
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Lecture 21:
Domain-Specific Programming

Systems

Parallel Computer Architecture and Programming

CMU 15-418/15-618, Fall 2024

1
10/23/2024

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

What we have learnt

• Design computer systems that can scale

• Running faster given more resources

• Design computer systems that are efficient

• Running faster under resource constraints

• Techniques discussed

• Exploiting parallelism in applications

• Exploiting locality in applications

• Leveraging hardware specialization

2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

Different technologies and performance characteristics within the same
machine at different scales

• Within a core: SIMD, multi-threading: fine grained sync and comm
• Abstractions: SPMD programming (ISPC, CUDA, OpenCL)

• Across cores: coherent shared memory via fast on-chip network
• Abstractions: OpenMP pragma, Cilk

• Across racks: distributed memory, multi-stage network
• Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

3Credit: Pat Hanrahan

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

Different technologies and performance characteristics within the same
machine at different scales

To be efficient, software must be optimized for HW characteristics

• Difficult even in the case of one level of one machine

• Combinatorial complexity of optimizations when considering a complex
machine, or different machines

• Loss of software portability

4Credit: Pat Hanrahan

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Most software systems use hardware inefficiently

Compared against GCC -o3 (no manual vector optimizations)

5Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

The Magical Ideal Parallel Programming System

6Credit: Pat Hanrahan

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Widely Used Programming Languages

7

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Growing Interest in Domain-Specific Programming
Systems

8

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Domain-Specific Programming Systems

Key idea: raise level of abstraction for expressing programs

Introduce high-level programming primitives specific to an application
domain

• Productive: intuitive to use, portable across machines, primitives
correspond to behaviors frequently used to solve problems in targeted
domain

• Performant: system uses domain knowledge to provide efficient,
optimized implementation(s)

• Given a machine: system knows what algorithms to use, parallelization strategies to
employ for this domain

9

Cost: loss of generality/completeness

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two Domain-Specific Programming Systems

1. Halide: for image processing

2. TVM: for deep learning

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Halide:
a Domain-Specific Language for Image Processing

• Used to implemented Android HDR+ app

• Halide code used to process all images uploaded to Google Photos

11

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Quick Tutorial on High-Performance Image Processing

12

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Image Blur

13

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

3x3 Image Blur (a convolution with predefined wights)

14

int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
 1.0/9, 1.0/9, 1.0/9,
 1.0/9, 1.0/9, 1.0/9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image: 9 * WIDTH * HEIGHT

For NxN filter: N * N * WIDTH * HEIGHT

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two-Pass 3x3 Blur

15

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/3, 1.0/3, 1.0/3};
for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }

1D horizontal blur

1D vertical blur

Total work per image: 6 * WIDTH * HEIGHT

For NxN filter: 2 * N * WIDTH * HEIGHT

Extra memory: WEIGHT * NEIGHT

3x lower arithmetic intensity

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two-Pass 3x3 Blur (Chunked)

16

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];
float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j++) {
 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Produce 3 rows of tmp_buf

Combine them together

to get one row of output

Total work per row of output:

• step 1: 3 x 3 x WIDTH work

• step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT

Loads from tmp_buffer are cached

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Conflicting goals (once again…)

• Want to be computationally efficient (perform fewer operations)

• Want to take advantage of locality when possible
• Otherwise computationally efficient code will be bandwidth bound

• Want to execute in parallel (multi-core, SIMD within core)

17

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Optimized C++ code: 3x3 image blur

18

+ 10x faster than the original code

- Specific to SSE (not AVX2), CPU-

code only

- Lacks readability, portability,

modularity

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Halide: Decouple Algorithm from Schedule

• Algorithm: what to do

• Schedule: how to do

19

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Why Decoupling Algorithm from Schedule?

• Algorithm: what to do

• Schedule: how to do

• Easy for programmers to build pipelines

• Easy for programmers to specify & explore optimizations

• Easy for compilers to generate fast code

20

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Algorithm: Pure Functional

• Declarative specification

• Pipeline stages are pure functions from coordinates to values

• No explicit bounds

• No loops or traversal orders

• Only feed forward pipelines

21

Think of a Halide algorithm as a pipeline

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Schedule: describe how to execute a pipeline

• Defines intra-stage order and inter-stage interleaving

• For each stage:

1) In which order should we compute its values?

2) How to map onto parallel execution resources like SIMD units and GPU
blocks?

22

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Producer/Consumer Scheduling Primitives

23

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Producer/Consumer Scheduling Primitives

24

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Schedule: describe how to execute a pipeline

25

Given a schedule, Halide carries out

mechanical process of implementing

the specified schedule

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Halide: two domain-specific co-languages

• Functional language for describing image processing operations

• Domain-specific language for describing schedules

• Design principle: separate “algorithm specification” from its schedule
• Programmer’s responsibility: provide a high-performance schedule

• Compiler’s responsibility: carry out mechanical process of generating threads, SIMD
instructions, managing buffers, etc.

