Lecture 21: Domain-Specific Programming Systems

Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2024

What we have learnt

- Design computer systems that can scale
 - Running faster given more resources
- Design computer systems that are efficient
 - Running faster under resource constraints
- Techniques discussed
 - Exploiting parallelism in applications
 - Exploiting locality in applications
 - Leveraging hardware specialization

Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

Different technologies and performance characteristics within the same machine at different scales

- Within a core: SIMD, multi-threading: fine grained sync and comm
 - Abstractions: SPMD programming (ISPC, CUDA, OpenCL)
- Across cores: coherent shared memory via fast on-chip network
 - <u>Abstractions:</u> OpenMP pragma, Cilk
- Across racks: distributed memory, multi-stage network
 - <u>Abstractions</u>: message passing (MPI, Go, Spark, Legion, Charm++)

Various programming models to abstract hardware

Machines with very different performance characteristics

• CPUs, GPUs, TPUs, systolic arrays

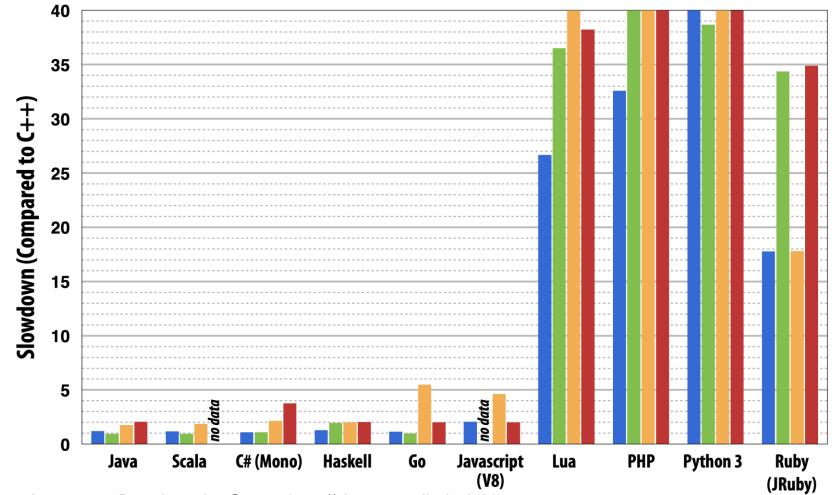
Different technologies and performance characteristics within the same machine at different scales

To be efficient, software must be optimized for HW characteristics

- Difficult even in the case of one level of one machine
- Combinatorial complexity of optimizations when considering a complex machine, or different machines
- Loss of software portability

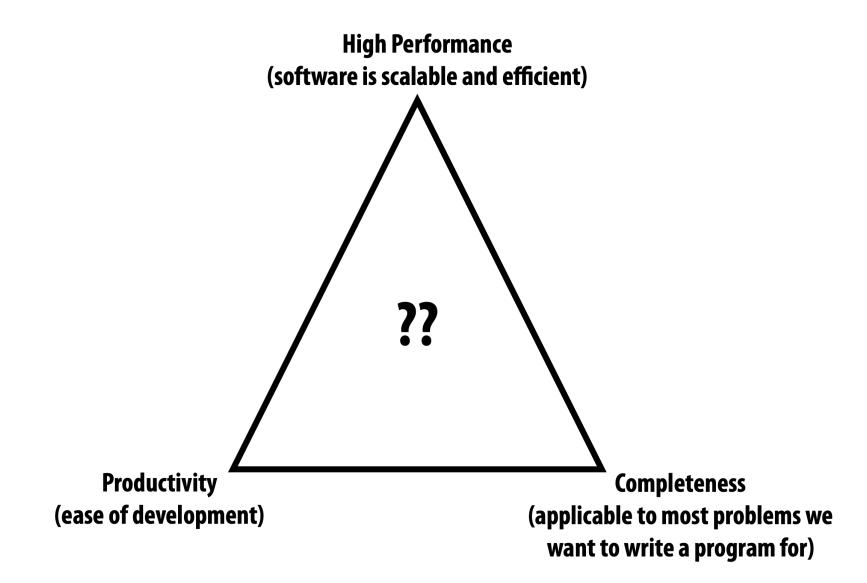
Most software systems use hardware inefficiently

Compared against GCC -o3 (no manual vector optimizations)

