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Recap: Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…
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1. Partition training data into batches 2. Compute the gradients of 

each batch on a GPU 

Gradients 

Aggregation

3. Aggregate gradients 

across GPUs
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Recap: An Issue with Data Parallelism

• Each GPU saves a replica of the 
entire model

• Cannot train large models that 
exceed GPU device memory

6

GPU 1

GPU 2

GPU N

…

Gradients 
Aggregation
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GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices
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GPU 2

ML Model

Training Dataset

Model 

Parallelism
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Device Placement for Model Parallelism is Challenging

8

Model parallelism: training a recurrent neural network on 4 GPUs 

Model parallelism: training a conventional neural network on 4 GPUs 
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Using ML to Optimize Device Placement for ML

9Device placement optimization with reinforcement learning. A Mirhoseini et al.

RL Agent

Parallel 

Machine

Device 

Placement
Runtime

Performance

ColocRL’s neural architecture
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Combine Data and Model Parallelism

10
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Tensor Model Parallelism

• Partition parameters/gradients within a layer
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Wx xy =

GPU 1

W1x xy1 =

GPU 2

W2x x=

Tensor Model Parallelism (partition output)

y2

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=

Tensor Model Parallelism (reduce output)

𝑦 = 𝑦1 + 𝑦2

y2 x2

+

input parametersoutput
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GPU 1

Comparing Data and Tensor Model Parallelism

12
𝑦 = 𝑊𝑥Data parallelism

W
x1 xy1 =

GPU 2

W
x2

x
y2

=

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

𝐵

2

Forward 

Processing

Backward 

Propagation

Gradients 

Sync

0 0 2 ∗ 𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛

Communication Cost of Data Parallelism
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Comparing Data and Tensor Model Parallelism

13

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

Forward 

Processing

Backward 

Propagation

Gradients 

Sync

𝐵 ∗ 𝐶𝑖𝑛 𝐵 ∗ 𝐶𝑖𝑛 0

Communication Cost of Tensor Model Parallelism

GPU 1
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GPU 2

W2x x=y2

𝐵
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Tensor Model Parallelism (partition output)
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Comparing Data and Tensor Model Parallelism

14

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

Forward 
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Gradients 

Sync
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Communication Cost of Tensor Model Parallelism

GPU 1
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GPU 2

W2
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+

Tensor Model Parallelism (Reduce output)

𝑦 = 𝑦1 + 𝑦2
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Comparing Data and Tensor Model Parallelism

• Data parallelism: 𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛

• Tensor model parallelism (partition output): 𝐵 ∗ 𝐶𝑖𝑛

• Tensor model parallelism (reduce output): 𝐵 ∗ 𝐶𝑜𝑢𝑡

• The best strategy depends on the model and underlying machine

15
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Example: Convolutional Neural Networks

16

Classification Retrieval Detection

Segmentation Self-Driving Synthesis
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Convolution

17

• Convolve the filter with the image: slide over the image spatially and 
compute dot products
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CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, 
and activation functions

18[Zeiler and Fergus 2013]
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Parallelizing Convolutional Neural Networks

• Convolutional layers

• 90-95% of the computation
• 5% of the parameters

• Very large intermediate activations

• Fully-connected layers
• 5-10% of the computation

• 95% of the parameters
• Small intermediate activations

• Discussion: how to parallelize CNNs?

19

Data parallelism

Tensor model parallelism
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Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers

20
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Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding

21
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Ashish Vaswani et. al. Attention is all you need.
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A Single Transformer Layer

22

Fully-Connected Layers

Self-Attention Layers
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Parallelizing Fully-Connected Layers in Transformers

23

𝒀 = 𝑮𝒆𝑳𝑼 𝑿 × 𝑨
𝒁 = 𝑫𝒓𝒐𝒑𝒐𝒖𝒕 𝒀 × 𝑩

Tensor model parallelism 

(partition output)

Tensor model parallelism 

(reduce output)

identity layer
reduction layer

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.
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Self-Attention

24Slide credit: Jay Allamar

• Mapping a query and a set of key-value pairs to an output
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Self-Attention