• Result: enable programmer to rapidly explore space of schedules

• (e.g., “tile these loops”, “vectorize this loop”, “parallelize this loop across cores”)

• Domain scope:
• All computation on regular N-D coordinate spaces

• Only feed-forward pipelines

• All dependencies inferable by compiler

26

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example Halide Results

Camera RAW processing pipeline
(Convert RAW sensor data to RGB)

• Original: 463 lines of hand-tuned
ARM NEON assembly

• Halide: 2.75x less code, 5% faster

Bilateral filter

• Original 122 lines of C++

• Halide: 34 lines algorithm + 6 lines
schedule

• CPU implementation: 5.9x faster

• GPU implementation: 2x faster than
hand-written CUDA

27

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Halide is a DSL

For helping developers optimize image processing code more rapidly

• Halide doesn’t decide how to optimize a program for a novice programmer

• Halide provides primitives for a programmer to rapidly express what
optimizations the system should apply

• Halide carries out the nitty-gritty of mapping that strategy to a
machine

28

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Two Domain-Specific Programming Systems

1. Halide: for image processing

2. TVM: for deep learning

29

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

The Success of Machine Learning Today

30

Object detection
Autonomous vehicles

Machine translation Game playing

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Neural Network

• Collection of simple trainable mathematical units that work together to
solve complicated tasks

31

A tensor algebra operator

(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TVM: A Learning-based Compiler for Deep Learning

32

Goal: efficiently deploy deep learning on modern hardware platforms

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Operators

33

conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Operators

34

conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Existing Approach: Engineer Optimized Tensor Operators

35

conv3x3 Matmul

Input

conv3x3

add

* Slides from Tianqi Chen

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Challenge: Billions of Possible Optimization Choices in
the Search Space

36* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TVM: Learning-based Compiler for Deep Learning

37

Hardware-aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

38* Slides from Tianqi Chen

conv3x3 Matmul

Input

conv3x3

add

≈ Halide’s algorithm

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

Reuse primitives from Halide

39

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

40

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

41

Tensorization

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensorization Challenge

42

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

43

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Hardware-aware Search Space

44

Billions of Possible

Optimization Choices in

the Search Space

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

TVM: Learning-based Compiler for Deep Learning

45

Hardware-aware Search Space of Optimized Tensor Programs

Learning based Program Optimizer

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Learning-based Program Optimizer

46

Program OptimizerTensor operator Code Generator
program

Runtime performance

Issue: high experiment cost, each trial takes seconds

candidate

schedule

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Learning-based Program Optimizer

47

Learning-based

Cost Model

Training dataset

Runtime performance

Learning

Adapt to hardware by learning, make prediction in milliseconds

Program OptimizerTensor operator Code Generator
programschedule

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Efficient ML-based Cost Model

48

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

End-to-end Inference Performance

49

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Discussion: Halide and TVM

• What are the similarities?

• What are the key differences?

50

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary

• Modern machines are parallel and heterogeneous
• Only way to increase compute capability in energy-constrained world

• Most software uses small fraction of peak capability of machine
• Challenging to tune programs to these machines

• Tuning efforts not portable across machines

• DSLs trade-off generality to achieve productivity, performance, portability
• Case studies: Halide, TVM

51

	Slide 1: Lecture 21: Domain-Specific Programming Systems
	Slide 2: What we have learnt
	Slide 3: Various programming models to abstract hardware
	Slide 4: Various programming models to abstract hardware
	Slide 5: Most software systems use hardware inefficiently
	Slide 6: The Magical Ideal Parallel Programming System
	Slide 7: Widely Used Programming Languages
	Slide 8: Growing Interest in Domain-Specific Programming Systems
	Slide 9: Domain-Specific Programming Systems
	Slide 10: Two Domain-Specific Programming Systems
	Slide 11: Halide: a Domain-Specific Language for Image Processing
	Slide 12: A Quick Tutorial on High-Performance Image Processing
	Slide 13: Image Blur
	Slide 14: 3x3 Image Blur (a convolution with predefined wights)
	Slide 15: Two-Pass 3x3 Blur
	Slide 16: Two-Pass 3x3 Blur (Chunked)
	Slide 17: Conflicting goals (once again…)
	Slide 18: Optimized C++ code: 3x3 image blur
	Slide 19: Halide: Decouple Algorithm from Schedule
	Slide 20: Why Decoupling Algorithm from Schedule?
	Slide 21: Algorithm: Pure Functional
	Slide 22: Schedule: describe how to execute a pipeline
	Slide 23: Producer/Consumer Scheduling Primitives
	Slide 24: Producer/Consumer Scheduling Primitives
	Slide 25: Schedule: describe how to execute a pipeline
	Slide 26: Halide: two domain-specific co-languages
	Slide 27: Example Halide Results
	Slide 28: Recap: Halide is a DSL
	Slide 29: Two Domain-Specific Programming Systems
	Slide 30: The Success of Machine Learning Today
	Slide 31: Deep Neural Network
	Slide 32: TVM: A Learning-based Compiler for Deep Learning
	Slide 33: Existing Approach: Engineer Optimized Tensor Operators
	Slide 34: Existing Approach: Engineer Optimized Tensor Operators
	Slide 35: Existing Approach: Engineer Optimized Tensor Operators
	Slide 36: Challenge: Billions of Possible Optimization Choices in the Search Space
	Slide 37: TVM: Learning-based Compiler for Deep Learning
	Slide 38: Hardware-aware Search Space
	Slide 39: Hardware-aware Search Space
	Slide 40: Hardware-aware Search Space
	Slide 41: Hardware-aware Search Space
	Slide 42: Tensorization Challenge
	Slide 43: Hardware-aware Search Space
	Slide 44: Hardware-aware Search Space
	Slide 45: TVM: Learning-based Compiler for Deep Learning
	Slide 46: Learning-based Program Optimizer
	Slide 47: Learning-based Program Optimizer
	Slide 48: Efficient ML-based Cost Model
	Slide 49: End-to-end Inference Performance
	Slide 50: Discussion: Halide and TVM
	Slide 51: Summary

