
Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Lecture 25:
Parallel Deep Learning

(Model & Pipeline Parallelism)

Parallel Computer Architecture and Programming

CMU 15-418/15-618, Fall 2024

1
11/1/2024

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: Data Parallelism

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

5

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

1. Partition training data into batches 2. Compute the gradients of

each batch on a GPU

Gradients

Aggregation

3. Aggregate gradients

across GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Recap: An Issue with Data Parallelism

• Each GPU saves a replica of the
entire model

• Cannot train large models that
exceed GPU device memory

6

GPU 1

GPU 2

GPU N

…

Gradients
Aggregation

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

7

GPU 2

ML Model

Training Dataset

Model

Parallelism

𝑤𝑖 ≔ 𝑤𝑖 − 𝛾∇𝐿 𝑤𝑖 = 𝑤𝑖 −
𝛾

𝑛

𝑗=1

𝑛

∇𝐿𝑗(𝑤𝑖)

Transfer

intermediate

results

between

devices

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Device Placement for Model Parallelism is Challenging

8

Model parallelism: training a recurrent neural network on 4 GPUs

Model parallelism: training a conventional neural network on 4 GPUs

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Using ML to Optimize Device Placement for ML

9Device placement optimization with reinforcement learning. A Mirhoseini et al.

RL Agent

Parallel

Machine

Device

Placement
Runtime

Performance

ColocRL’s neural architecture

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Combine Data and Model Parallelism

10

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Tensor Model Parallelism

• Partition parameters/gradients within a layer

11

Wx xy =

GPU 1

W1x xy1 =

GPU 2

W2x x=

Tensor Model Parallelism (partition output)

y2

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=

Tensor Model Parallelism (reduce output)

𝑦 = 𝑦1 + 𝑦2

y2 x2

+

input parametersoutput

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

GPU 1

Comparing Data and Tensor Model Parallelism

12
𝑦 = 𝑊𝑥Data parallelism

W
x1 xy1 =

GPU 2

W
x2

x
y2

=

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛

𝐵

2

Forward

Processing

Backward

Propagation

Gradients

Sync

0 0 2 ∗ 𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛

Communication Cost of Data Parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing Data and Tensor Model Parallelism

13

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

Forward

Processing

Backward

Propagation

Gradients

Sync

𝐵 ∗ 𝐶𝑖𝑛 𝐵 ∗ 𝐶𝑖𝑛 0

Communication Cost of Tensor Model Parallelism

GPU 1

W1x xy1 =

GPU 2

W2x x=y2

𝐵

𝐶𝑖𝑛

Tensor Model Parallelism (partition output)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing Data and Tensor Model Parallelism

14

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
𝐵 Wx xy =

Forward

Processing

Backward

Propagation

Gradients

Sync

2 ∗ 𝐵 ∗ 𝐶𝑜𝑢𝑡 0 0

Communication Cost of Tensor Model Parallelism

GPU 1

W1

x1 xy1 =

GPU 2

W2

x=y2 x2

+

Tensor Model Parallelism (Reduce output)

𝑦 = 𝑦1 + 𝑦2

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Comparing Data and Tensor Model Parallelism

• Data parallelism: 𝐶𝑜𝑢𝑡 ∗ 𝐶𝑖𝑛

• Tensor model parallelism (partition output): 𝐵 ∗ 𝐶𝑖𝑛

• Tensor model parallelism (reduce output): 𝐵 ∗ 𝐶𝑜𝑢𝑡

• The best strategy depends on the model and underlying machine

15

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Convolutional Neural Networks

16

Classification Retrieval Detection

Segmentation Self-Driving Synthesis

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Convolution

17

• Convolve the filter with the image: slide over the image spatially and
compute dot products

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization,
and activation functions

18[Zeiler and Fergus 2013]

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallelizing Convolutional Neural Networks

• Convolutional layers

• 90-95% of the computation
• 5% of the parameters

• Very large intermediate activations

• Fully-connected layers
• 5-10% of the computation

• 95% of the parameters
• Small intermediate activations

• Discussion: how to parallelize CNNs?