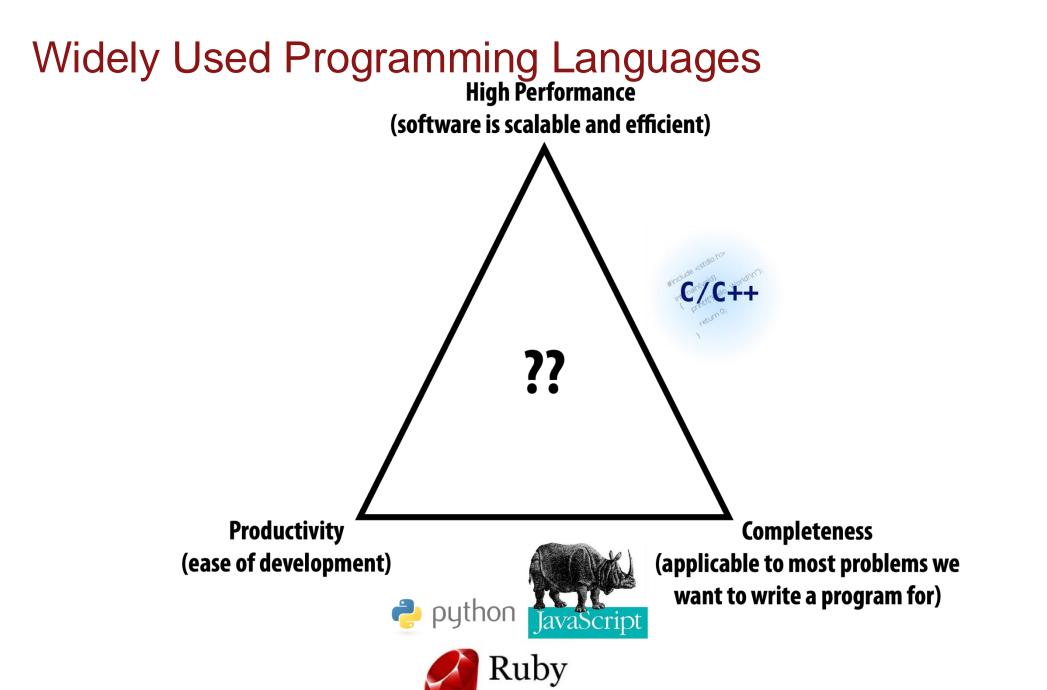


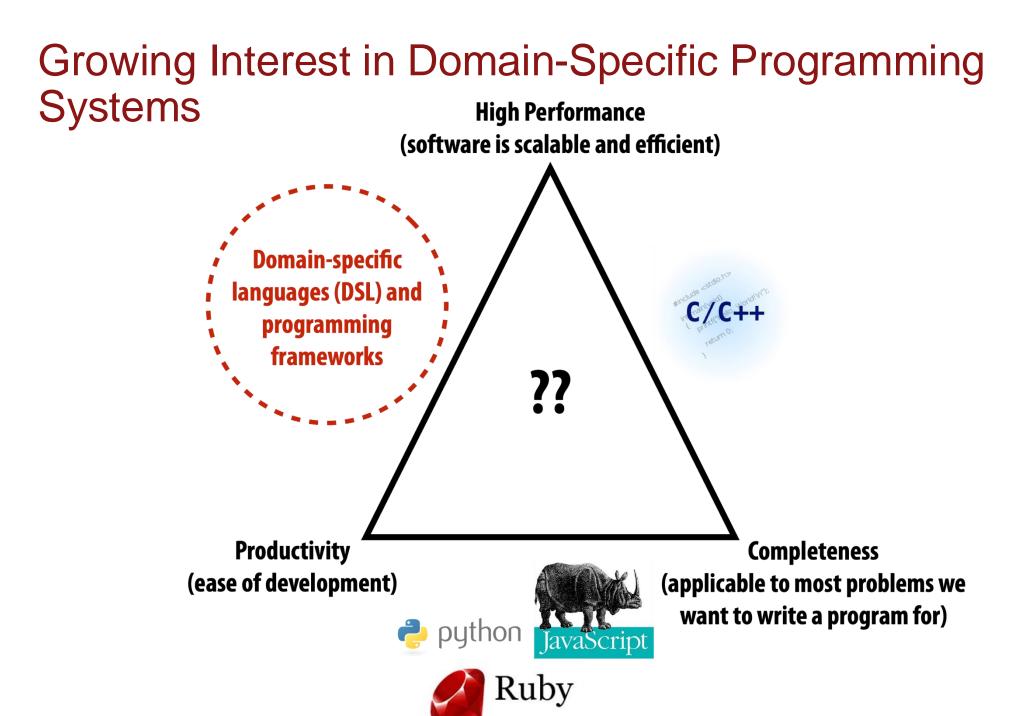
Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org

The Magical Ideal Parallel Programming System



Credit: Pat Hanrahan





Domain-Specific Programming Systems

Key idea: raise level of abstraction for expressing programs Introduce high-level programming primitives specific to an application domain

- Productive: intuitive to use, portable across machines, primitives correspond to behaviors frequently used to solve problems in targeted domain
- <u>Performant</u>: system uses domain knowledge to provide efficient, optimized implementation(s)
 - Given a machine: system knows what algorithms to use, parallelization strategies to employ for this domain

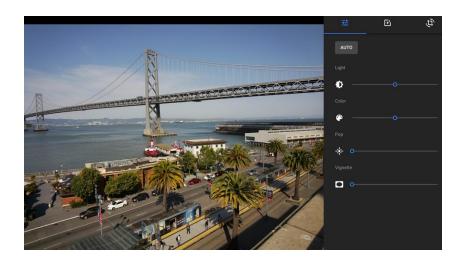
Cost: loss of generality/completeness

Two Domain-Specific Programming Systems

- 1. Halide: for image processing
- 2. TVM: for deep learning

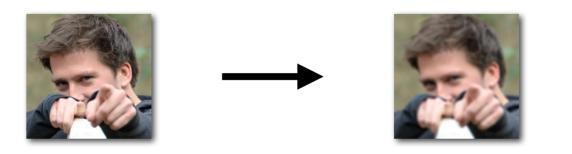
Halide: a Domain-Specific Language for Image Processing

- Used to implemented Android HDR+ app
- Halide code used to process all images uploaded to Google Photos



A Quick Tutorial on High-Performance Image Processing

Image Blur



(Zoom view)

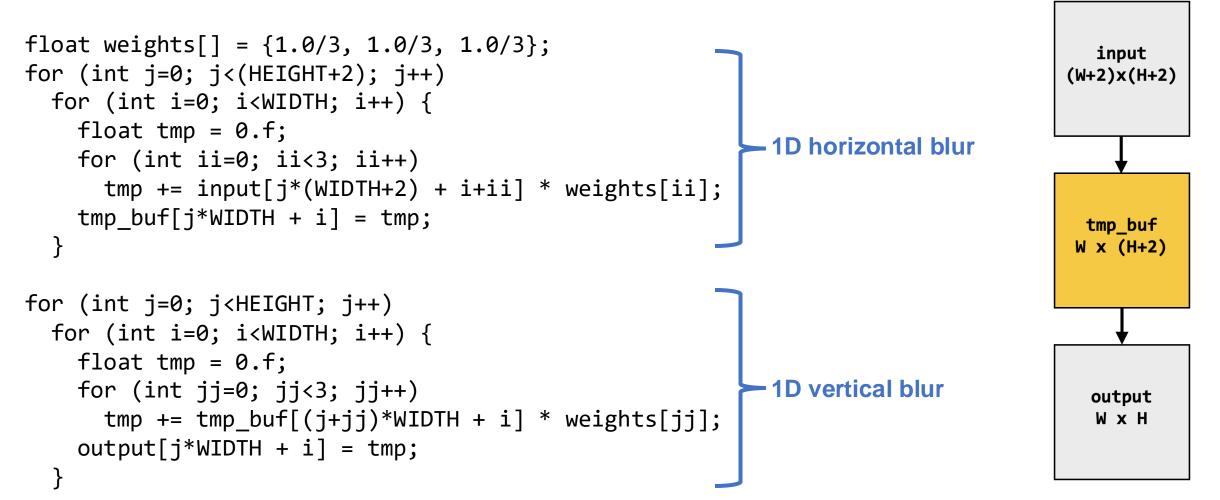
3x3 Image Blur (a convolution with predefined wights)

