Lecture 18:

Heterogeneous Parallelism
and Hardware Specialization

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2024



Learning Objectives

m Describe the heterogeneous characteristics of parallel
programs

m Explain how hardware design exploits parallel program
characteristics

B |dentify the benefits from heterogeneous execution
® Analyze shortcomings in Amdahl’s Law based calculations

CMU 15-418/618, Fall 2024



D n “‘m‘_.—
Hnm, =

— "l"l" .

vl'mumr'*

YOUMECARONUN
NEWICOMPULETS



You need to buy a computer system

Processor A Processor B
4 cores 16 cores
Each core has sequential performance P Each core has sequential performance P/2

All other components of the system are equal.

Which do you pick?
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Amdahl’s law revisited

et = =

f = fraction of program that is parallelizable

1 = parallel processors

Assumptions:
Parallelizable work distributes perfectly onto 2 processors of equal capability

CMU 15-418/618, Fall 2024



Rewrite Amdahl’s law in terms of resource limits

1

Speedup(f, T, T) — 1—f

| f

Relative to processor with 1 unit of resources, n=1. P erf( T )
Assume perf(1) =1

f = fraction of program that is parallelizable

n = total processing resources (e.g., transistors on a chip)

r =resources dedicated to each processing core,

each of the n/r cores has sequential performance perf(r)

Two examples where n=16 . .
ra =4
]

Processor A

[Hill and Marty 08]

perf(r)- =

Processor B

More general form of
Amdahl’s Law in terms

of f,n,r
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Speedup (relative to n=1)

16 R symmetric, n=16 290 F Symmetric, n = 256 '
s f = (.99
14
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(a) rBCEs (b) r BCEs
Up to 16 cores (n=16) Up to 256 cores (n=256)

X-axis = (chip with many small cores to left, fewer “fatter” cores to right)
Each line corresponds to a different workload
Each graph plots performance as resource allocation changes, but total chip

resources kept the same (constant » per graph)

perf(r) modeled as \/r

[Figure credit: Hill and Marty 08] CMU 15-418/618, Fall 2024



Asymmetric set of processing cores

Example: n=16

Onecore:r =4
Other12 cores: r =1

speedup(f,n,r) = 7

(of heterogeneous processor with n P erf( T ) _I_ P erf( T ) -+ ( n—r )
recourses, relative to uniprocessor with - -
one unit worth of resources, n=1) one perf(r) processor + (n-r) perf(1)=1 processors

[Hill and Marty 08] CMU 15-418/618, Fall 2024



Speedup (relative to n=1)

SmeetrIc n=16 250 | Symmetrlc n =256 ' ' '
200 oe f=0.99
0127 2 = [=0.975
5 5 - = f=0.9
10| - 150 -
< gl g
3 ° 3 100 |
26 & NN
n 50 |
2 N N . .
0 2 4 8 16 0 2 4 8 16 32 64 128 256
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X-axis for symmetric architectures gives » for all cores (many small cores to left, few “fat” cores to right)
10 250 { psymmetric, n = 256
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o 0 2 4 8 16 0 2 4 8 16 32 64 128 256
(c) rBCEs (d) r BCEs

X-axis for asymmetric architectures gives r for the single “fat” core (assume rest of cores are r=1)
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Heterogeneous processing

Observation: most “real world” applications have complex
workload characteristics *

They have components that can And components that are

be widely parallelized. difficult to parallelize.

They have components that are And components that are not.

amenable to wide SIMD (divergent control flow)

execution.

