Lecture 23:
Parallel Deep Learning Basics

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2023

10/26/23

The Success of Machine Learning Today

el

Object detection

 LEE SEDOL
« 00:00:27

] %00° o8¢

b

Machine translation

Game playing

Most ML techniques invented in 1980s and 1990s

)

FIL TS NN RS
i R N

Comvoltions Subsampling Fully =

Perceptron Backprop Support Vector ConvNet Gradit?nt Boosting
Algorithm Machine (SVM) Machine (GBM)
1958 1986 1992 1998 1999

Why didn’t the success of ML happen in 1990s?

Adapted from TQ’s slide

The Rise of ML and Neural Networks

1980s and 1990s

A

Accuracy neural networks

other approaches

| |

Scale (data size, model size)

Adapted from Jeff Dean, HotChips 2017

The Rise of ML and Neural Networks

Now

A more
Accuracy compute

_>|

I
I
I neural networks

. other approaches

Scale (data size, model size)

Adapted from Jeff Dean, HotChips 2017

Big data arrives in early 2000

kaggle

IM&AGENET

fIiCkr MTurk

The Free Encyclopedia

2001 2004 2005 2009 2010

Large-scale training datasets become available

Al hardware becomes widely available in 2010s

TensorCore

Public SANVIDIA.
cloud CUDA.

2006 2007 2016 2017 2019

Distributed Heterogeneous Hardware Platforms

The Secret Ingredients in ML Success

ResNet, Transformers, Graph Neural
Networks, Mixture-of-Experts, ...

GPUs, TPUs, Tensor Cores,
ImageNet, Kaggle, Supercomputers, Graph Cores,

Flickr, NetFlix, ...

Today’s Topics

« Stochastic Gradient Descent
« Backpropagation and Automatic Differentiation
* An Overview of Deep Neural Networks

Deep Neural Network

 Collection of simple trainable mathematical units that work together to
solve complicated tasks

A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)

Q
el
>R

=
o

= | = 1
TR A MY
2o0¢c~2 8

= 0O

v
299528
-~

)
9
)
o}

=

3

X 353 ~ o
=)

DNN Training Overview

layerl layer2

extractor extractor predictor
el | _ 1
S |:> LA exp (—w!'z;)
N
n
Objective L(w) =) Uy, 5;) + Aw]?

Training W < W

11

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 108 Model prediction

ooooooo
CCCCCC

12

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the loss value to update model weights

J(w) Initial

! Gradient
Welght \ III/
/

U
'
[}) / I
" 4 obal -
L Global cost minimum
iy dL(w) s

A Jmin(w)

Model inputs

,,,,,,,,,,,,,,,,,

@ Softmax 6 Wi

w

Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the gradients to update model weights

N
dL(w) 14 al;(w)

W: = W;: —)/ W: — —
' y aWi ' N 1 an'
]:

14

Stochastic Gradient Descent (SGD)

* Inefficiency in gradient descent
* Too expensive to compute gradients for all training samples

« Especially for todays large-scale training datasets (e.g., ImageNet-22K
with 14 million images)

o alw) Y = 9l (w) oy 2 9l (w)
WY T T YT N L T aw, LT p L aw,
f]

/ -
N is the size of the

entire training dataset b is called batch size

15

Content

« Stochastic Gradient Descent

 How to compute gradients: Backpropagation and Automatic
Differentiation

* Understand Our Applications: An Overview of Neural Networks

16

How to compute gradients? Backpropagation

e Sum rule

d(f(x) + g(x)) df(x) N dg(x)
dx dx dx

 Product rule

d d d
(f(x;f(x)) _ J;ix)g) + iix))

 Chain rule

df(g(x)) df(y)dg(x)
dx dy dx

17

Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
p
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort

18

Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
cEg.,x=-2,y=5z=-4 0
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort

19

of

Exercise: Compute —

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

= x + :ap—1
p=xTYy O
—xtz 2o
q=xrz ox

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

20

Exercise: Compute o

oy

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

=x+ :>ap_1
p=x+y 3y
=x+ =>aq—0
q=x+z ay_
B af Op dq
f=p=*q :>6y_6y q+ay*p

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

21

of

Exercise: Compute -~

fl,y,z) = (x+y)(x +2)
Eg,x=-2,y=52z=4

=x+ =>ap—0
p=xTy =57
=x+ :>6q_1
q=x+z =2 =

f=pxq =" =2"*q+5 *p
=0*x—6+1%3=3

X
P
y————
9
y4

Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble

22

Issues?