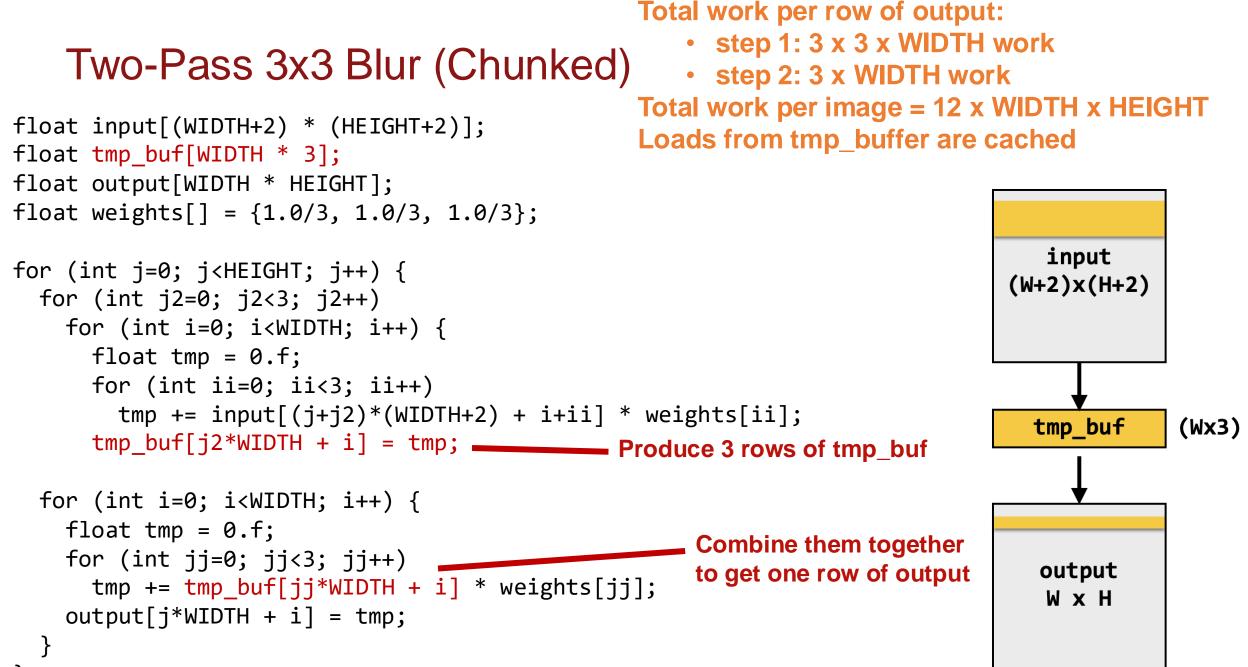
```
Total work per image: 9 * WIDTH * HEIGHT
int WIDTH = 1024;
                                                                                                                                                                                         For NxN filter: N * N * WIDTH * HEIGHT
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = \{1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.0/9, 1.
                                                                                                1.0/9, 1.0/9, 1.0/9,
                                                                                                1.0/9, 1.0/9, 1.0/9;
for (int j=0; j<HEIGHT; j++) {</pre>
          for (int i=0; i<WIDTH; i++) {</pre>
                   float tmp = 0.f;
                   for (int jj=0; jj<3; jj++)</pre>
                             for (int ii=0; ii<3; ii++)</pre>
                                         tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
                   output[j*WIDTH + i] = tmp;
```

Two-Pass 3x3 Blur

```
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
```

Total work per image: 6 * WIDTH * HEIGHT For NxN filter: 2 * N * WIDTH * HEIGHT Extra memory: WEIGHT * NEIGHT 3x lower arithmetic intensity





Conflicting goals (once again...)

- Want to be computationally efficient (perform fewer operations)
- Want to take advantage of locality when possible
 - Otherwise computationally efficient code will be bandwidth bound
- Want to execute in parallel (multi-core, SIMD within core)

Optimized C++ code: 3x3 image blur

```
void fast_blur(const Image &in, Image &blurred) {
 _m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {</pre>
  __m128i a, b, c, sum, avg;
  \_m128i tmp[(256/8) * (32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   _m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_loadu_si128((_m128i*)(inPtr-1));
    b = _mm_loadu_si128((_m128i*)(inPtr+1));
     c = _mm_load_sil28((_ml28i*)(inPtr));
     sum = mm add epi16(mm add epi16(a, b), c);
     avg = mm mulhi epi16(sum, one third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *) (&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = mm load sil28(tmpPtr+(2*256)/8);
     b = mm load sil28(tmpPtr+256/8);
     c = _mm_load_sil28(tmpPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(outPtr++, avg);
}}}
```

- + 10x faster than the original code
- Specific to SSE (not AVX2), CPUcode only
- Lacks readability, portability, modularity

Halide: Decouple Algorithm from Schedule

- Algorithm: what to do
- Schedule: how to do

```
Func halide_blur(Func in) {
Func tmp, blurred;
Var x, y, xi, yi;
// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;
// The schedule
blurred.tile(x, y, xi, yi, 256, 32)
            .vectorize(xi, 8).parallel(y);
tmp.chunk(x).vectorize(x, 8);
return blurred;
}
```

Why Decoupling Algorithm from Schedule?

- Algorithm: what to do
- Schedule: how to do

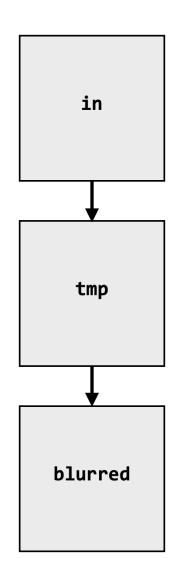
- Easy for programmers to build pipelines
- Easy for programmers to specify & explore optimizations
- Easy for compilers to generate fast code

Algorithm: Pure Functional

- Declarative specification
- Pipeline stages are pure functions from coordinates to values
- No explicit bounds
- No loops or traversal orders
- Only feed forward pipelines

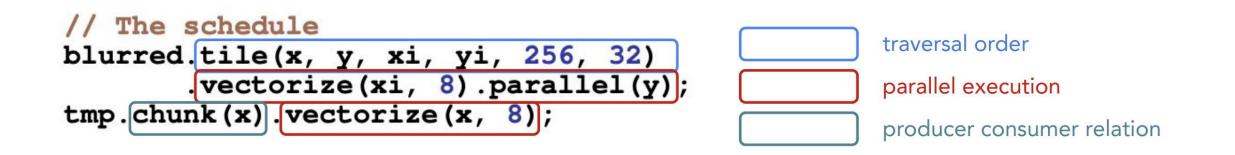
// The algorithm tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

Think of a Halide algorithm as a pipeline

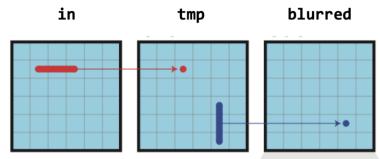


Schedule: describe how to execute a pipeline

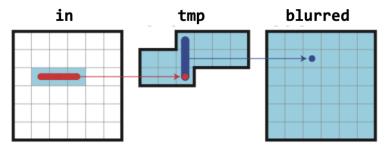
- Defines intra-stage order and inter-stage interleaving
- For each stage:
- 1) In which order should we compute its values?
- 2) How to map onto parallel execution resources like SIMD units and GPU blocks?



