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The Success of Machine Learning Today
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Most ML techniques invented in 1980s and 1990s
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Why didn’t the success of ML happen in 1990s?

Adapted from TQ’s slide



The Rise of ML and Neural Networks

1980s and 1990s
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Scale (data size, model size)

Adapted from Jeff Dean, HotChips 2017



The Rise of ML and Neural Networks

Now
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Big data arrives in early 2000

kaggle

IM&AGENET

fIiCkr MTurk

The Free Encyclopedia
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Large-scale training datasets become available



Al hardware becomes widely available in 2010s

TensorCore

Public SANVIDIA.
cloud CUDA.

2006 2007 2016 2017 2019

Distributed Heterogeneous Hardware Platforms



The Secret Ingredients in ML Success

ResNet, Transformers, Graph Neural
Networks, Mixture-of-Experts, ...

GPUs, TPUs, Tensor Cores,
ImageNet, Kaggle, Supercomputers, Graph Cores,

Flickr, NetFlix, ...



Today’s Topics

« Stochastic Gradient Descent
« Backpropagation and Automatic Differentiation
* An Overview of Deep Neural Networks



Deep Neural Network

 Collection of simple trainable mathematical units that work together to
solve complicated tasks

A tensor (i.e., n-dimensional array)

A tensor algebra operator
(e.g., convolution, matrix mul)
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DNN Training Overview

layerl layer2

extractor extractor predictor
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce error for
each trainable weight

. use the loss value to update model weights

Model inputs 108 Model prediction

ooooooo
CCCCCC
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the loss value to update model weights
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Gradient Descent (GD)

Train ML models through many iterations of 3 stages

. apply model to a batch of input samples and run
calculation through operators to produce a prediction

. run the model in reverse to produce a gradient
for each trainable weight

. use the gradients to update model weights
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Stochastic Gradient Descent (SGD)

* Inefficiency in gradient descent
* Too expensive to compute gradients for all training samples

« Especially for todays large-scale training datasets (e.g., ImageNet-22K
with 14 million images)

o alw) Y = 9l (w) oy 2 9l (w)
WY T T YT N L T aw, LT p L aw,
f]

/ -
N is the size of the

entire training dataset b is called batch size
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Content

« Stochastic Gradient Descent

 How to compute gradients: Backpropagation and Automatic
Differentiation

* Understand Our Applications: An Overview of Neural Networks
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How to compute gradients? Backpropagation

e Sum rule

d(f(x) + g(x)) df(x) N dg(x)
dx  dx dx

 Product rule

d d d
(f(x;f(x)) _ J;ix)g ) + iix) )

 Chain rule

df(g(x)) df(y)dg(x)
dx dy dx
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Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
p
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort
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Backpropagation: a simple example

* foy,z)=(x+y)(x+2z) X
cEg.,x=-2,y=5z=-4 0
y —
f(x,y,2)
q
Z

Each node is an intermediate variable.
Computation graph (a DAG) with variable
ordering from topological sort
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Exercise: Compute —

* f,y,z) = (x+y)(x+2z)
Eg,x=-2,y=52z=4

= x + :ap—1
p=xTYy O
—xtz 2o
q=xrz ox

X
P
y————
9
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Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble
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Exercise: Compute o

oy
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Each node is an intermediate variable.
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Exercise: Compute -~

fl,y,z) = (x+y)(x +2)
Eg,x=-2,y=52z=4

=x+ =>ap—0
p=xTy =57
=x+ :>6q_1
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f=pxq =" =2"*q+5 *p
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Each node is an intermediate variable.
Computation graph (a DAG) with varia
ordering from topological sort

f(x,y,2)

ble
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Issues?

* If a model has n input variables, we need n forward passes to compute the
gradient with respect to each input

« Deep learning models have large number of inputs (e.g., billions or up to
trillions of trainable weights)

« Solution: reverse mode AutoDiff
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Reverse Mode Automatic Differentiation

* For each node v, we introduce an adjoint node v corresponding to the
of

gradient of output wrt to this node P

« Compute nodes’ gradients in a reverse topological order
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dl 0l 0l
ox’' 0y’ 0z’

Exercise: Compute

cl=fy2)=x+y)(x+2z)
+Eg.,x=-2,y=5,z=-4
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Exercise: Compute

cl=fxy2)=x+y)(x+2)
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Exercise: Compute
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Exercise: Compute ox' 3y’ 92"
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. ol ol

Exercise: Compute x5y 92"

cl=fxy2)=x+y)(x+2)
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Forward
computation
graph

Backward
computation
graph
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Discuss: Backpropagation v.s. Reverse AutoDiff

Backpropagation Reverse AutoDiff

dp

What is the difference between
backpropagation and reverse AutoDiff?

