Lecture 25: Parallel Deep Learning (Model & Pipeline Parallelism)

Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2024

1

1. Partition training data into batches 2. Compute the gradients of

each batch on a GPU

3. Aggregate gradients across GPUs

Recap: An Issue with Data Parallelism

- Each GPU saves a replica of the entire model
- Cannot train large models that exceed GPU device memory

Model Parallelism

• Split a model into multiple subgraphs and assign them to different devices

Device Placement for Model Parallelism is Challenging

Model parallelism: training a recurrent neural network on 4 GPUs

Using ML to Optimize Device Placement for ML

Combine Data and Model Parallelism

Tensor Model Parallelism

• Partition parameters/gradients *within* a layer

Tensor Model Parallelism (partition output)

Tensor Model Parallelism (partition output)

Comparing Data and Tensor Model Parallelism \mathcal{C}_{out}

 \mathbf{y} **=** \mathbf{x} **x** W \mathbf{y}

Communication Cost of Tensor Model Parallelism

Comparing Data and Tensor Model Parallelism

- Data parallelism: $C_{out} * C_{in}$
- Tensor model parallelism (partition output): $B * C_{in}$
- Tensor model parallelism (reduce output): $B * C_{out}$
- **The best strategy depends on the model and underlying machine**

Example: Convolutional Neural Networks

Classification Classification Retrieval Retrieval Detection

Segmentation Self-Driving Segmentation Synthesis

Convolution

• Convolve the filter with the image: slide over the image spatially and compute dot products

CNNs

• A sequence of convolutional layers, interspersed by pooling, normalization, and activation functions

Parallelizing Convolutional Neural Networks

- Convolutional layers
	- 90-95% of the computation
	- 5% of the parameters
	- Very large intermediate activations
- Fully-connected layers
	- 5-10% of the computation
	- 95% of the parameters
	- Small intermediate activations

• **Discussion: how to parallelize CNNs?**

Data parallelism

Tensor model parallelism

Parallelizing Convolutional Neural Networks

- Data parallelism for convolutional layers
- Tensor model parallelism for fully-connected layers

Example: Parallelizing Transformers

• Transformer: attention mechanism for language understanding

Ashish Vaswani et. al. Attention is all you need.

Parallelizing Fully-Connected Layers in Transformers

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

• Mapping a query and a set of key-value pairs to an output

• Mapping a query and a set of key-value pairs to an output

$$
A(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d}}\right)V
$$

L x L

Slide credit: Jay Allamar 26

Multi-Head Self-Attention

- Parallelize attention layers with different linear transformations on input and output
- **Benefits: more parallelism, reduced computation cost**

Multi-Head Self-Attention

Parallelizing Self-Attention Layers in Transformers $Y_i = A(Q_i, K_i, V_i) = softmax$ $Q_i K_i^T$ \boldsymbol{d} $\boldsymbol{V}_{\boldsymbol{i}}$ $Z = Multihead(Q, K, V) = Concat(Y_0, ..., Y_h)W^0$

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 30

Parallelizing Transformers

Scale to 512 GPUs by combining data and model parallelism

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. 31

How to parallelize DNN Training?

- Data parallelism
- Model parallelism
- Tensor model parallelism
- **Pipeline model parallelism**

An Issue with Model Parallelism

- Under-utilization of compute resources
- Low overall throughput due to resource utilization

Model Parallelism

Pipeline Model Parallelism

- **Mini-batch**: the number of samples processed in each iteration
- Divide a mini-batch into multiple **micro-batches**
- Pipeline the forward and backward computations across micro-batches

Pipeline Model Parallelism: Device Utilization

- m : micro-batches in a mini-batch
- p : number of pipeline stages
- All stages take t_f / t_b to process a forward (backward) micro-batch

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism 35

Improving Pipeline Parallelism Efficiency

- m : number of micro-batches in a mini-batch
	- Increase mini-batch size or reduce micro-batch size
	- Caveat: large mini-batch sizes can lead to accuracy loss; small micro-batch sizes reduce GPU utilization
- p : number of pipeline stages
	- Decrease pipeline depth
	- Caveat: increase stage size

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism 36

Pipeline Model Parallelism: Memory Requirement

• An issue: we need to keep the intermediate activations of **all microbatches** before back propagation

Can we improve the pipeline schedule to reduce memory requirement?

Pipeline Parallelism with 1F1B Schedule

- One-Forward-One-Backward in the steady state
- Limit the number of in-flight micro-batches to the pipeline depth
- **Reduce memory footprint of pipeline parallelism**
- **Doesn't reduce pipeline bubble**

Can we reduce pipeline bubble?

in-flight mciro-batches = **4**

Pipeline parallelism with GPipe's schedule Pipeline parallelism with 1F1B schedule

Pipeline Parallelism with Interleaved 1F1B Schedule

- Further divide each stages into v sub-stages
- The forward (backward) time of each sub-stage is $\frac{t_f}{a}$ $\boldsymbol{\mathcal{V}}$ (t_b $\boldsymbol{\mathcal{V}}$)

Reduce bubble time at the cost increased communication

Pipeline Parallelism with Interleaved 1F1B Schedule

Summary: Comparing Data/Model/Pipeline Parallelism

Summary: Data/Model/Pipeline Parallelism

Example: 3D parallelism in DeepSpeed

Pipeline Model Parallelism