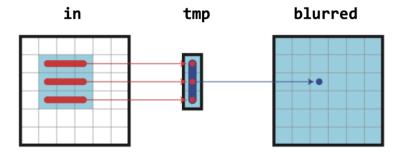
Producer/Consumer Scheduling Primitives



breadth first: each function is entirely evaluated before the next one. "Root"

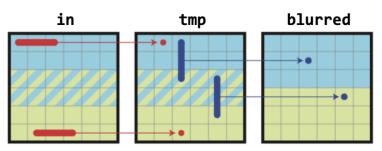


sliding window: values are computed when needed then stored until not useful anymore. "Sliding Window"



total fusion: values are computed on the fly each time that they are needed.

"Inline"



tiles: overlapping regions are processed in parallel, functions are evaluated one after another. "Chunked"

Producer/Consumer Scheduling Primitives

```
// Halide program definition
                                                                            void halide_blur(uint8_t* in, uint8_t* out) {
                                 "Root":
Func halide_blur(Func in) {
                                                                                uint8_t blurx[WIDTH * HEIGHT];
                                compute all points of the producer,
  Func blurx, out;
                                                                                for (int y=0; y<HEIGHT; y++) {</pre>
                                 then run consumer (minimal locality)
                                                                                 for (int x=0; y<WIDTH; x++) {</pre>
  Var x, y, xi, yi
                                                                                      blurx[] = ...
 // the "algorithm description" (what to do)
  blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
                                                                               for (int y=0; y<HEIGHT; y++) {</pre>
  out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
                                                                                  for (int x=0; y<WIDTH; x++) {</pre>
                                                                                      out[] = ...
  // "the schedule" (how to do it)
                                                                            }
  blurx.compute_at(ROOT);
  return out;
}
                                 "Inline":
// Halide program definition
                                                                         void halide_blur(uint8_t* in, uint8_t* out) {
                                 revaluate producer at every use site
Func halide blur(Func in) {
                                                                             for (int y=0; y<HEIGHT; y++) {</pre>
                                in consumer (maximal locality)
                                                                               for (int x=0; y<WIDTH; x++) {</pre>
  Func blurx, out;
                                                                                   out[] = (((in[(y-1)*WIDTH+x-1] +
  Var x, y, xi, yi
                                                                                               in[(y-1)*WIDTH+x] +
                                                                                               in[(y-1)*WIDTH+x+1]) / 3) +
  // the "algorithm description" (what to do)
                                                                                             ((in[y*WIDTH+x-1] +
  blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
                                                                                               in[y*WIDTH+x] +
  out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
                                                                                               in[y*WIDTH+x+1]) / 3) +
                                                                                             ((in[(y+1)*WIDTH+x-1] +
  // "the schedule" (how to do it)
                                                                                               in[(y+1)*WIDTH+x] +
  blurx.inline();
                                                                                               in[(y+1)*WIDTH+x+1]) / 3));
  return out:
                                                                         }
```

Schedule: describe how to execute a pipeline

```
// Halide program definition
Func halide blur(Func in) {
 Func blurx, out;
 Var x, y, xi, yi
 // the "algorithm description" (what to do)
 blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
 out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
 // "the schedule" (how to do it)
 out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
 blurx.chunk(x).vectorize(x, 8);
  return out;
```

void halide_blur(uint8_t* in, uint8_t* out) { #pragma omp parallel for for (int y=0; y<HEIGHT; y+=32) {</pre> // tile loop for (int x=0; y<WIDTH; x+=256) { // tile loop</pre>

> // buffer uint8 t* blurx[34 * 256];

// produce intermediate buffer

for (int yi=0; yi<34; yi++) {</pre> // SIMD vectorize this loop (not shown) for (int xi=0; xi<256; xi++) {</pre> blurx[yi*256+xi] = (in[(y+yi-1)*WIDTH+x+xi-1] + in[(y+yi-1)*WIDTH+x+xi] + in[(y+yi-1)*WIDTH+x+xi+1]) / 3.0; }

Given a schedule, Halide carries out mechanical process of implementing the specified schedule

```
// consumer intermediate buffer
```

}

}

```
for (int yi=0; yi<32; yi++) {</pre>
         // SIMD vectorize this loop (not shown)
         for (int xi=0; xi<256; xi++) {</pre>
            out[(y+yi)*256+(x+xi)] =
                (blurx[yi*256+xi] +
                blurx[(yi+1)*256+xi] +
                blurx[(yi+2)*256+xi]) / 3.0;
         }
      }
 } // loop over tiles
} // loop over tiles
```

Halide: two domain-specific co-languages

- Functional language for describing image processing operations
- Domain-specific language for describing schedules
- **Design principle**: separate "algorithm specification" from its schedule
 - Programmer's responsibility: provide a high-performance schedule
 - Compiler's responsibility: carry out mechanical process of generating threads, SIMD instructions, managing buffers, etc.
 - <u>Result</u>: enable programmer to rapidly explore space of schedules
 - (e.g., "tile these loops", "vectorize this loop", "parallelize this loop across cores")

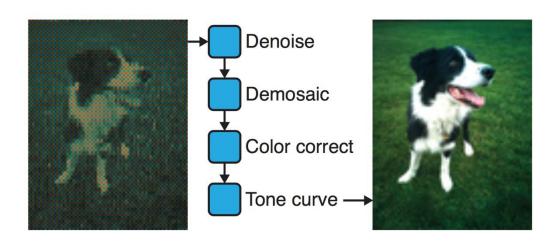
Domain scope:

- All computation on regular N-D coordinate spaces
- Only feed-forward pipelines
- All dependencies inferable by compiler