* If a model has n input variables, we need n forward passes to compute the
gradient with respect to each input

« Deep learning models have large number of inputs (e.g., billions or up to
trillions of trainable weights)

« Solution: reverse mode AutoDiff

23

Reverse Mode Automatic Differentiation

* For each node v, we introduce an adjoint node v corresponding to the
of

gradient of output wrt to this node P

« Compute nodes’ gradients in a reverse topological order

24

dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4
ol

.§=1

id

ol
of

25

dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4

.§=1
oo or ol
9 of Xaq ar P =3

26

Exercise: Compute

cl=fxy2)=x+y)(x+2)
=5,z=-4

cEg,x=-2,y=
ol

5—1
JOL_ oL or_
aq_afxaq_

ol al of
) —_— =_Xq=_

ap ~ af " ap

1Xp =3

0l
of

dl

ox’' 0y’ 0z’

6

X

id

ol
of

27

Exercise: Compute

dl dl 0l
ox’' 0y’ 0z’

l=f(xy2z)=x+y)(x+2z)
Eg.,x=-2,y=5,z=+4
l

or = 1

JOL_oL of

5q — a7 aq—1><p—3

oL _ ot of _ _ _
ap_afxap_lxq_ 6 al

o _ o o 9L dq_ oL a
ax_ap dx 0q ax_ap aq

|
|
|
|
|

28

dl dl 0l

Exercise: Compute ox' 3y’ 92"

cl=fxy2)=x+y)(x+2)

+Eg.,x=-2,y=5,z=-4

of

dl adl 0o

¢ —=— —f=1><p—3 Z
dq Of Oq

dl dl _ df

® — — — X — = 1X = —

op ~of Xop 1% =76 ol Q
ol ol Jdp dl 0dq

.—=—X— —X_=_

0x dp 6x+6q 0x 3

dl ol 0

¢ —=—x2L=-6x1=-6

dy dp Oy

a *
i
ﬂ
ay
OF

dq

A\ 4

d

y *
oﬂ:l f

ol
of

29

. ol ol

Exercise: Compute x5y 92"

cl=fxy2)=x+y)(x+2)

Eg,x=-2,y=52z=4

.aa_;=1

%:%xg—i=1xq=—6 g_z

x

j-i:j—; %Jrj—;xg—j——g

%:3—; 2—5——6x1=—6 %

5 =% 5 = 3X1=3 o
0z

30

Forward
computation
graph

Backward
computation
graph

31

Discuss: Backpropagation v.s. Reverse AutoDiff

Backpropagation Reverse AutoDiff

dp

What is the difference between
backpropagation and reverse AutoDiff?

32

Discuss: Backpropagation v.s. Reverse AutoDiff

. backpropagation requires a forward-backward pass for each
variable, while reverse AutoDiff only requires one forward-backward pass

. reverse AutoDiff represents the forward-backward in a
single computation graph, make it easier to apply graph-level optimizations

. we can take derivative of derivative nodes in
reserve AutoDiff, while it's much harder to do so in backpropagation

33

Higher Order Derivatives

Forward
Graph

First-Order
Derivative
Graph

34

Reverse AutoDiff Implementation

class ComputationalGraph(object):

o

def

def

forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward() :

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients

35

Forward/Backward Implementation

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y = y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

36

Manual Gradient Checking: Numeric Gradient

 How do we check the correctness of our implementation?

l _ U(x+6x;)—1(x—6%;)
' 9x; 268
. easy to implement

. . approximate and very expensive to compute; need to recompute
[(x + 6x;) for every parameter

« Useful for checking the correctness of our implementation; serve as
unit test in today’s DNN systems

* For small §

37

Summary

- '\ﬂ"/,

(35)

. apply model to a batch of input samples and run
calculation through operators and save intermediate results

. run the model in reverse and apply chain rule to compute

gradients
. use the gradients to update model weights
b
OL(w) = 91, (w) Y~ 0L (w)
W; = W; — = W: ~ W: — —
=W e lN Iw, LT p L ow,