19

Data parallelism

Tensor model parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallelizing Convolutional Neural Networks

• Data parallelism for convolutional layers

• Tensor model parallelism for fully-connected layers

20

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding

21

E
n
c
o

d
e
r

D
e

c
o
d
e

r

Ashish Vaswani et. al. Attention is all you need.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

A Single Transformer Layer

22

Fully-Connected Layers

Self-Attention Layers

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallelizing Fully-Connected Layers in Transformers

23

𝒀 = 𝑮𝒆𝑳𝑼 𝑿 × 𝑨
𝒁 = 𝑫𝒓𝒐𝒑𝒐𝒖𝒕 𝒀 × 𝑩

Tensor model parallelism

(partition output)

Tensor model parallelism

(reduce output)

identity layer
reduction layer

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

24Slide credit: Jay Allamar

• Mapping a query and a set of key-value pairs to an output

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

25Slide credit: Jay Allamar

• Mapping a query and a set of
key-value pairs to an output

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

26Slide credit: Jay Allamar

𝑨 𝑸, 𝑲, 𝑽 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝑲𝑻

𝒅
𝑽

S

Key words

Q
u
e
ry

 w
o

rd
s

L x L

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Self-Attention

27

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Head Self-Attention

• Parallelize attention layers with different linear transformations on input
and output

• Benefits: more parallelism, reduced computation cost

28

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Multi-Head Self-Attention

29

𝒁𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊

𝑻

𝒅
𝑽𝒊

𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸, 𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒁𝟎, … , 𝒁𝟕 𝑾𝒐

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallelizing Self-Attention Layers in Transformers

30Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

𝒀𝒊 = 𝑨 𝑸𝒊, 𝑲𝒊, 𝑽𝒊 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙
𝑸𝒊𝑲𝒊

𝑻

𝒅
𝑽𝒊

𝒁 = 𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅 𝑸, 𝑲, 𝑽 = 𝑪𝒐𝒏𝒄𝒂𝒕 𝒀𝟎, … , 𝒀𝒉 𝑾𝒐

Parallelizing across

attention heads

Tensor model parallelism

(reduce output)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Parallelizing Transformers

31Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

Scale to 512 GPUs by combining data and model parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

How to parallelize DNN Training?

• Data parallelism

• Model parallelism

• Tensor model parallelism

• Pipeline model parallelism

32

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

An Issue with Model Parallelism

• Under-utilization of compute resources

• Low overall throughput due to resource utilization

33

op1

op2

op3

op4

op1

op2

op3

op4

loss

Worker 1

Worker 2

Worker 3

Worker 4

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Model Parallelism

• Mini-batch: the number of
samples processed in each
iteration

• Divide a mini-batch into
multiple micro-batches

• Pipeline the forward and
backward computations
across micro-batches

34

Model Parallelism

Pipeline Model Parallelism

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Model Parallelism: Device Utilization

• 𝑚 : micro-batches in a mini-batch

• 𝑝: number of pipeline stages

• All stages take 𝑡𝑓/ 𝑡𝑏 to process a forward (backward) micro-batch

35GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓

𝑝

𝑚 ∗ 𝑡𝑏𝑝 − 1 ∗ (𝑡𝑓+𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃)

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Improving Pipeline Parallelism Efficiency

• 𝑚 : number of micro-batches in a mini-batch
• Increase mini-batch size or reduce micro-batch size

• Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes
reduce GPU utilization

• 𝑝: number of pipeline stages
• Decrease pipeline depth

• Caveat: increase stage size

36GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

𝑚 ∗ 𝑡𝑓

𝑝

𝑚 ∗ 𝑡𝑏𝑝 − 1 ∗ (𝑡𝑓+𝑡𝑏)

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗ (𝒕𝒇+𝒕𝒃)

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝒑 − 𝟏

𝒎

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of all micro-
batches before back propagation

37GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Can we improve the pipeline schedule to reduce

memory requirement?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism with 1F1B Schedule

• One-Forward-One-Backward in the steady state

• Limit the number of in-flight micro-batches to the pipeline depth

• Reduce memory footprint of pipeline parallelism

• Doesn’t reduce pipeline bubble

38

Pipeline parallelism with GPipe’s schedule Pipeline parallelism with 1F1B schedule

in-flight mciro-batches = 4# in-flight mciro-batches = 8

Can we reduce pipeline bubble?

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism with Interleaved 1F1B Schedule

• Further divide each stages into 𝑣 sub-stages

• The forward (backward) time of each sub-stage is
𝑡𝑓

𝑣
 (

𝑡𝑏

𝑣
)

39

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏 ∗

(𝒕𝒇+𝒕𝒃)
𝒗

𝒎 ∗ 𝒕𝒇 + 𝒎 ∗ 𝒕𝒃
=

𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Each device is assigned two chunks. Dark colors show the first chunk and light colors show the second

chunk.