Example Halide Results

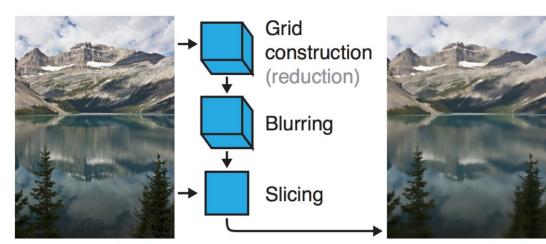
Camera RAW processing pipeline (Convert RAW sensor data to RGB)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster



Bilateral filter

- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule
 - CPU implementation: 5.9x faster
 - GPU implementation: 2x faster than hand-written CUDA



Recap: Halide is a DSL

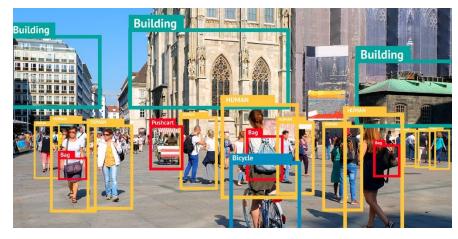
For helping developers optimize image processing code more rapidly

- Halide doesn't decide how to optimize a program for a novice programmer
- Halide provides primitives for a programmer to rapidly express what optimizations the system should apply
- Halide carries out the nitty-gritty of mapping that strategy to a machine

Two Domain-Specific Programming Systems

- 1. Halide: for image processing
- 2. TVM: for deep learning

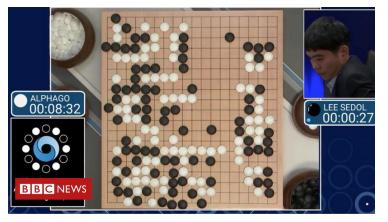
The Success of Machine Learning Today



Object detection

Autonomous vehicles

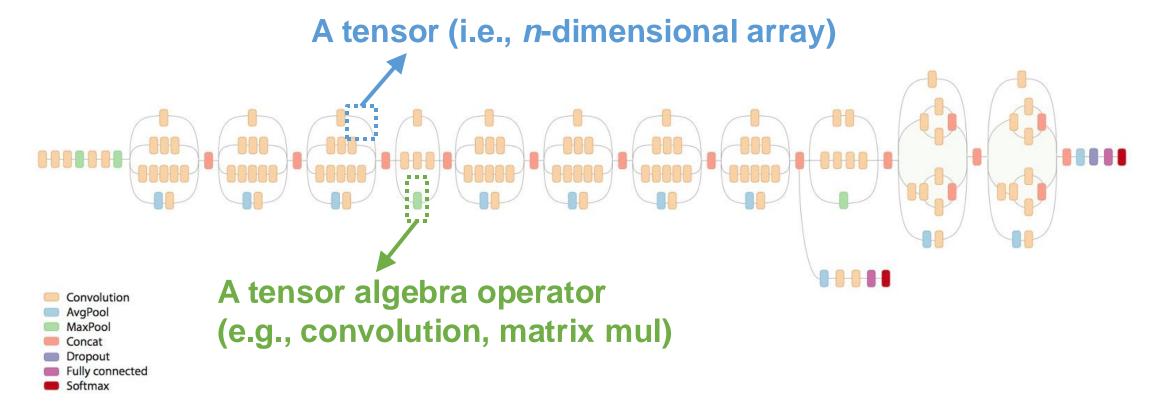
Machine translation



Game playing

Deep Neural Network

 Collection of simple trainable mathematical units that work together to solve complicated tasks



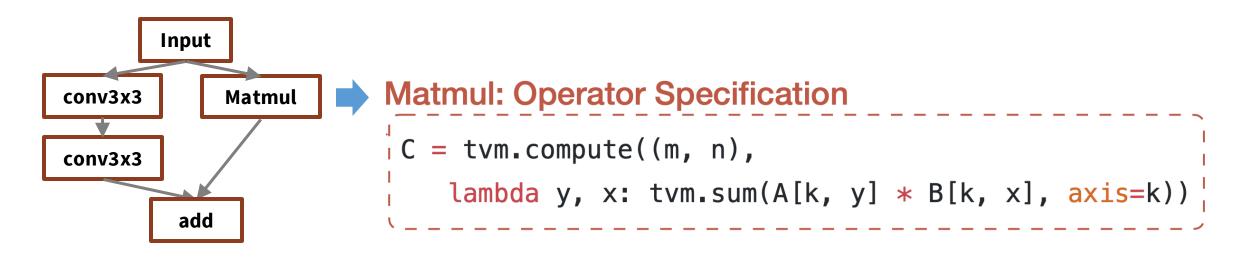
TVM: A Learning-based Compiler for Deep Learning

Explosion of models and frameworks

Goal: efficiently deploy deep learning on modern hardware platforms



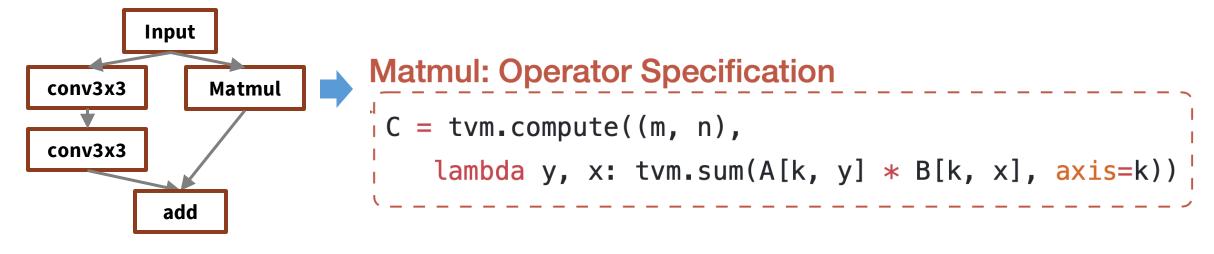
Existing Approach: Engineer Optimized Tensor Operators



Vanilla Code

```
for y in range(1024):
    for x in range(1024):
        C[y][x] = 0
        for k in range(1024):
            C[y][x] += A[k][y] * B[k][x]
```

