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What we have learnt

• Design computer systems that can scale

• Running faster given more resources

• Design computer systems that are efficient

• Running faster under resource constraints

• Techniques discussed

• Exploiting parallelism in applications

• Exploiting locality in applications

• Leveraging hardware specialization

2



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

Different technologies and performance characteristics within the same 
machine at different scales

• Within a core: SIMD, multi-threading: fine grained sync and comm
• Abstractions: SPMD programming (ISPC, CUDA, OpenCL)

• Across cores: coherent shared memory via fast on-chip network
• Abstractions: OpenMP pragma, Cilk

• Across racks: distributed memory, multi-stage network
• Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

3Credit: Pat Hanrahan
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Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

Different technologies and performance characteristics within the same 
machine at different scales

To be efficient, software must be optimized for HW characteristics

• Difficult even in the case of one level of one machine

• Combinatorial complexity of optimizations when considering a complex 
machine, or different machines

• Loss of software portability

4Credit: Pat Hanrahan
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Most software systems use hardware inefficiently

Compared against GCC -o3 (no manual vector optimizations)

5Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org 
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The Magical Ideal Parallel Programming System

6Credit: Pat Hanrahan
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Widely Used Programming Languages
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Growing Interest in Domain-Specific Programming 
Systems
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Domain-Specific Programming Systems

Key idea: raise level of abstraction for expressing programs

Introduce high-level programming primitives specific to an application 
domain

• Productive: intuitive to use, portable across machines, primitives 
correspond to behaviors frequently used to solve problems in targeted 
domain

• Performant: system uses domain knowledge to provide efficient, 
optimized implementation(s)

• Given a machine: system knows what algorithms to use, parallelization strategies to 
employ for this domain

9

Cost: loss of generality/completeness
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Two Domain-Specific Programming Systems

1. Halide: for image processing

2. TVM: for deep learning
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Halide: 
a Domain-Specific Language for Image Processing

• Used to implemented Android HDR+ app

• Halide code used to process all images uploaded to Google Photos
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A Quick Tutorial on High-Performance Image Processing
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Image Blur
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3x3 Image Blur (a convolution with predefined wights)
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int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
                   1.0/9, 1.0/9, 1.0/9,
                   1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {
  for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
      for (int ii=0; ii<3; ii++)
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
    output[j*WIDTH + i] = tmp;
  }
}

Total work per image: 9 * WIDTH * HEIGHT

For NxN filter: N * N * WIDTH * HEIGHT
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Two-Pass 3x3 Blur
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float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};
for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
  float tmp = 0.f;
  for (int ii=0; ii<3; ii++)
   tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
  tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++)
 for (int i=0; i<WIDTH; i++) {
  float tmp = 0.f;
  for (int jj=0; jj<3; jj++)
   tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
  output[j*WIDTH + i] = tmp;
 }

1D horizontal blur

1D vertical blur

Total work per image: 6 * WIDTH * HEIGHT

For NxN filter: 2 * N * WIDTH * HEIGHT

Extra memory: WEIGHT * NEIGHT

3x lower arithmetic intensity
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Two-Pass 3x3 Blur (Chunked)
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float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];
float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j++) {
  for (int j2=0; j2<3; j2++)
    for (int i=0; i<WIDTH; i++) {
      float tmp = 0.f;
      for (int ii=0; ii<3; ii++)
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
      tmp_buf[j2*WIDTH + i] = tmp;

  for (int i=0; i<WIDTH; i++) {
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
  }
}

Produce 3 rows of tmp_buf

Combine them together 

to get one row of output

Total work per row of output:

• step 1: 3 x 3 x WIDTH work

• step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT

Loads from tmp_buffer are cached
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Conflicting goals (once again…)

• Want to be computationally efficient (perform fewer operations)

• Want to take advantage of locality when possible
• Otherwise computationally efficient code will be bandwidth bound

• Want to execute in parallel (multi-core, SIMD within core)
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Optimized C++ code: 3x3 image blur
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+  10x faster than the original code

- Specific to SSE (not AVX2), CPU-

code only

- Lacks readability, portability, 

modularity
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Halide: Decouple Algorithm from Schedule

• Algorithm: what to do

• Schedule: how to do

19
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Why Decoupling Algorithm from Schedule?