Reduce bubble time at the cost increased communication

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Pipeline Parallelism with Interleaved 1F1B Schedule

40

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝒑 − 𝟏

𝒎

𝑩𝒖𝒃𝒃𝒍𝒆𝑭𝒓𝒂𝒄𝒕𝒊𝒐𝒏 =
𝟏

𝒗
∗

𝒑 − 𝟏

𝒎

Pipeline parallelism with

1F1B Schedule

Pipeline parallelism with

interleaved 1F1B Schedule

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary: Comparing Data/Model/Pipeline Parallelism

41

Data Parallelism Model Parallelism Pipeline Parallelism

✓ Massively parallelizable

✓ Require no communication during

forward/backward

✓ Support training large models

✓ Efficient for models with large

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

❖ Do not work for models that cannot

fit on a GPU

❖ Do not scale for models with large

numbers of parameters

❖ Limited parallelizability; cannot

scale to large numbers of GPUs

❖ Need to transfer intermediate

results in forward/backward

❖ Limited utilization: bubbles in

forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model

Parallelism

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Summary: Data/Model/Pipeline Parallelism

42

Data Parallelism Model Parallelism Pipeline Parallelism

✓ Massively parallelizable

✓ Require no communication during

forward/backward

✓ Support training large models

✓ Efficient for models with large

numbers of parameters

✓ Support large-batch training

✓ Efficient for deep models

❖ Do not work for models that cannot

fit on a GPU

❖ Do not scale for models with large

numbers of parameters

❖ Limited parallelizability; cannot

scale to large numbers of GPUs

❖ Need to transfer intermediate

results in forward/backward

❖ Limited utilization: bubbles in

forward/backward

Pros

Cons

ML Model

Training Dataset

GPU 1

GPU 2

GPU N

…

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Gradients
Aggregation

GPU 1

GPU 2

ML Model

Training Dataset

Model

Parallelism

� ≔ � − � ∇� � = � −
�

�
∇� (�)

Training large models requires combining data/model/pipeline

and other parallelization techniques

Automated Approaches to Accelerate Machine Learning Zhihao Jia | Stanford University

Example: 3D parallelism in DeepSpeed

43https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

D
a

ta
 P

a
ra

lle
lis

m

Pipeline Model Parallelism

T
e
n

s
o
r

M
o
d
e

l
P

a
ra

lle
lis

m

	Slide 1: Lecture 25: Parallel Deep Learning (Model & Pipeline Parallelism)
	Slide 5: Recap: Data Parallelism
	Slide 6: Recap: An Issue with Data Parallelism
	Slide 7: Model Parallelism
	Slide 8: Device Placement for Model Parallelism is Challenging
	Slide 9: Using ML to Optimize Device Placement for ML
	Slide 10: Combine Data and Model Parallelism
	Slide 11: Tensor Model Parallelism
	Slide 12: Comparing Data and Tensor Model Parallelism
	Slide 13: Comparing Data and Tensor Model Parallelism
	Slide 14: Comparing Data and Tensor Model Parallelism
	Slide 15: Comparing Data and Tensor Model Parallelism
	Slide 16: Example: Convolutional Neural Networks
	Slide 17: Convolution
	Slide 18: CNNs
	Slide 19: Parallelizing Convolutional Neural Networks
	Slide 20: Parallelizing Convolutional Neural Networks
	Slide 21: Example: Parallelizing Transformers
	Slide 22: A Single Transformer Layer
	Slide 23: Parallelizing Fully-Connected Layers in Transformers
	Slide 24: Self-Attention
	Slide 25: Self-Attention
	Slide 26: Self-Attention
	Slide 27: Self-Attention
	Slide 28: Multi-Head Self-Attention
	Slide 29: Multi-Head Self-Attention
	Slide 30: Parallelizing Self-Attention Layers in Transformers
	Slide 31: Parallelizing Transformers
	Slide 32: How to parallelize DNN Training?
	Slide 33: An Issue with Model Parallelism
	Slide 34: Pipeline Model Parallelism
	Slide 35: Pipeline Model Parallelism: Device Utilization
	Slide 36: Improving Pipeline Parallelism Efficiency
	Slide 37: Pipeline Model Parallelism: Memory Requirement
	Slide 38: Pipeline Parallelism with 1F1B Schedule
	Slide 39: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 40: Pipeline Parallelism with Interleaved 1F1B Schedule
	Slide 41: Summary: Comparing Data/Model/Pipeline Parallelism
	Slide 42: Summary: Data/Model/Pipeline Parallelism
	Slide 43: Example: 3D parallelism in DeepSpeed