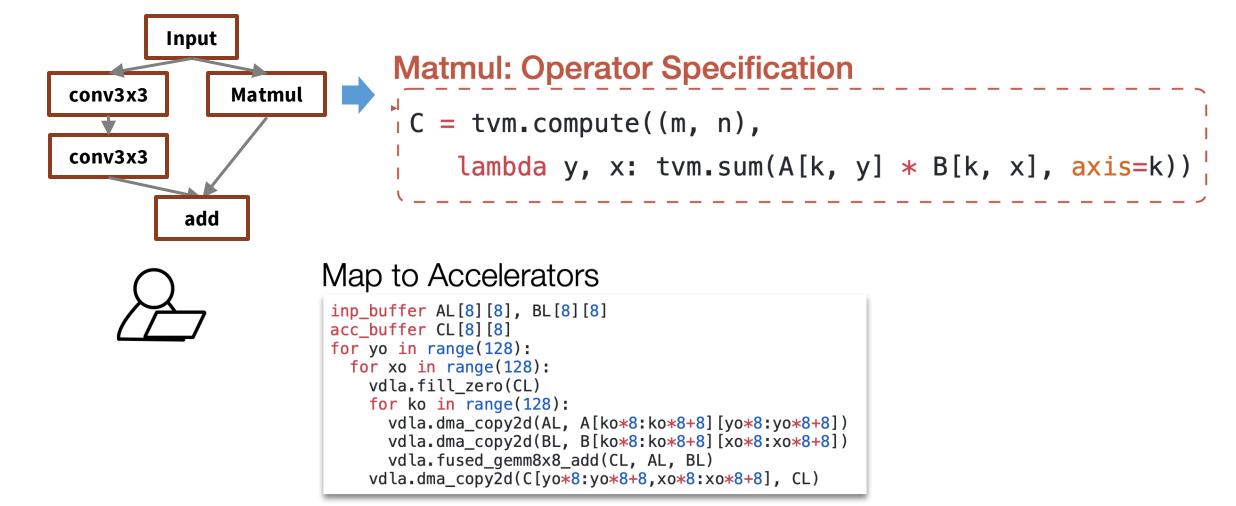
Existing Approach: Engineer Optimized Tensor Operators



Δ

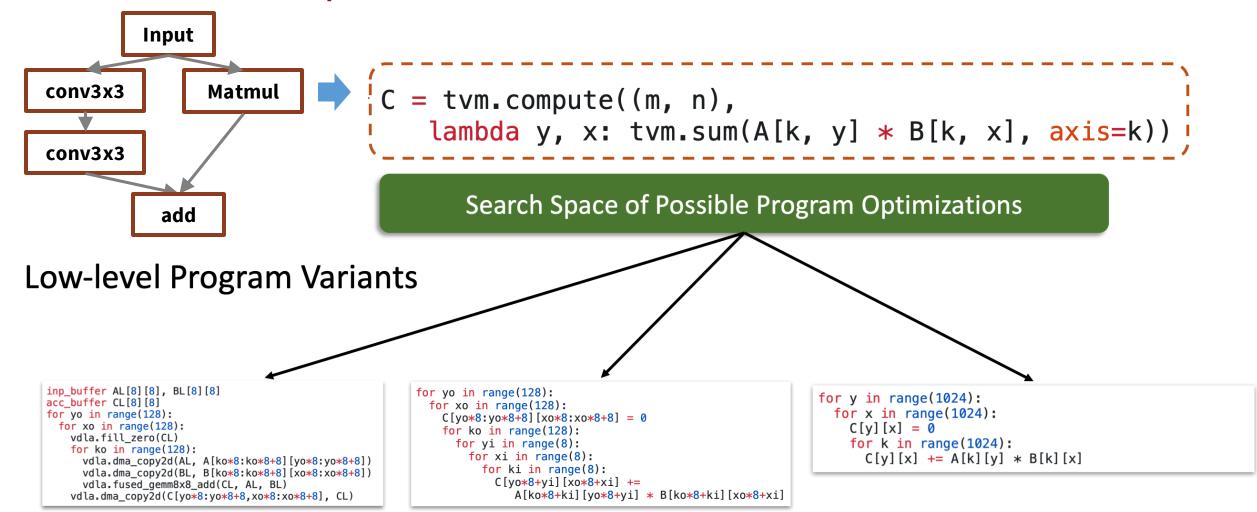
Loop Tiling for Locality

Existing Approach: Engineer Optimized Tensor Operators



* Slides from Tiangi Chen Human exploration of optimized code

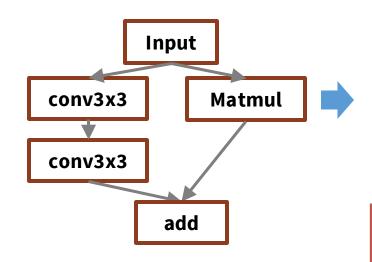
Challenge: Billions of Possible Optimization Choices in the Search Space



TVM: Learning-based Compiler for Deep Learning

Hardware-aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer



≈ Halide's algorithm Tensor Expression Language (Specification)

C = tvm.compute((m, n),

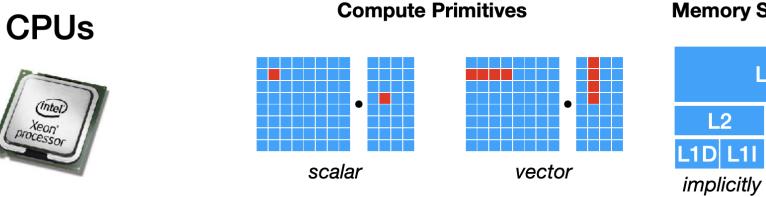
lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))

Define search space of hardware aware mappings from expression to hardware program

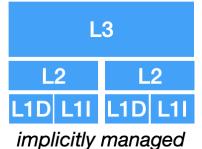
Based on Halide's compute/schedule separation