They have components with And components with unpredictable

predictable data access access, but those accesses might
cache well.

|dea: the most efficient processor is a heterogeneous mixture of
resources (“use the most efficient tool for the job")

*You will likely make a similar observation during your projects CMU 15-418/618, Fall 2024



CPUs, GPUs, TPUs are all heterogeneous
processors

Compute Primitives Memory Hierarchy

:
O
CPUs ]
. L1D[L1I JL1D|L11
scalar implicitly managed
EEEREEEE
EEEEEEE

GPUs

EEEEEEEE EEEE
- vector

TPUs

tensor

explicitly managed
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Intel “Skylake" (2015)

(6th Generation Core i7 architecture)

- IF memory,
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4 CPU cores + graphics cores + media accelerators

?iﬂ/o- N
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Intel “Skylake" (2015)

(6th Generation Core i7 architecture)

CPU cores and graphics cores
share same memory system

Also share LLC (L3 cache)

— Enables, low-latency, high-
bandwidth communication
between CPU and integrated
GPU

Graphics cores cache coherent
with CPU
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Revisit GPU Architecture: NVIDIA GTX 980

NVIDIA Maxwell GM204 architecture SMM unit (one “core”)

A warp is a set of 32 threads
executing the same instruction

Warp 0
Warp 1
Warp 2

Warp execution
contexts
(max 64)
(256 KB)

Warp 63

Fetch/
Decode

Fetch/
Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

L1 cache
Fetch/ Fetch/
Decode Decode

Warp Selector

Fetch/
Decode

Fetch/
Decode

Warp Selector

L1 cache

“Shared” memory
(96 KB)

= SIMD functional unit,

control shared across 32 units
(1 MUL-ADD per clock)

(MU 15-418/618,
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Example: NVIDIA A100 Architecture

Tensor Cores for Matrix

Multiplication

TURING TENSOR CORES

TURING TENSOR CORES
NTS

’
’
’
’
’
’
5

TURING TENSOR CORES

Esrerrrrrr
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GPU’s are heterogeneous multi-core processors

Graphics-specific, fixed-
Compute resources your CUDA programs used in assignment2  function compute resources

Tessellate Tessellate
cPU
Clip/Culi Clip/Culi —

m m m m - - Memory
Clip/Cull Clip/Culi
Rasterize Rasterize

Zbuffer / Zbuffer / Zbuffer /

Blend Blend Blend
Blend Blend Blend
Scheduler / Work Distributor

GPU

CMU 15-418/618, Fall 2024



TPU’s Heterogeneous Architecture

| | |
RN LI R LR LR L) -

B Google’s TPU v4 Architecture with
4 chips

B Each v4 TPU chip contains two

TensorCores.

Each TensorCore has four MXUs, a
vector unit, and a scalar unit.

; o ©
V. STttt TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T TTTTT !
: Virtual Core !
| I
| |
: TensorCore TensorCore \
: s
I
| Scalar Vector Scalar Vector :
High : Unit Unit Unit Unit | High
Bandwidth |<—3p» — = =% Bandwidth
Memory | Maltrix alrix Matrix Matrix ' M
: Multiplication Multiphcation Multiplication Multiplication : smory
: Unit Unit Unit Unit :
|
: Matrix Matrix Matrix Matrix !
: Multiplication Multiplication Multiphication Multiplication :
| Unit Unit Unit Unit :
: I
| |
! ;

................................................................
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Modern Heterogeneous Platforms

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for basic graphics/window manager/Ul

High-end discrete GPU
(AMD or NVIDIA)

DDR5 Memory

4—}
PCle x16 bus

CPU Core 0

!

CPU Core 3

Gen9 Graphics

{

!

Ring interconnect

¥

!

L3 cache (8 MB)

Memory controller

DDR3 Memory

(MU 15-418/618, Fall 2024
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Apple A9

Four ARM Cortex A57 CPU cores for applications
Four low performance (low power) ARM A53 CPU cores
L~ One Maxwell SMM (256 “CUDA" cores)

A9 image credit Chipworks, obtained from
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Dual Core 64 bit CPU
GPU PowerVR GT6700 (6 “core”) GPU
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Supercomputers use heterogeneous processing

Los Alamos National Laboratory: Roadrunner

Fastest US supercomputer in 2008, first to break Petaflop barrier: 1.7 PFLOPS

Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as “accelerator” to achieve desired compute density)

- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)

- 2.4 MWatt (about 2,400 average US homes)

Why no GPUs?