32



Discuss: Backpropagation v.s. Reverse AutoDiff

. backpropagation requires a forward-backward pass for each
variable, while reverse AutoDiff only requires one forward-backward pass

. reverse AutoDiff represents the forward-backward in a
single computation graph, make it easier to apply graph-level optimizations

. we can take derivative of derivative nodes in
reserve AutoDiff, while it's much harder to do so in backpropagation
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Higher Order Derivatives

Forward
Graph

First-Order
Derivative
Graph
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Reverse AutoDiff Implementation

class ComputationalGraph(object):

o

def

def

forward(inputs):

# 1. [pass inputs to input gates...]

# 2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward() :

for gate in reversed(self.graph.nodes topologically sorted()):
gate.backward() # little piece of backprop (chain rule applied)

return inputs gradients
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Forward/Backward Implementation

y
(X,y,z are scalars)

class MultiplyGate(object):

def

def

forward(x,y):

Z = X*y

self.x = x # must keep these around!
self.y = y

return z

backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]
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Manual Gradient Checking: Numeric Gradient

 How do we check the correctness of our implementation?

l _ U(x+6x;)—1(x—6%;)
' 9x; 268
. easy to implement

. . approximate and very expensive to compute; need to recompute
[(x + 6x;) for every parameter

« Useful for checking the correctness of our implementation; serve as
unit test in today’s DNN systems

* For small §
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Summary

- '\ﬂ"/,

(35)

. apply model to a batch of input samples and run
calculation through operators and save intermediate results

. run the model in reverse and apply chain rule to compute

gradients
. use the gradients to update model weights
b
OL(w) = 91, (w) Y~ 0L (w)
W; = W; — = W: ~ W: — —
=W e lN Iw, LT p L ow,

Jj=1 Jj=1
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Understand Our Applications:
An Overview of Deep Learning Models

« Convolutional Neural Networks
* Recurrent Neural Networks
 Transformers

 Graph Neural Networks

* Mixture-of-Experts
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CNNSs are widely used in vision tasks

beach wagon
fire engine | dead-man's-fingers

Classification

E

S0

Segmentation Self-Driving Synthesis
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Recap: Convolution

« Convolve the filter with the image: slide over the image spatially and
compute dot products

Source pixel {
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CNNs

« A sequence of convolutional layers, interspersed by pooling, normalization,

and activation functions

[Zeiler and Fergus 2013]

@

VGG-16

Low-level
features

Mid-level
features

High-level
features

Linearly
separable
classifier

onv1_1
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MLSys Challenges in CNNs:
Increasing Computational Requirements
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MLSys Challenges in CNNs:
Increasing Computational Requirements

. convolutions are extremely compute-intensive
. high-resolution images cannot fit in a single GPU

. parallelize training across GPUs
 Lecture 24: Data Parallelism for Distributed Training
 Lecture 25: Pipeline and Model Parallelism for Distributed Training
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Understand Our Applications:
An Overview of Deep Learning Models

e Recurrent Neural Networks

45



Recurrent Neural Networks: Process Sequences

one to one

\

Vanilla Neural Networks
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Recurrent Neural Networks: Process Sequences

one to one one to many
! . O
! f

\

e.d., image captioning
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! . f
! f Pt

e.d., action prediction
sequence of video frames -> action
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

Video captioning: sequence of /

video frames -> sequence of words Video classification
Machine translation on frames
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Recurrent Neural Networks

outputsli] Arbitrary number of outputs

Key idea: RNNs have an
Recurrent > internal state that is
Neural
Networks updated as a sequence
is processed

T

inputsi] Arbitrary number of inputs
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How to Represent RNNs in Computation Graphs

« Computation graphs must be direct acyclic graphs (DAGs) but RNNs have
self loops

» Solution: unrolling RNNs (define maximum depth)

output, output; output, output,

~&~ ﬁ& %
state T state, state, T state, T

input, input; input; input,
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When do we need RNNs?

 RNNs are designed to process sequences (texts, videos)

 RNNs are extremely useful when you want your model to have internal
states when a sequence is processed

« Commonly used in reinforcement learning (RL)
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Inefficiency in RNNs?

* Problem: lack of parallelizability. Both forward and backward passes have
O(sequence length) unparallelizable operators

A state cannot be computed before all previous states have been
computed

* Inhibits training on very long sequences

output, output, output, output,

state, state, #m# m#

input, input; input; input,




Understand Our Applications:
An Overview of Deep Learning Models

e Transformers
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How should | plan to learn CMU's parallel programming and architecture course?