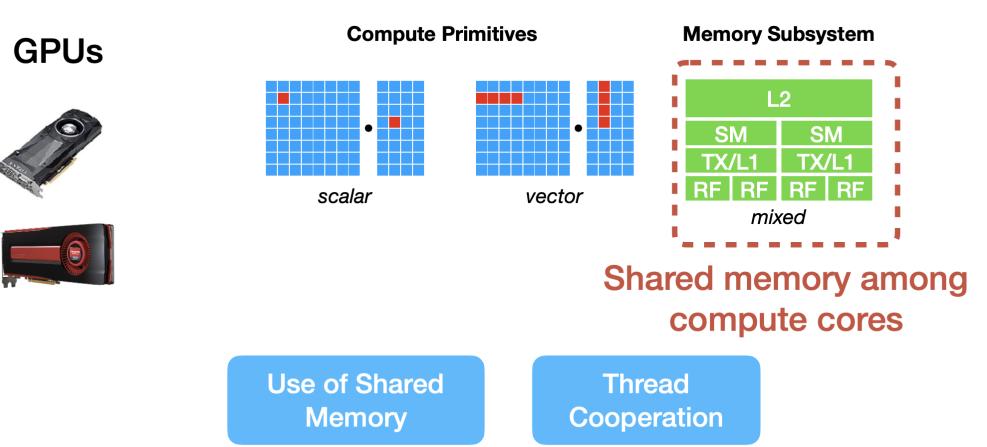
Reuse primitives from Halide

processor

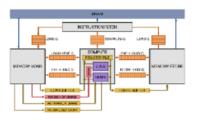


Memory Subsystem

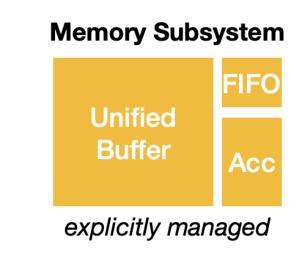




TPU-like Specialized Accelerators

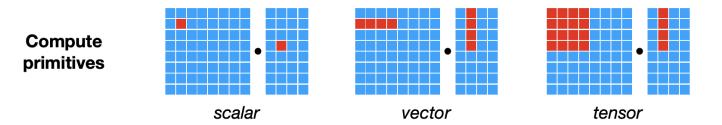




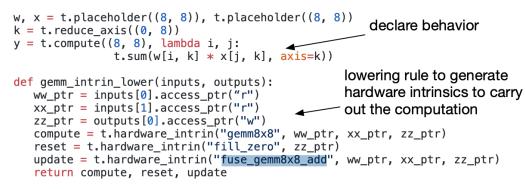


Tensorization

Tensorization Challenge

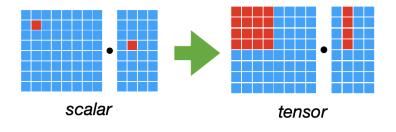


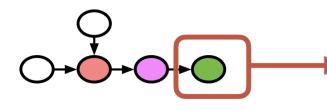
Hardware designer: declare tensor instruction interface with Tensor Expression



gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)

Tensorize: transform program to use tensor instructions

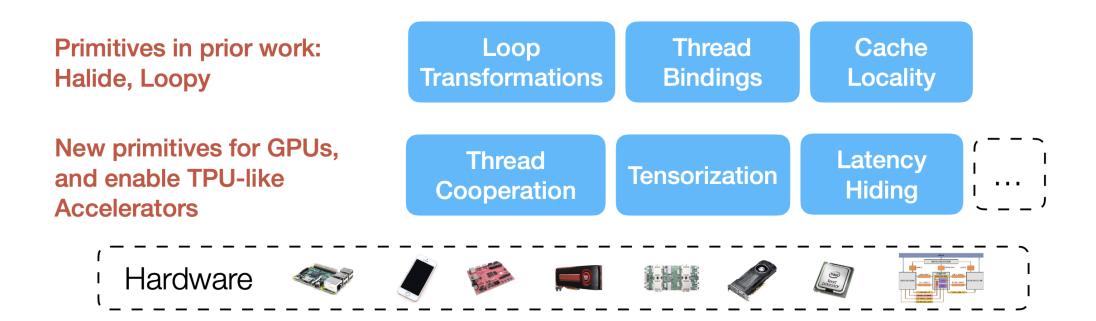


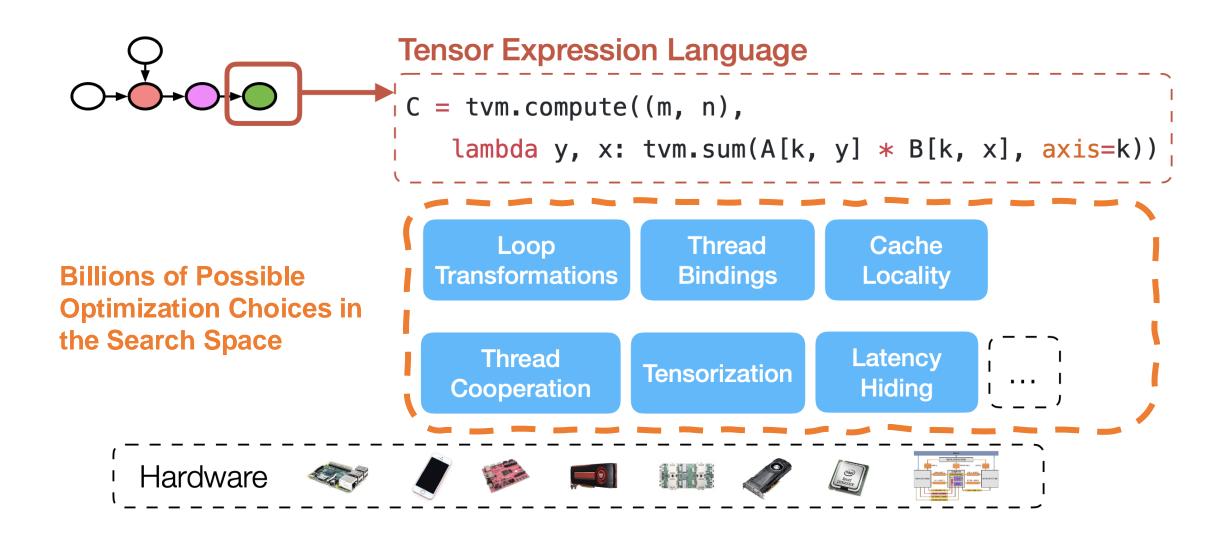


Tensor Expression Language

C = tvm.compute((m, n),

lambda y, x: tvm.sum(A[k, y] * B[k, x], axis=k))