CMU 15-418/618, Fall 2024



GPU-accelerated supercomputmg

Oak Ridge Summit (world’s #4)
Overall Throughput: 200 PFLOPS
9,216 POWER9 22-core CPUs
27,648 NVIDIA Tesla V100 GPUs
250 PB Storage

Estimated Cost: 325 million USD

12.5GB/s 3 ,_12.5GB/s
16GB/s 16GB/s N

‘N e
PCle Gen 4 VO PCe Gend4 1O 1. /'

2% II

-/

Summit’s architecture

CPU

}JOM)SN dd2uewiouad ybiH

Heterogenous
Processors li—#lﬁil saco li_#l%-l
GPU W GPU l"‘d GPU GPU I""d GPU m GPU
Heterogenous el kI _tlt
Memories 4 E

f
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Heterogeneous architectures for supercomputing

Source: Top500.org Spring 2022 rankings

Rmax Rpeak Power
Rank System Cores (PFlop/s) (PFlop/s) (kW)

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd 8,730,112 1,102.00 1,685.65 21,100

Generation EPYC 64C 2GHzBAMD Instinct MI250X, GPU

Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory
United States

2 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 7,630,848 442.01 537.21 29,899
48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation 1,110,144 151.90 214.35 2,942
EPYC 64C 2GHZ AMD Instinct MI1250X, plingshot-11, HPE

EuroHPC/CSC

Finland GPU

4 Summit - IBM Power Svstem AC922, IBM POWER9 22C 2,414,592 148.60 200.79 10,096
3.07GHzENVIDIA Volta GV10@, Dual-rail Mellanox EDR
Infinibana, TBM GPU

DOE/SC/Oak Ridge National Laboratory
United States

5 1,572,480 94.64 125.71 7,438
, \
DOE/NNSA/LLNL GPU
United States
6 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 10,649,600 93.01 125.44 15,371
1.45GHz, Sunway, NRCPC
National Supercomputing Center in Wuxi
China
7 Perlmu B D EPYC 7763 64C 761,856 70.87 93.75 2,589

United States GPU CMU 15-418/618, Fall 2024



Green500: most energy efficient supercom

Efficiency metric: GFLOPS per Watt

TOP500
Rank Rank
1 29
2 1
3 3
4 10
5 326

Source: Green500 Spring 2022 rankings

System

Frontier TDS - HPE Cray EX235a, AMD
Optimized 3rd Generation EPYC 64C

2GHZ AMD Instinct MI250X,gblingshot-
11, HP
|

DOE/SC/0Oak Ridge Nationa
Laboratory
United States

Frontier - HPE Cray EX235a, AMD
Optimized 3rd Generation EPYC 64C
2GHz Slingshot-
11, HP

DOE/SC/0Oak Ridge National
Laboratory

United States

LUMI - HPE Cray EX235a, AMD
Optimized 3rd Generation EPYC 64C
2GHz Slingshot-
11, HP

EuroHPC/CSC

Finland

Adastra - HPE Cray EX235a, AMD
Optingzadded Gopnaration ERYC 64C

2GHzBAMD Instinct MI250X,

11, HFP
Grand Equipement National de Calcul

lingshot-

Intensif - Centre Informatique
National de 'Enseignement Suprieur

(GENCI-CINES)
France

MN-3 - MN-Core Server, Xeon
Platinum 8260M 24C 2.4GHz,
Preferred Networks MN-Core, MN-
Core DirectConnect, Preferred
Networks

Preferred Networks

Cores

120,832

8,730,112

1,110,144

319,072

1,664

Rmax
(PFlop/s)

19.20

1,102.00

151.90

46.10

2.18

Power
(kW)

309

21,100

2,942

921

53

Energy Efficiency
(GFlops/watts)

62.684

52.227

51.629

50.028

40.901
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Energy-constrained computing

B Supercomputers are energy constrained
- Due to shearscale
- Overall cost to operate (power for machine and for cooling)

m Datacenters are energy constrained
- Reduce cost of cooling
- Reduce physical space requirements

m Mobile devices are energy constrained
- Limited battery life
- Heat dissipation

CMU 15-418/618, Fall 2024



Limits on chip power consumption

B General in mobile processing rule: the longer a task runs the less power it can use
- Processor’s power consumption is limited by heat generated (efficiency is
required for more than just maximizing battery life)