• Algorithm: what to do

• Schedule: how to do

• Easy for programmers to build pipelines

• Easy for programmers to specify & explore optimizations

• Easy for compilers to generate fast code

20
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Algorithm: Pure Functional

• Declarative specification

• Pipeline stages are pure functions from coordinates to values

• No explicit bounds

• No loops or traversal orders

• Only feed forward pipelines

21

Think of a Halide algorithm as a pipeline
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Schedule: describe how to execute a pipeline

• Defines intra-stage order and inter-stage interleaving

• For each stage:

1) In which order should we compute its values?

2) How to map onto parallel execution resources like SIMD units and GPU 
blocks?
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Producer/Consumer Scheduling Primitives

23
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Producer/Consumer Scheduling Primitives
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Schedule: describe how to execute a pipeline
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Given a schedule, Halide carries out 

mechanical process of implementing 

the specified schedule
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Halide: two domain-specific co-languages

• Functional language for describing image processing operations

• Domain-specific language for describing schedules

• Design principle: separate “algorithm specification” from its schedule
• Programmer’s responsibility: provide a high-performance schedule

• Compiler’s responsibility: carry out mechanical process of generating threads, SIMD 
instructions, managing buffers, etc.

• Result: enable programmer to rapidly explore space of schedules

• (e.g., “tile these loops”, “vectorize this loop”, “parallelize this loop across cores”)

• Domain scope:
• All computation on regular N-D coordinate spaces

• Only feed-forward pipelines

• All dependencies inferable by compiler

26
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Example Halide Results

Camera RAW processing pipeline 
(Convert RAW sensor data to RGB)

• Original: 463 lines of hand-tuned 
ARM NEON assembly

• Halide: 2.75x less code, 5% faster

Bilateral filter

• Original 122 lines of C++

• Halide: 34 lines algorithm + 6 lines 
schedule

• CPU implementation: 5.9x faster

• GPU implementation: 2x faster than 
hand-written CUDA
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Recap: Halide is a DSL

For helping developers optimize image processing code more rapidly

• Halide doesn’t decide how to optimize a program for a novice programmer

• Halide provides primitives for a programmer to rapidly express what 
optimizations the system should apply

• Halide carries out the nitty-gritty of mapping that strategy to a 
machine

28
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Two Domain-Specific Programming Systems

1. Halide: for image processing

2. TVM: for deep learning

29
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The Success of Machine Learning Today

30

Object detection
Autonomous vehicles 

Machine translation Game playing
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Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

31

A tensor algebra operator 

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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TVM: A Learning-based Compiler for Deep Learning

32

Goal: efficiently deploy deep learning on modern hardware platforms
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Existing Approach: Engineer Optimized Tensor Operators
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conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen
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Existing Approach: Engineer Optimized Tensor Operators
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conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen
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Existing Approach: Engineer Optimized Tensor Operators
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conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen
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Challenge: Billions of Possible Optimization Choices in 
the Search Space

36* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TVM: Learning-based Compiler for Deep Learning

37

Hardware-aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer
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Hardware-aware Search Space

38* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add

≈ Halide’s algorithm
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Hardware-aware Search Space

Reuse primitives from Halide
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Hardware-aware Search Space
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Hardware-aware Search Space

41

Tensorization
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Tensorization Challenge
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Hardware-aware Search Space
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Hardware-aware Search Space
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Billions of Possible 

Optimization Choices in 

the Search Space
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TVM: Learning-based Compiler for Deep Learning

45

Hardware-aware Search Space of Optimized Tensor Programs

Learning based Program Optimizer
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Learning-based Program Optimizer

46

Program OptimizerTensor operator Code Generator
program

Runtime performance

Issue: high experiment cost, each trial takes seconds

candidate

schedule
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Learning-based Program Optimizer

47

Learning-based 

Cost Model

Training dataset

Runtime performance

Learning

Adapt to hardware by learning, make prediction in milliseconds

Program OptimizerTensor operator Code Generator
programschedule
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Efficient ML-based Cost Model
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End-to-end Inference Performance
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Discussion: Halide and TVM

• What are the similarities?

• What are the key differences?
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Summary

• Modern machines are parallel and heterogeneous
• Only way to increase compute capability in energy-constrained world

• Most software uses small fraction of peak capability of machine
• Challenging to tune programs to these machines

• Tuning efforts not portable across machines

• DSLs trade-off generality to achieve productivity, performance, portability
• Case studies: Halide, TVM

51
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