25Slide credit: Jay Allamar

• Mapping a query and a set of 
key-value pairs to an output
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Self-Attention

26Slide credit: Jay Allamar
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Self-Attention

27
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Multi-Head Self-Attention

• Parallelize attention layers with different linear transformations on input 
and output

• Benefits: more parallelism, reduced computation cost

28
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Multi-Head Self-Attention

29

𝒁𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊

𝑻

𝒅
𝑽𝒊

𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸, 𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒁𝟎, … , 𝒁𝟕 𝑾𝒐
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Parallelizing Self-Attention Layers in Transformers

30Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

𝒀𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊

𝑻

𝒅
𝑽𝒊

𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸, 𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒀𝟎, … , 𝒀𝒉 𝑾𝒐

Parallelizing across 

attention heads

Tensor model parallelism

(reduce output)
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Parallelizing Transformers

31Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism
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How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

32
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An Issue with Model Parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization

33

op1

op2

op3

op4
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Pipeline Model Parallelism

• Mini-batch: the number of 
samples processed in each 
iteration

• Divide a mini-batch into 
multiple micro-batches

• Pipeline the forward and 
backward computations 
across micro-batches

34

Model Parallelism

Pipeline Model Parallelism
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Pipeline Model Parallelism: Device Utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/ 𝑡𝑏 to process a forward (backward) micro-batch

35GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓

𝑝

𝑚 ∗ 𝑡𝑏𝑝 − 1 ∗ (𝑡𝑓+𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃) 

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎
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Improving Pipeline Parallelism Efficiency

• 𝑚 : number of micro-batches in a mini-batch 
• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes 
reduce GPU utilization

• 𝑝: number of pipeline stages 
• Decrease pipeline depth

• Caveat: increase stage size

36GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓

𝑝

𝑚 ∗ 𝑡𝑏𝑝 − 1 ∗ (𝑡𝑓+𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃) 

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎
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Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

37GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we improve the pipeline schedule to reduce 

memory requirement?
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Pipeline Parallelism with 1F1B Schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble

38

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

# in-flight mciro-batches = 4# in-flight mciro-batches = 8

Can we reduce pipeline bubble?
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Pipeline Parallelism with Interleaved 1F1B Schedule

• Further divide each stages into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is 
𝑡𝑓

𝑣
 (

𝑡𝑏

𝑣
)

39

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗

(𝒕𝒇+𝒕𝒃)
𝒗

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second 

chunk.

Reduce bubble time at the cost increased communication
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Pipeline Parallelism with Interleaved 1F1B Schedule

40

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏

𝒎

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Pipeline parallelism with 

1F1B Schedule

Pipeline parallelism with 

interleaved 1F1B Schedule
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Summary: Comparing Data/Model/Pipeline Parallelism

41

Data Parallelism Model Parallelism Pipeline Parallelism

✓ Massively parallelizable

✓ Require no communication during 

forward/backward

✓ Support training large models

✓ Efficient for models with large 

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

❖ Do not work for models that cannot 

fit on a GPU

❖ Do not scale for models with large 

numbers of parameters

❖ Limited parallelizability; cannot 

scale to large numbers of GPUs

❖ Need to transfer intermediate 

results in forward/backward

❖ Limited utilization: bubbles in 

forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

� ≔ � − � ∇� � = � −
�

�
∇� ( � )

Gradients 
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model 

Parallelism

� ≔ � − � ∇� � = � −
�

�
∇� ( � )
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Summary: Data/Model/Pipeline Parallelism

42

Data Parallelism Model Parallelism Pipeline Parallelism

✓ Massively parallelizable

✓ Require no communication during 

forward/backward

✓ Support training large models

✓ Efficient for models with large 

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

❖ Do not work for models that cannot 

fit on a GPU

❖ Do not scale for models with large 

numbers of parameters

❖ Limited parallelizability; cannot 

scale to large numbers of GPUs

❖ Need to transfer intermediate 

results in forward/backward

❖ Limited utilization: bubbles in 

forward/backward

Pros
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Training large models requires combining data/model/pipeline 

and other parallelization techniques
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Example: 3D parallelism in DeepSpeed

43https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
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