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The Success of Machine Learning Today

2

Object detection
Autonomous vehicles 

Machine translation Game playing
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Most ML techniques invented in 1980s and 1990s

3Adapted from TQ’s slide

Why didn’t the success of ML happen in 1990s?
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The Rise of ML and Neural Networks

4Adapted from Jeff Dean, HotChips 2017
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The Rise of ML and Neural Networks
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Big data arrives in early 2000
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Large-scale training datasets become available
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AI hardware becomes widely available in 2010s

7

Distributed Heterogeneous Hardware Platforms 
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The Secret Ingredients in ML Success

ML 
Model

Data HW

ResNet, Transformers, Graph Neural 
Networks, Mixture-of-Experts, …

ImageNet, Kaggle, 
Flickr, NetFlix, … 

GPUs, TPUs, Tensor Cores, 
Supercomputers, Graph Cores, 
…
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Today’s Topics

• Stochastic Gradient Descent
• Backpropagation and Automatic Differentiation
• An Overview of Deep Neural Networks

9



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Deep Neural Network

• Collection of simple trainable mathematical units that work together to 
solve complicated tasks

10

A tensor algebra operator 
(e.g., convolution, matrix mul)

A tensor (i.e., n-dimensional array)
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DNN Training Overview

11
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce error for 

each trainable weight
3. Weight update: use the loss value to update model weights 

12

Forward propagation

Model inputs Model prediction
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce a gradient 

for each trainable weight
3. Weight update: use the loss value to update model weights 

13

Backward propagation

Model inputs Model prediction

𝜕𝐿(𝑤)
𝜕𝑤!
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages
1. Forward propagation: apply model to a batch of input samples and run 

calculation through operators to produce a prediction
2. Backward propagation: run the model in reverse to produce a gradient 

for each trainable weight
3. Weight update: use the gradients to update model weights 
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individual samples
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Stochastic Gradient Descent (SGD)

• Inefficiency in gradient descent
• Too expensive to compute gradients for all training samples
• Especially for todays large-scale training datasets (e.g., ImageNet-22K 

with 14 million images)

• Stochastic gradient descent

15
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𝑏 is called batch size
𝑁 is the size of the 
entire training dataset
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Content

• Stochastic Gradient Descent
• How to compute gradients: Backpropagation and Automatic 

Differentiation
• Understand Our Applications: An Overview of Neural Networks

16
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How to compute gradients? Backpropagation

• Sum rule

• Product rule

• Chain rule

17

𝑑(𝑓 𝑥 + 𝑔 𝑥 )
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Backpropagation: a simple example

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)

18

+

x

y *

z

𝑓 𝑥, 𝑦, 𝑧
q+

p

Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Backpropagation: a simple example

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4

19
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q+

p

Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Exercise: Compute !"
!#

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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𝑝 = 𝑥 + 𝑦	 ⇒
𝜕𝑝
𝜕𝑥 = 1

𝑞 = 𝑥 + 𝑧	 ⇒
𝜕𝑞
𝜕𝑥

= 1
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= 1 ∗ −6 + 1 ∗ 3 = −3
Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Exercise: Compute !"
!$

21

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4

+

x

y *

z

𝑓 𝑥, 𝑦, 𝑧
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𝑝 = 𝑥 + 𝑦	 ⇒
𝜕𝑝
𝜕𝑦 = 1
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𝜕𝑞
𝜕𝑦
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= 1 ∗ −6 + 0 ∗ 3 = −6
Each node is an intermediate variable. 
Computation graph (a DAG) with variable 
ordering from topological sort 
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Exercise: Compute !"
!%

22

• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Computation graph (a DAG) with variable 
ordering from topological sort 
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Issues?

• If a model has 𝑛 input variables, we need 𝑛 forward passes to compute the 
gradient with respect to each input

• Deep learning models have large number of inputs (e.g., billions or up to 
trillions of trainable weights)

• Solution: reverse mode AutoDiff  

23
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Reverse Mode Automatic Differentiation

• For each node 𝑣, we introduce an adjoint node 𝑣̅	corresponding to the 
gradient of output wrt to this node :;:<

• Compute nodes’ gradients in a reverse topological order

24
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• 𝑙 = 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 (𝑥 + 𝑧)
• E.g., x = -2, y = 5, z = -4
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Discuss: Backpropagation v.s. Reverse AutoDiff

32
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Discuss: Backpropagation v.s. Reverse AutoDiff

• Complexity: backpropagation requires a forward-backward pass for each 
variable, while reverse AutoDiff only requires one forward-backward pass

• Optimization: reverse AutoDiff represents the forward-backward in a 
single computation graph, make it easier to apply graph-level optimizations

• Higher order derivatives: we can take derivative of derivative nodes in 
reserve AutoDiff, while it’s much harder to do so in backpropagation

33
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Higher Order Derivatives

34
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Reverse AutoDiff Implementation

35
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Forward/Backward Implementation

36
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Manual Gradient Checking: Numeric Gradient

• How do we check the correctness of our implementation?