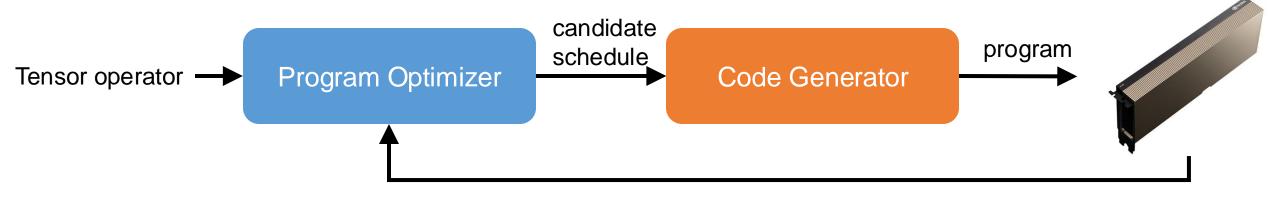


TVM: Learning-based Compiler for Deep Learning

Hardware-aware Search Space of Optimized Tensor Programs

Learning based Program Optimizer

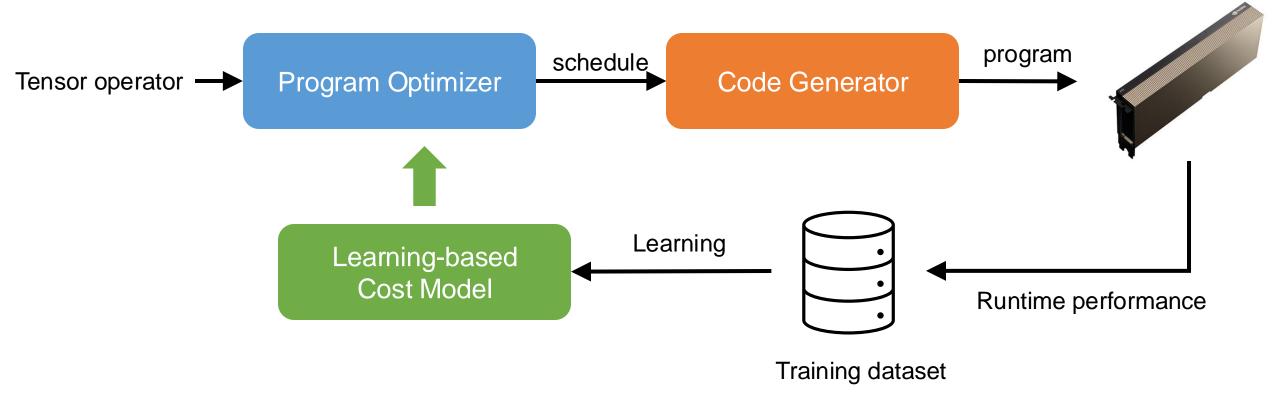
Learning-based Program Optimizer



Runtime performance

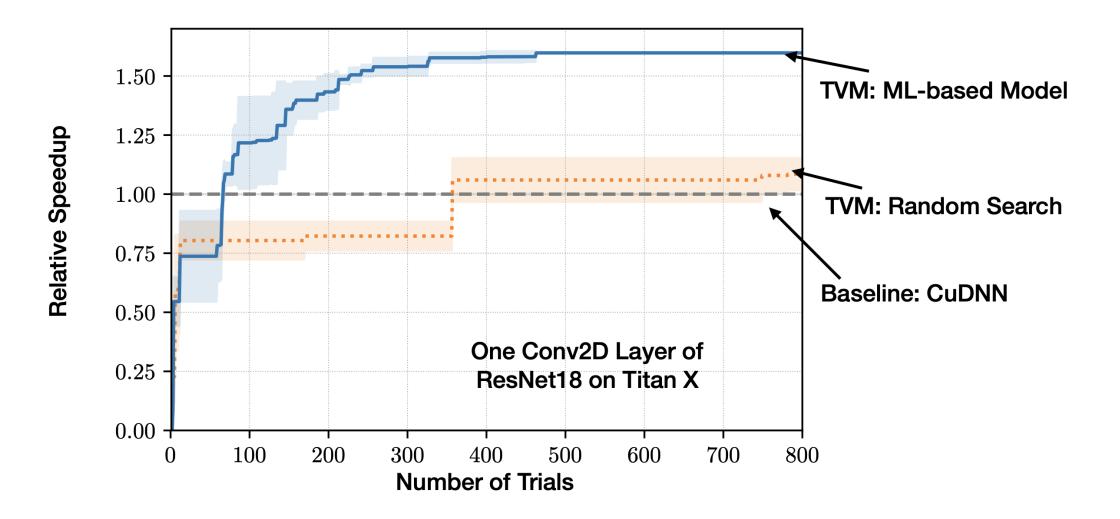
Issue: high experiment cost, each trial takes seconds

Learning-based Program Optimizer

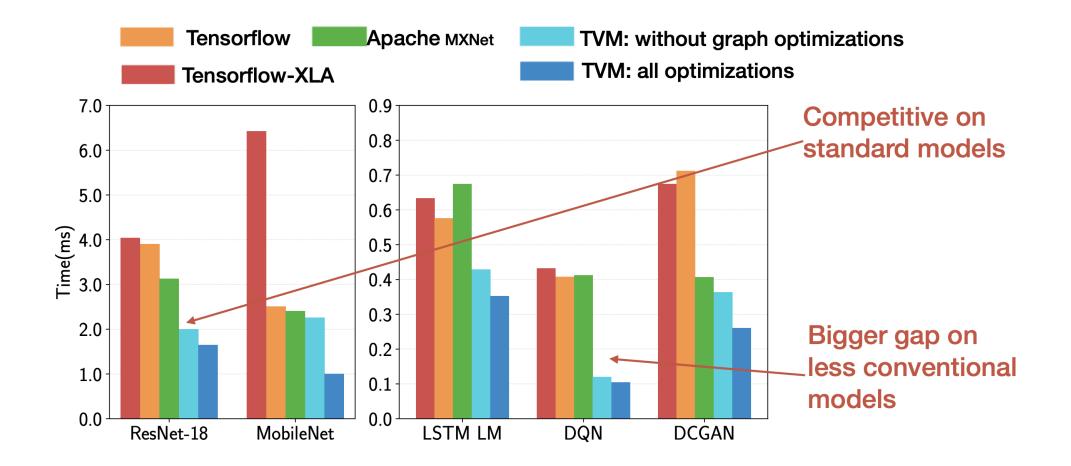


Adapt to hardware by learning, make prediction in milliseconds

Efficient ML-based Cost Model



End-to-end Inference Performance



Discussion: Halide and TVM

• What are the similarities?

• What are the key differences?

- Modern machines are parallel and heterogeneous
 - Only way to increase compute capability in energy-constrained world
- Most software uses small fraction of peak capability of machine
 - Challenging to tune programs to these machines
 - Tuning efforts not portable across machines
- DSLs trade-off generality to achieve productivity, performance, portability
 - Case studies: Halide, TVM