( ; P I 4 D e m O Learning CMU's parallel programming and architecture course requires a structured

approach to ensure that you cover all the necessary concepts and materials effectively.

Here are some steps you can take to plan your learning:

1. Familiarize yourself with the course materials: Go through the course syllabus, lecture
notes, and assignments to get an idea of what the course covers and the topics you
need to learn.

2. Identify your learning objectives: Determine what you want to achieve from taking this

course. Are you looking to gain a deeper understanding of parallel programming or

This report focuses on the capabilities, limitations, and safety properties of GPT-4. GPT-4 is a
Transformer-style model [33] pre-trained to predict the next token in a document, using both publicly
available data (such as internet data) and data licensed from third-party providers. The model was
then fine-tuned using Reinforcement Learning from Human Feedback (RLHF) [34]. Given both
the competitive landscape and the safety implications of large-scale models like GPT-4, this report
contains no further details about the architecture (including model size), hardware, training compute,
dataset construction, training method, or similar.

to seek help. You can reach out to your professor, teaching assistants, or classmates
for assistance.

7. Practice coding: Parallel programming involves coding, so it's important to practice
coding examples to improve your skills.

8. Review and reflect: Periodically review what you have learned, and reflect on how you
can apply the concepts in practice. This will help you retain the information better and

build a deeper understanding of the course material.

Remember that learning is a process, and it takes time and effort to master new concepts.
By following these steps and staying committed to your learning goals, you can effectively

learn CMU's parallel programming and architecture course.
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Transformer: Self-Attention Mechanism for Language
Models
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Self-Attention

« Mapping a query and a set of key-value pairs to an output

Slide credit: Jay Allamar

Input

Embedding [ ] ‘ {
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Self-Attention

* Mapping a query and a set of
key-value pairs to an output

Slide credit: Jay Allamar

Input
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Keys
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Divide by 8 ( Vd; )
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X
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Thinking

Machines
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Self-Attention

* Multiple matrix multiplications

o B . A(Q,K,V) = softmax <Q—KT> |4
X — m
X WK K Key words
e
’ . 2
55
S
3
X WV v Lyl

Slide credit: Jay Allamar



Self-Attention
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Multi-Head Self-Attention

 Parallelize attention layers with different linear transformations on input
and output

* Benefits: more parallelism, reduced computation cost

stuck tongue licked its owner

/\/’\./\./\./\./\./\ %

Y Y Y YV VYVY

The cat stuck out its tongue and licked its owner

62



Multi-Head Self-Attention

| e,

Z; =AQ; K;,V;) =softmax <QiKiT> V;
l U U L \/H i
Z = MultiHead(Q,K,V) = Concat(Z,, ..., Z;)W?°
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Why Transformers is More Computationally Efficient
Than RNNs

« Enable parallelism within a * lack of parallelizability
sequence

Attenti
Layer 1 state, T state, T state, T state, T

h; h,

h;
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Understand Our Applications:
An Overview of Deep Learning Models

Graph Neural Networks
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Graph Neural Networks: The Hottest Subfield in ML

ICLR Keyword Growth 2018-2020

graph neural network

adversarial robustness
robustness
meta-learning
transformer

neural architecture search

self-supervised learning

bert
B 2019
— mm 2020

continual learning

0.0000 0.0025 0.0050 0.0075 0.0100
% of keywords
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GNNs: Neural Networks on Relational Data

Neural Networks Graph Neural Networks
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Graph Neural Network Architecture

 Combine graph propagation w/ neural network operations

Input
Representations

New
Representations

@ Target vertex
@ Neighbors

Aggregation
(sum, LSTM, ...)

Neighbor Aggregation DNN Operations
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Challenges of GNN Computations on GPUs

Neural Networks

input layer

hidden layer 1 hidden layer 2

¥

Small and regular
intermediate data

@ Good efficiency

Graph Neural Networks

-

Output

L RelU ReLU

:
.

X -

Large and irregular
intermediate data

Efficiency &

@ scalability
challenges
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How to Design Systems for Graph Neural Networks

* New Programming Models: gather-apply-scatter programming interface
for distributed GNN

* New Systems Infrastructure: serverless computing for low-cost GNN
training
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Recap: An Overview of Deep Learning Models

« Convolutional neural networks: various computer vision tasks
* Recurrent neural networks: processing sequences

» Transformers: efficient natural language processing

« Graph neural networks: deep learning on relational data

» A key takeaway: DNN techniques are not applied in isolation. Solving real-
world problems require ""clever” integration of DNN techniques

76