€ Electrical limit: max power that can be supplied to chip

______ Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
""""" (chip can run at high power for short period of time until chip heats to Tj)
Case temp: mobile device gets too hot for user to comfortably hold
/(chip is at suitable operating temp, but heat is dissipating into case)

Power

> .- Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

iPhone 14 battery: 12 watt-hours
9.7iniPad Pro battery: 41 watt-hours
15in Machook Pro: 84 watt-hours

Time

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote CMU 15-418/618, Fall 2024



Efficiency benefits of compute specialization

B Rules of thumb: compared to high-quality C code on CPU...

B Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

® Fixed-function ASIC (“application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

. . Clock and Data supply
= Assuming code is compute bound and Control 28%

and is not floating-point math 2

Arithmetic___
6%
Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]

[Source: Chung et al. 2010, Dally 08] [Figure credit Eric Chung] CMU 15-418/618, Fall 2024



Hardware specialization increases efficiency

Area-normalized FFT Performance (40nm)

X\HK——)K——H%%K Me—H—H—X

- -=--&---Core i7
a 100 LX760 +----- FPGA
o A— GTX285 *-..._
& — % GTxago < GPUS
O L 10 %— ASIC
L
O S ASIC delivers same performance
s 1 W@:Fﬁb—i‘w as one CPU core with ~ 1/1000th
- -0 -0-0-9-9._ the chi :
2 o** - *-o--t-o e chip area
a 0.1 7 |

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 GPU cores: ~ 5-7 times more area

Ig2(N) (data set size) efficient than CPU cores.
FFT Energy Efficiency (40nm)

:IE\HHK R, ---®---Core i7
2 10 A LX760 +-------- FPGA
o A— GTX285 ...
- —— GTx4ag0 «- GPUS
o 10 x ASIC
O MHVM
-
I(B 1 ASIC delivers same performance
o PO TE Shdh i ah Sl dih b SIVGEPURPNRI as one CPU core with only ~
E: ¢ - 1/100th the power.
7]
7z 0
o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ig2(N) (data set size)
[Chung et al. MICRO 2010]
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Benefits of increasing efficiency

m Run faster for a fixed period of time

= Run at higher clock, use more cores (reduce latency of critical task)
- Do more at once

m Run at a fixed level of performance for longer
- e.g., video playback
- Achieve “always-on” functionality that was previously impossible

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

Moto X:
iPhone: Always listening for “ok, google now”
Siri activated by button press or holding Device contains ASIC for detecting this audio pattern.

phone up to ear CMU 15-418/618, Fall 2024



Example: iPad Air (2013)

Apple A7

Processor
Core Core

Dual-core 64-bit ARM CPU

Video
Encode/Decode
Image
Processor

Touchscreen
controllers

. siahe S« 2o

chtoaivs : y (- 3
s e B i g : J A5 e®me "ot B
y 3 -, . . . - 9: L T ' I' B

U

llll

Motion co-processor

Flash memory DRAM (accelerometer, gyro, compass, etc.)

Image Credit: ifixit.com CMU 15-418/618, Fall 2024



Original iPhone touchscreen controller

Separate digital signal processor to interpret raw signal from capacitive touch sensor (do not burden main CPU)

RAW DATA INCLUDING NOISE
302 el Pt L (W - ) - :

RECEIVE RAW DATA /
l /304

TOUCH REGIONS

FILTER RAW DATA
8
l 306 n __j
GENERATE GRADIENT DATA —/ [
l FIG. 17D

kw
o
(03]

CALCULATE BOUNDARIES FOR TOUCH
REGIONS

l

CALCULATE COORDINATES FOR EACH
TOUCH REGION

l 312

PERFORM MULTIPOINT TRACKING

COORDINATES OF TOUCH REGIONS

a=15.00 p=121.93
x=172.04, y=234 237288

£=) 8=33.00 p=133.97 )
m x=707.07.04, y=331.323230

FIG. 17B
GRADIENT DATA ﬁ
a=800 p=11333

\w
—
o

x=417.29, y=333.666667

a=35.00 p=133.74
x=280.16, y=570.155950

FIG. 17E

\

FIG. 16 FIG. 17C

From US Patent Application 2006/0097991 CMU 15-418/618, Fall 2024



Example: image processing on Nikon D7000

o ——————

Process 16 MPixel RAW data from sensor to obtain JPG image:

