed-function rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of chip area

Problem: rasterization is bottleneck, so the expensive programmable processors (99% of chip) are idle waiting on
rasterization. So the other 99% of the chip runs at 80% efficiency!

[Molnar 2010]

 CMU 15-418/618, Fall 2024

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task

- Challenge for hardware designer: what is the right mixture of resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)
- How much chip area should be dedicated to a specific function, like video? (these

resources are taken away from general-purpose processing)
- Work balance must be anticipated at chip design time

- System cannot adapt to changes in usage over time, new algorithms, etc.

- Challenge to software developer: how to map programs onto a heterogeneous
collection of resources?

- Challenge: “Pick the right tool for the job”: design algorithms that decompose well into
components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system
- Available mixture of resources can dictate choice of algorithm
- Software portability nightmare

 CMU 15-418/618, Fall 2024

Reducing energy consumption idea 1:
use specialized processing

Reducing energy consumption idea 2:
move less data

 CMU 15-418/618, Fall 2024

Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).

Now, we wish to reduce communication to reduce energy consumption

▪ “Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

▪ Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,

radios, etc.)
- iPhone 14 battery: ~12 watt-hours
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy efficiency!

http://www.displaymate.com/iPad_ShootOut_1.htm

 CMU 15-418/618, Fall 2024

Three trends in energy-optimized computing
▪ Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts
may not be desirable even if they run faster

▪ Specialize compute units:
- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)

- Fixed-function units: audio processing, “movement sensor processing” video decode/encode,
image processing/computer vision?

- Specialized instructions: expanding set of AVX vector instructions, new instructions for
accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

▪ Reduce bandwidth requirements
- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)

- Aggressive use of compression: perform extra computation to compress application data before
transferring to memory (likely to see fixed-function HW to reduce overhead of general data
compression/decompression)

 CMU 15-418/618, Fall 2024

Summary
▪ Heterogeneous parallel processing: use a mixture of computing resources that each

fit with mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-

specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

▪ Traditional rule of thumb in “good system design” is to design simple, general-
purpose components

- This is not the case with emerging processing systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

▪ Challenge of using these resources effectively is pushed up to the programmer
- Current CS research challenge: how to write efficient, portable programs for emerging

heterogeneous architectures?