Jj=1 Jj=1

38

Understand Our Applications:
An Overview of Deep Learning Models

« Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks

* Mixture-of-Experts

39

CNNSs are widely used in vision tasks

beach wagon
fire engine | dead-man's-fingers

Classification

E

S0

Segmentation Self-Driving Synthesis
40

Recap: Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel {

(-1x3)+(0x0)+(1x1)+
(2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

v
¥\

\ ¥\
4 ’
- f
{ /

e s Ao/ RS
BlisisEhe

Convolution filter
(Sobel Gx)
Destination pixel

VORI O (T

]
]
L
T
[}
]
]
[
=

=
L
L
L
L
L
L
=
=

VRO

S

CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,

and activation functions

[Zeiler and Fergus 2013]

@

VGG-16

Low-level
features

Mid-level
features

High-level
features

Linearly
separable
classifier

onv1_1

42

MLSys Challenges in CNNs:
Increasing Computational Requirements

300 16
264 0 14.1
250 o4
5 S 12
%"200 [= 10
q_-l 152 "
5 150 9 g
— Q
9 102 £
e 100 3 6
=) Y
Z o 4
50 N
12 19 8 2 1.4
o = M £, 005 NN
DR S LS LS z | |
NN QT 2 N 9 & NS
NN AN < X 1%
X X %) ‘
¢ L& & 8 «¥ X ¢
O O NN o) S N
N K N &

MLSys Challenges in CNNs:
Increasing Computational Requirements

. convolutions are extremely compute-intensive
. high-resolution images cannot fit in a single GPU

. parallelize training across GPUs
 Lecture 24: Data Parallelism for Distributed Training
 Lecture 25: Pipeline and Model Parallelism for Distributed Training

44

Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks

45

Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks

46

Recurrent Neural Networks: Process Sequences

one to one one to many
! . O
! f

\

e.d., image captioning
Image -> sequence of words

47

Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! . f
! f Pt

e.d., action prediction
sequence of video frames -> action

48

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames

49

Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
Recurrent > internal state that is
Neural
Networks updated as a sequence
is processed

T

inputsi] Arbitrary number of inputs

50

How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

» Solution: unrolling RNNs (define maximum depth)

output, output; output, output,

~&~ ﬁ& %
state T state, state, T state, T

input, input; input; input,

51

When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)

52

Inefficiency in RNNs?

* Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

state, state, #m# m#

input, input; input; input,

Understand Our Applications:
An Overview of Deep Learning Models

e Transformers

54

How should | plan to learn CMU's parallel programming and architecture course?

(; P I 4 D e m O Learning CMU's parallel programming and architecture course requires a structured

approach to ensure that you cover all the necessary concepts and materials effectively.

Here are some steps you can take to plan your learning:

1. Familiarize yourself with the course materials: Go through the course syllabus, lecture
notes, and assignments to get an idea of what the course covers and the topics you
need to learn.

2. Identify your learning objectives: Determine what you want to achieve from taking this

course. Are you looking to gain a deeper understanding of parallel programming or

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [33] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [34]. Given both
the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

to seek help. You can reach out to your professor, teaching assistants, or classmates
for assistance.

7. Practice coding: Parallel programming involves coding, so it's important to practice
coding examples to improve your skills.

8. Review and reflect: Periodically review what you have learned, and reflect on how you
can apply the concepts in practice. This will help you retain the information better and

build a deeper understanding of the course material.

Remember that learning is a process, and it takes time and effort to master new concepts.
By following these steps and staying committed to your learning goals, you can effectively

learn CMU's parallel programming and architecture course.

95

Transformer: Self-Attention Mechanism for Language
Models

Output

Probabilities

~N
(| Add & Norm

Feed
Forward

Add & Norm

()
_ ;
AddiciNotm: Multi-Head
Feed Attention
5 Forward 7 7 Nx
——
-8 N Add & Norm
O . Add & Norm S
cC Multi-Head Multi-Head
L Attention Attention
t 4 L
o J \ —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Ashish Vaswani et. al. Attention is all you need.