On camera: ~ 1/6 sec per image
Adobe Lightroom on a quad-core Machook Pro laptop: 1-2 sec per image

This is a older camera: much, much faster image processing performance on a
modern smart phone (burst mode)

CMU 15-418/618, Fall 2024



Trading Efficiency and Programmability

m |Improved energy efficiency often comes at a cost

- Programmability (e.g., consider debugging on a CPU v.s.
GPU)

- Applications (general-purpose v.s. domain-specific)

CMU 15-418/618, Fall 2024



GPU’s are heterogeneous multi-core processors

Graphics-specific, fixed-
Compute resources your CUDA programs used in assignment2  function compute resources

Tessellate Tessellate
cPU
Clip/Culi Clip/Culi —

m m m m - - Memory
Clip/Cull Clip/Culi
Rasterize Rasterize

Zbuffer / Zbuffer / Zbuffer /

Blend Blend Blend
Blend Blend Blend
Scheduler / Work Distributor

GPU

CMU 15-418/618, Fall 2024



Example graphics tasks performed in fixed-function HW

Rasterization: Texture mapping:
Determining what pixels a triangle overlaps Warping/filtering images to apply detail to surfaces
P

' INJ

@)
( . .
3 \ Geometric tessellation:
O

computing fine-scale geometry

< > ) from coarse geometry
C/ [ { g N Y ™ \)

CMU 15-418/618, Fall 2024




FPGAs (Field Programmable Gate Arrays)

B Middle ground between an ASICand a processor

® FPGA chip provides array of logic blocks, connected by interconnect

B Programmer-defined logicimplemented directly by FGPA

Logic Block

BOR BN

20 4.
zﬁgﬁ
zgg;
Fa

: ;ggz

o

Ea
28

Bz
12
5Qﬂf

(S B S NN R S I S R R

Routing Fabric

ullw EIEIV/EEI OLC m/_ 1/0 Block
o
[] [::] --1 r-- [] (jbut

SRR R I~

Sglilallialllolge ik
O O | ; _._y
L] L] _/E
sl === :
] O :
] D D :I [ 0 -~~~/ "1 -~"~""""F"~"~"""=~====--- !

O O O O 1 O O L

(a)
Flip flop (a register)

Image credit: Bai et al. 2014

Programmable lookup table (LUT)
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P rOj ECt Cata p ll It [Putnam et al. ISCA 2014]

B Microsoft Research investigation of use of EPGA board
FPGAs to accelerate datacenter workloads L

®  Demonstrated offload of part of Bing Search’s & 1§ g
document ranking logic vy

B Now widely used to accelerate DNNs across
Microsoft services

1U server (Dual socket CPU + FPGA connected via PCle bus)

T

"*.»'-'""
|
|
[
i \
)
r -
L L
|
.
Y &l
»
4,0
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Summary: choosing the right tool for the job

Throughput-oriented processors FPGA/Future
Energy-optimized CPU (GPU) (TPU) reconfigurable logic ASIC
" Video encode/decode,
Audio playback,

Camera RAW processing,
neural nets (future?)

~10X more efficient . "'100.)(??? ~100-1000X
(jury still out) more efficient
Easiest to program Difficult to program Not programmable +

(makingiteasieris  costs 10-100’s millions
active area of research)  of dollars to design /
verify / create

Credit Pat Hanrahan for this taxonomy CMU 15-418/618. Fall 2024



Challenges of heterogeneous designs

CMU 15-418/618, Fall 2024



Challenges of heterogeneity

m Sofarin this course:

- Homogeneous system: every processor can be used for every task
- To get best speedup vs. sequential execution, “keep all processors busy all the time”

B Heterogeneous system: use preferred processor for each task

- Challenge for system designer: what is the right mixture of resources to meet
performance, cost, and energy goals?