• For small 𝛿, :=:B! ≈
= BEFB! G=(BGFB!)

HF
• Pros: easy to implement 
• Cons: approximate and very expensive to compute; need to recompute 
𝑙 𝑥 + 𝛿𝑥I  for every parameter

• Useful for checking the correctness of our implementation; serve as 
unit test in today’s DNN systems

37
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Summary

We have learnt a core technique of deep learning 🎊

• Forward pass: apply model to a batch of input samples and run 
calculation through operators and save intermediate results

• Backward pass: run the model in reverse and apply chain rule to compute 
gradients

• Weight update: use the gradients to update model weights

38
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Understand Our Applications: 
An Overview of Deep Learning Models

39

• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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CNNs are widely used in vision tasks

40

Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Recap: Convolution

• Convolve the filter with the image: slide over the image spatially and 
compute dot products

41
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CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

42[Zeiler and Fergus 2013]
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MLSys Challenges in CNNs: 
Increasing Computational Requirements

43
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MLSys Challenges in CNNs: 
Increasing Computational Requirements
• Computational cost: convolutions are extremely compute-intensive
• Memory requirement: high-resolution images cannot fit in a single GPU

• Solution: parallelize training across GPUs
• Lecture 24: Data Parallelism for Distributed Training
• Lecture 25: Pipeline and Model Parallelism for Distributed Training

44
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Understand Our Applications: 
An Overview of Deep Learning Models

45

• Convolutional Neural Networks: vision tasks
• Recurrent Neural Networks
• Transformer
• Graph Neural Networks
• Mixture-of-Experts
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Recurrent Neural Networks: Process Sequences

46

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

47

e.g., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

48

e.g., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences

49

Video captioning: sequence of 
video frames -> sequence of words
Machine translation

Video classification 
on frames
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Recurrent Neural Networks

50

outputs[i]

Recurrent 
Neural 

Networks

inputs[i]

Key idea: RNNs have an 
internal state that is 
updated as a sequence 
is processed

Arbitrary number of outputs

Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

• Computation graphs must be direct acyclic graphs (DAGs) but RNNs have 
self loops

• Solution: unrolling RNNs (define maximum depth)

51
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When do we need RNNs?

• RNNs are designed to process sequences (texts, videos)
• RNNs are extremely useful when you want your model to have internal 

states when a sequence is processed
• Commonly used in reinforcement learning (RL)

52
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Inefficiency in RNNs?

• Problem: lack of parallelizability. Both forward and backward passes have 
O(sequence length) unparallelizable operators

• A state cannot be computed before all previous states have been 
computed

• Inhibits training on very long sequences

53
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Understand Our Applications: 
An Overview of Deep Learning Models

54

• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts
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GPT-4 Demo
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Transformer: Self-Attention Mechanism for Language 
Models
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Ashish Vaswani et. al. Attention is all you need.
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Self-Attention

58Slide credit: Jay Allamar

• Mapping a query and a set of key-value pairs to an output
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Self-Attention

59Slide credit: Jay Allamar

• Mapping a query and a set of 
key-value pairs to an output



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

• Multiple matrix multiplications

60Slide credit: Jay Allamar

𝑨 𝑸,𝑲, 𝑽 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
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Self-Attention
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Multi-Head Self-Attention

• Parallelize attention layers with different linear transformations on input 
and output

• Benefits: more parallelism, reduced computation cost
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Multi-Head Self-Attention
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𝒁𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊𝑻

𝒅
𝑽𝒊

𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸,𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒁𝟎, … , 𝒁𝟕 𝑾𝒐
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Why Transformers is More Computationally Efficient 
Than RNNs

• Enable parallelism within a 
sequence

• lack of parallelizability
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Understand Our Applications: 
An Overview of Deep Learning Models
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• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformers
• Graph Neural Networks
• Mixture-of-Experts



Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Graph Neural Networks: The Hottest Subfield in ML
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GNNs: Neural Networks on Relational Data
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Neural Networks Graph Neural Networks
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A

DNN Operations

Aggregation
(sum, LSTM, …)

Neighbor Aggregation

Graph Neural Network Architecture

• Combine graph propagation w/ neural network operations
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Challenges of GNN Computations on GPUs
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Good efficiency 

Small and regular 
intermediate data 

Large and irregular 
intermediate data

Efficiency & 
scalability 
challenges

Neural Networks Graph Neural Networks
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How to Design Systems for Graph Neural Networks

• New Programming Models: gather-apply-scatter programming interface 
for distributed GNN

• New Systems Infrastructure: serverless computing for low-cost GNN 
training
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Recap: An Overview of Deep Learning Models

• Convolutional neural networks: various computer vision tasks
• Recurrent neural networks: processing sequences
• Transformers: efficient natural language processing
• Graph neural networks: deep learning on relational data

• A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ``clever’’ integration of DNN techniques
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