Decoder

am a student
A
(N)
ENCODER DECODER
N\ 7
[})
{ N
ENCODER DECODER
. J
))
fic =3
ENCODER DECODER
\ £
A 4
[B
ENCODER DECODER
. J
) [}
fis =)
ENCODER DECODER
. J
4 2
[)
ENCODER DECODER
% J
_ F

SUIS etudiant

56

Self-Attention

« Mapping a query and a set of key-value pairs to an output

Slide credit: Jay Allamar

Input

Embedding [] ‘ {

Queries gl [1 gz - WG
Keys ’ | ‘

Values EEE EES

58

Self-Attention

* Mapping a query and a set of
key-value pairs to an output

Slide credit: Jay Allamar

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (Vd;)

Softmax

Softmax
X
Value

Sum

V1

Thinking

Machines

59

Self-Attention

* Multiple matrix multiplications

o B . A(Q,K,V) = softmax <Q—KT> |4
X — m
X WK K Key words
e
’ . 2
55
S
3
X WV v Lyl

Slide credit: Jay Allamar

Self-Attention

<ped>
<ped>
<ped>
<ped>
<ped>
<ped>
<S03>

HNJIP
alow
ssaooud
Bunoa

lo
uoneussibal
ay}
Bunjew
600¢
aoulIs
sme|

mau
passed
aAey
sjuawulanob
ueolawy
Jo
Auolew
e

ey

Juids

siy}

ul

sl

]

ssao0.d
Bunoa

B[]
uoneussibal
oy}
Bunjew
600¢Z
aoulIs
SME|

mau
passed
aAey
sjuswulanob
ueouawy
Jo
Aolew
e

ey}
Juids

siy}

ul

sl

]

61

Multi-Head Self-Attention

 Parallelize attention layers with different linear transformations on input
and output

* Benefits: more parallelism, reduced computation cost

stuck tongue licked its owner

/\/’\./\./\./\./\./\ %

Y Y Y YV VYVY

The cat stuck out its tongue and licked its owner

62

Multi-Head Self-Attention

| e,

Z; =AQ; K;,V;) =softmax <QiKiT> V;
l U U L \/H i
Z = MultiHead(Q,K,V) = Concat(Z,, ..., Z;)W?°

63

Why Transformers is More Computationally Efficient
Than RNNs

« Enable parallelism within a * lack of parallelizability
sequence

Attenti
Layer 1 state, T state, T state, T state, T

h; h,

h;

64

Understand Our Applications:
An Overview of Deep Learning Models

Graph Neural Networks

67

Graph Neural Networks: The Hottest Subfield in ML

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert
B 2019
— mm 2020

continual learning

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords

68

GNNs: Neural Networks on Relational Data

Neural Networks Graph Neural Networks

Hidden layer Hidden layer
"\ l et = =i Output
7 ‘ A\v’vl;'.\ ReLU »\%‘ ReLU
oA o had N = R e
A XX : o
/)“w""
‘\ ‘//A ‘ output layer 5 3¢
input layer ¥ \ pEY \
hidden layer 1 hidden layer 2
-
e 2 2 - »
Classificati Classification 5, .0 0+ Detection Instanca | N 12 e 1 i
assification [\ o tion j Segmentation ¥ < n .\/ i a \l/ @<k OpenlE
S -1 T S n’\ R Sl | ® ® () Freebase Cye
¥ o e = ﬁ o ’ i ' ConceptNet . .
[X » Q" &= 5 GDelt
I & [N n i\ - 8 ®
: = 7 Jdb =
. = .2 @ n M -’ w):’ \n KNg\l-{(kaEIEI)GE
Fa B S - g il 2 =0 DBpedia
O - i ”~ . PROSPERA
CAT,DOG, DUCK CAT, DOG, DUCK o L A A l_l I vago ()
s h'd sl e o / = ﬁ o ’ P :n/’/ . Mebgleh Knowledge Vault
Single object Multiple objects L ' g) —

Graph Neural Network Architecture

 Combine graph propagation w/ neural network operations

Input
Representations

New
Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations

70

Challenges of GNN Computations on GPUs

Neural Networks

input layer

hidden layer 1 hidden layer 2

¥

Small and regular
intermediate data

@ Good efficiency

Graph Neural Networks

-

Output

L RelU ReLU

:
.

X -

Large and irregular
intermediate data

Efficiency &

@ scalability
challenges

71

How to Design Systems for Graph Neural Networks

* New Programming Models: gather-apply-scatter programming interface
for distributed GNN

* New Systems Infrastructure: serverless computing for low-cost GNN
training

72

Recap: An Overview of Deep Learning Models

« Convolutional neural networks: various computer vision tasks
* Recurrent neural networks: processing sequences

» Transformers: efficient natural language processing

« Graph neural networks: deep learning on relational data

» A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ""clever” integration of DNN techniques

76