- Too few throughput-oriented resources (lower peak performance/efficiency for
parallel workloads -- should have used resources for more throughput cores)

- Too few sequential processing resources (get bitten by Amdahl’s Law)
= How much chip area should be dedicated to a specific function, like video?
(these resources are taken away from general-purpose processing)

m |mplication: increased pressure to understand workloads
accurately at chip design time

CMU 15-418/618, Fall 2024



Pitfalls of heterogeneous designs -

Tessellate Tessellate
Tessellate Tessellate ,P‘ N I
AR
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Say 10% of the workload is rasterization
Let’s say you under-provision the fixed-function rasterization unit on GPU:
Chose to dedicate 1% of chip area used for rasterizer, really needed 20% more throughput: 1.2% of chip area

Problem: rasterization is bottleneck, so the expensive programmable processors (99% of chip) are idle waiting on
rasterization. So the other 99% of the chip runs at 80% efficiency!
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Challenges of heterogeneity

B Heterogeneous system: preferred processor for each task

- Challenge for hardware designer: what is the right mixture of resources?
- Too few throughput oriented resources (lower peak throughput for parallel workloads)
- Too few sequential processing resources (limited by sequential part of workload)

= How much chip area should be dedicated to a specific function, like video? (these
resources are taken away from general-purpose processing)

- Work balance must be anticipated at chip design time
- System cannot adapt to changes in usage over time, new algorithms, etc.

- Challenge to software developer: how to map programs onto a heterogeneous
collection of resources?

- Challenge: “Pick the right tool for the job”: design algorithms that decompose well into
components that each map well to different processing components of the machine

- The scheduling problem is more complex on a heterogeneous system
- Available mixture of resources can dictate choice of algorithm
- Software portability nightmare
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Reducing energy consumption idea 1:
use specialized processing

Reducing energy consumption idea 2:
move less data



Data movement has high energy cost

B Rule of thumb in mobile system design: always seek to reduce amount of

data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).
Now, we wish to reduce communication to reduce energy consumption

m “Ballpark” numbers (sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p) <«—— Suggests that recomputing values,
rather than storing and reloading

u |mp|i(ations them, is a better answer when

optimizing code for energy efficiency!
- Reading 10 GB/sec from memory: ~1.6 watts

- Entire power budget for mobile GPU: ~1 watt (remember phone is also running CPU, display,
radios, etc.)

- iPhone 14 battery: ~12 watt-hours
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. M 15-418/618, Fall 2024


http://www.displaymate.com/iPad_ShootOut_1.htm

Three trends in energy-optimized computing

B Compute less!

- Computing costs energy: parallel algorithms that do more work than sequential counterparts
may not be desirable even if they run faster

B Specialize compute units:

- Heterogeneous processors: CPU-like cores + throughput-optimized cores (GPU-like cores)

- Fixed-function units: audio processing, “movement sensor processing” video decode/encode,
image processing/computer vision?

- Specialized instructions: expanding set of AVX vector instructions, new instructions for
accelerating AES encryption (AES-NI)

- Programmable soft logic: FPGAs

B Reduce bandwidth requirements

- Exploit locality (restructure algorithms to reuse on-chip data as much as possible)

- Aggressive use of compression: perform extra computation to compress application data before
transferring to memory (likely to see fixed-function HW to reduce overhead of general data

compression/decompression)
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Summary

B Heterogeneous parallel processing: use a mixture of computing resources that each
fit with mixture of needs of target applications

- Latency-optimized sequential cores, throughput-optimized parallel cores, domain-
specialized fixed-function processors

- Examples exist throughout modern computing: mobile processors, servers, supercomputers

B Traditional rule of thumb in“good system design”is to design simple, general-
purpose components

- This is not the case with emerging processing systems (optimized for perf/watt)

- Today: want collection of components that meet perf requirement AND minimize energy use

B (Challenge of using these resources effectively is pushed up to the programmer

= Current CS research challenge: how to write efficient, portable programs for emerging
heterogeneous architectures?
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